Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography
Author(s)
Type
Journal Article
Abstract
Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography—a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.
Date Issued
2014
Date Acceptance
2015-04-23
Citation
Nat Commun, 2014, 5
ISSN
2041-1723
Publisher
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Journal / Book Title
Nat Commun
Volume
5
Copyright Statement
© 2014, Rights Managed by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 3.0
Unported License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
Unported License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
License URL
Identifier
ARTN 3933
Publication Status
Published