Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer's disease
Author(s)
Type
Journal Article
Abstract
There is an urgent need for the identification of Alzheimer’s disease (AD) biomarkers. Studies have now suggested the promising use of associations with blood metabolites as functional intermediate phenotypes in biomedical and pharmaceutical research. The aim of this study was to use lipidomics to identify a battery of plasma metabolite molecules that could predict AD patients from controls. We performed a comprehensive untargeted lipidomic analysis, using ultra-performance liquid chromatography/mass spectrometry on plasma samples from 35 AD patients, 40 elderly controls and 48 individuals with mild cognitive impairment (MCI) and used multivariate analysis methods to identify metabolites associated with AD status. A combination of 10 metabolites could discriminate AD patients from controls with 79.2% accuracy (81.8% sensitivity, 76.9% specificity and an area under curve of 0.792) in a novel test set. Six of the metabolites were identified as long chain cholesteryl esters (ChEs) and were reduced in AD (ChE 32:0, odds ratio (OR)=0.237, 95% confidence interval (CI)=0.10–0.48, P=4.19E−04; ChE 34:0, OR=0.152, 95% CI=0.05–0.37, P=2.90E−04; ChE 34:6, OR=0.126, 95% CI=0.03–0.35, P=5.40E−04; ChE 32:4, OR=0.056, 95% CI=0.01–0.24, P=6.56E−04 and ChE 33:6, OR=0.205, 95% CI=0.06–0.50, P=2.21E−03, per (log2) metabolite unit). The levels of these metabolites followed the trend control>MCI>AD. We, additionally, found no association between cholesterol, the precursor of ChE and AD. This study identified new ChE molecules, involved in cholesterol metabolism, implicated in AD, which may help identify new therapeutic targets; although, these findings need to be replicated in larger well-phenotyped cohorts.
Date Issued
2015-01-13
Date Acceptance
2014-10-26
Citation
Translational Psychiatry, 2015, 5
ISSN
2158-3188
Publisher
Nature Publishing Group
Journal / Book Title
Translational Psychiatry
Volume
5
Copyright Statement
© 2015 The Authors. This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/.
International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/.
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000367650300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Life Sciences & Biomedicine
Psychiatry
GENOME-WIDE ASSOCIATION
IDENTIFIES VARIANTS
AMYLOID PATHOLOGY
TRANSFER PROTEIN
MOUSE MODEL
BRAIN
BIOMARKERS
RISK
METABOLOMICS
PROGRESSION
Publication Status
Published
Article Number
e494
Date Publish Online
2015-01-13