Lessons learned from the mechanisms of posttraumatic inflammation extrapolated to the inflammatory response in COVID-19: a review
Author(s)
Type
Journal Article
Abstract
Up to 20% of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) patients develop severe inflammatory complications with diffuse pulmonary inflammation, reflecting acute respiratory distress syndrome (ARDS). A similar clinical profile occurs in severe trauma cases. This review compares pathophysiological and therapeutic principles of severely injured trauma patients and severe coronavirus disease 2019 (COVID-19).
The development of sequential organ failure in trauma parallels deterioration seen in severe COVID-19. Based on established pathophysiological models in the field of trauma, two complementary pathways of disease progression into severe COVID-19 have been identified. Furthermore, the transition from local contained disease into systemic and remote inflammation has been addressed. More specifically, the traumatology concept of sequential insults (‘hits’) resulting in immune dysregulation, is applied to COVID-19 disease progression modelling. Finally, similarities in post-insult humoral and cellular immune responses to severe trauma and severe COVID-19 are described.
To minimize additional ‘hits’ to COVID-19 patients, we suggest postponing all elective surgery in endemic areas. Based on traumatology experience, we propose that immunoprotective protocols including lung protective ventilation, optimal thrombosis prophylaxis, secondary infection prevention and calculated antibiotic therapy are likely also beneficial in the treatment of SARS-CoV-2 infections. Finally, rising SARS-CoV-2 infection and mortality rates mandate exploration of out-of-the box treatment concepts, including experimental therapies designed for trauma care.
The development of sequential organ failure in trauma parallels deterioration seen in severe COVID-19. Based on established pathophysiological models in the field of trauma, two complementary pathways of disease progression into severe COVID-19 have been identified. Furthermore, the transition from local contained disease into systemic and remote inflammation has been addressed. More specifically, the traumatology concept of sequential insults (‘hits’) resulting in immune dysregulation, is applied to COVID-19 disease progression modelling. Finally, similarities in post-insult humoral and cellular immune responses to severe trauma and severe COVID-19 are described.
To minimize additional ‘hits’ to COVID-19 patients, we suggest postponing all elective surgery in endemic areas. Based on traumatology experience, we propose that immunoprotective protocols including lung protective ventilation, optimal thrombosis prophylaxis, secondary infection prevention and calculated antibiotic therapy are likely also beneficial in the treatment of SARS-CoV-2 infections. Finally, rising SARS-CoV-2 infection and mortality rates mandate exploration of out-of-the box treatment concepts, including experimental therapies designed for trauma care.
Date Issued
2020-07-09
Date Acceptance
2020-06-17
Citation
Patient Safety in Surgery, 2020, 14 (1), pp.1-10
ISSN
1754-9493
Publisher
BioMed Central
Start Page
1
End Page
10
Journal / Book Title
Patient Safety in Surgery
Volume
14
Issue
1
Copyright Statement
© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.
License URL
Identifier
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000551820800001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=a2bf6146997ec60c407a63945d4e92bb
Subjects
Science & Technology
Life Sciences & Biomedicine
Surgery
Covid-19
SARS-CoV-2
Severe trauma
critical care
ARDS
Inflammation
RESPIRATORY-DISTRESS-SYNDROME
ACUTE LUNG INJURY
HEMORRHAGIC-SHOCK
SARS-COV
CORONAVIRUS
TRAUMA
PATHOGENESIS
PNEUMONIA
ACE2
SURGERY
Publication Status
Published
Article Number
ARTN 28
Date Publish Online
2020-07-09