Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2
File(s)s4198-017-03065.pdf (1.6 MB)
Published version
Author(s)
Type
Journal Article
Abstract
In this article we present the first comparative study of the transient decay dynamics of photo-generated charges for the three polymorphs of TiO2. To our knowledge, this is the first such study of the brookite phase of TiO2 over timescales relevant to the kinetics of water splitting. We find that the behavior of brookite, both in the dynamics of relaxation of photo-generated charges and in energetic distribution, is similar to the anatase phase of TiO2. Moreover, links between the rate of recombination of charge carriers, their energetic distribution and the mode of transport are made in light of our findings and used to account for the differences in water splitting efficiency observed across the three polymorphs.
Date Issued
2017-06-07
Date Acceptance
2017-04-21
Citation
Scientific Reports, 2017, 7
ISSN
2045-2322
Publisher
Nature Publishing Group
Journal / Book Title
Scientific Reports
Volume
7
Copyright Statement
© The Author(s) 2017. This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/
Sponsor
Commission of the European Communities
Grant Number
291482
Subjects
Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
PHOTOCATALYTIC ACTIVITY
ANATASE
RUTILE
BROOKITE
ELECTRODES
ZNO
Publication Status
Published
Article Number
2938