Model-based clustering and new edge modelling in large computer networks
File(s)New_edges_identity.pdf (392.59 KB)
Accepted version
Author(s)
Metelli, S
Heard, NA
Type
Conference Paper
Abstract
Computer networks are complex and the analysis of their structure in search for anomalous behaviour is both a challenging and important task for cyber security. For instance, new edges, i.e. connections from a host or user to a computer that has not been connected to before, provide potentially strong statistical evidence for detecting anomalies. Unusual new edges can sometimes be indicative of both legitimate activity, such as automated update requests permitted by the client, and illegitimate activity, such as denial of service (DoS) attacks to cause service disruption or intruders escalating privileges by traversing through the host network. In both cases, capturing and accumulating evidence of anomalous new edge formation represents an important security application. Computer networks tend to exhibit an underlying cluster structure, where nodes are naturally grouped together based on similar connection patterns. What constitutes anomalous behaviour may strongly differ between clusters, so inferring these peer groups constitutes an important step in modelling the types of new connections a user would make. In this article, we present a two-step Bayesian statistical method aimed at clustering similar users inside the network and simultaneously modelling new edge activity, exploiting both overall-level and cluster-level covariates.
Date Issued
2016-11-17
Date Acceptance
2016-07-21
Citation
2016
ISBN
978-1-5090-3865-7
Publisher
IEEE
Copyright Statement
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Source
IEEE International Conference on Intelligence and Security Informatics
Publication Status
Published
Start Date
2016-09-28
Finish Date
2016-09-30
Coverage Spatial
Arizona, USA