The design and statistical aspects of VIETNARMS: a strategic post-licensing trial of multiple oral direct-acting antiviral hepatitis C treatment strategies in Vietnam
Author(s)
Type
Journal Article
Abstract
Background
Eliminating hepatitis C is hampered by the costs of direct-acting antiviral treatment and the need to treat hard-to-reach populations. Access could be widened by shortening or simplifying treatment, but limited research means it is unclear which approaches could achieve sufficiently high cure rates to be acceptable. We present the statistical aspects of a multi-arm trial designed to test multiple strategies simultaneously and a monitoring mechanism to detect and stop individual randomly assigned groups with unacceptably low cure rates quickly.
Methods
The VIETNARMS trial will factorially randomly assign patients to two drug regimens, three treatment-shortening strategies or control, and adjunctive ribavirin or no adjunctive ribavirin with shortening strategies (14 randomly assigned groups). We will use Bayesian monitoring at interim analyses to detect and stop recruitment into unsuccessful strategies, defined by more than 0.95 posterior probability that the true cure rate is less than 90% for the individual randomly assigned group (non-comparative). Final comparisons will be non-inferiority for regimens (margin 5%) and strategies (margin 10%) and superiority for adjunctive ribavirin. Here, we tested the operating characteristics of the stopping guideline for individual randomly assigned groups, planned interim analysis timings and explored power at the final analysis.
Results
A beta (4.5, 0.5) prior for the true cure rate produces less than 0.05 probability of incorrectly stopping an individual randomly assigned group with a true cure rate of more than 90%. Groups with very low cure rates (<60%) are very likely (>0.9 probability) to stop after about 25% of patients are recruited. Groups with moderately low cure rates (80%) are likely to stop (0.7 probability) before overall recruitment finishes. Interim analyses 7, 10, 13 and 18 months after recruitment commences provide good probabilities of stopping inferior individual randomly assigned groups. For an overall true cure rate of 95%, power is more than 90% to confirm non-inferiority in the regimen and strategy comparisons, regardless of the control cure rate, and to detect a 5% absolute difference in the ribavirin comparison.
Conclusions
The operating characteristics of the stopping guideline are appropriate, and interim analyses can be timed to detect individual randomly assigned groups that are highly likely to have suboptimal performance at various stages. Therefore, our design is suitable for evaluating treatment-shortening or -simplifying strategies.
Trial registration
ISRCTN registry: ISRCTN61522291. Registered on 4 October 2019.
Eliminating hepatitis C is hampered by the costs of direct-acting antiviral treatment and the need to treat hard-to-reach populations. Access could be widened by shortening or simplifying treatment, but limited research means it is unclear which approaches could achieve sufficiently high cure rates to be acceptable. We present the statistical aspects of a multi-arm trial designed to test multiple strategies simultaneously and a monitoring mechanism to detect and stop individual randomly assigned groups with unacceptably low cure rates quickly.
Methods
The VIETNARMS trial will factorially randomly assign patients to two drug regimens, three treatment-shortening strategies or control, and adjunctive ribavirin or no adjunctive ribavirin with shortening strategies (14 randomly assigned groups). We will use Bayesian monitoring at interim analyses to detect and stop recruitment into unsuccessful strategies, defined by more than 0.95 posterior probability that the true cure rate is less than 90% for the individual randomly assigned group (non-comparative). Final comparisons will be non-inferiority for regimens (margin 5%) and strategies (margin 10%) and superiority for adjunctive ribavirin. Here, we tested the operating characteristics of the stopping guideline for individual randomly assigned groups, planned interim analysis timings and explored power at the final analysis.
Results
A beta (4.5, 0.5) prior for the true cure rate produces less than 0.05 probability of incorrectly stopping an individual randomly assigned group with a true cure rate of more than 90%. Groups with very low cure rates (<60%) are very likely (>0.9 probability) to stop after about 25% of patients are recruited. Groups with moderately low cure rates (80%) are likely to stop (0.7 probability) before overall recruitment finishes. Interim analyses 7, 10, 13 and 18 months after recruitment commences provide good probabilities of stopping inferior individual randomly assigned groups. For an overall true cure rate of 95%, power is more than 90% to confirm non-inferiority in the regimen and strategy comparisons, regardless of the control cure rate, and to detect a 5% absolute difference in the ribavirin comparison.
Conclusions
The operating characteristics of the stopping guideline are appropriate, and interim analyses can be timed to detect individual randomly assigned groups that are highly likely to have suboptimal performance at various stages. Therefore, our design is suitable for evaluating treatment-shortening or -simplifying strategies.
Trial registration
ISRCTN registry: ISRCTN61522291. Registered on 4 October 2019.
Date Issued
2020-05-18
Date Acceptance
2020-04-25
Citation
Trials, 2020, 21 (1), pp.1-12
ISSN
1745-6215
Publisher
BioMed Central
Start Page
1
End Page
12
Journal / Book Title
Trials
Volume
21
Issue
1
Copyright Statement
© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.
License URL
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000536258600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Life Sciences & Biomedicine
Medicine, Research & Experimental
Research & Experimental Medicine
Adaptive design
Bayesian methods
Clinical trial
Hepatitis C
Interim analyses
Multi-arm
Trial design
CLINICAL-TRIALS
OPEN-LABEL
VIRUS-INFECTION
SOFOSBUVIR
RIBAVIRIN
EFFICACY
TUBERCULOSIS
FACTORIAL
THERAPY
SAFETY
Publication Status
Published
Article Number
ARTN 413
Date Publish Online
2020-05-18