An epigenome-wide association study of metabolic syndrome and its components
File(s)
Author(s)
Type
Journal Article
Abstract
The role of metabolic syndrome (MetS) as a preceding metabolic state for type 2 diabetes and cardiovascular disease is widely recognised. To accumulate knowledge of the pathological mechanisms behind the condition at the methylation level, we conducted an epigenome-wide association study (EWAS) of MetS and its components, testing 1187 individuals of European ancestry for approximately 470 000 methylation sites throughout the genome. Methylation site cg19693031 in gene TXNIP —previously associated with type 2 diabetes, glucose and lipid metabolism, associated with fasting glucose level (P = 1.80 × 10−8). Cg06500161 in gene ABCG1 associated both with serum triglycerides (P = 5.36 × 10−9) and waist circumference (P = 5.21 × 10−9). The previously identified type 2 diabetes–associated locus cg08309687 in chromosome 21 associated with waist circumference for the first time (P = 2.24 × 10−7). Furthermore, a novel HDL association with cg17901584 in chromosome 1 was identified (P = 7.81 × 10−8). Our study supports previous genetic studies of MetS, finding that lipid metabolism plays a key role in pathology of the syndrome. We provide evidence regarding a close interplay with glucose metabolism. Finally, we suggest that in attempts to identify methylation loci linking separate MetS components, cg19693031 appears to represent a strong candidate.
Date Issued
2020-12-25
Date Acceptance
2020-11-09
Citation
Scientific Reports, 2020, 10 (1), pp.1-12
ISSN
2045-2322
Publisher
Nature Publishing Group
Start Page
1
End Page
12
Journal / Book Title
Scientific Reports
Volume
10
Issue
1
Copyright Statement
© The Author(s) 2020. Tis article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. Te images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. Te images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
License URL
Sponsor
UNIVERSITY OF OULU
Commission of the European Communities
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000596297800009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Grant Number
Nil
874739
Subjects
Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
DNA METHYLATION
GENETIC-VARIATION
BLOOD
DETERMINANTS
TXNIP
LOCI
Publication Status
Published
Article Number
ARTN 20567
Date Publish Online
2020-11-25