Investigation on Mechanical, Tribological and Microstructural properties of Al-Mg-Si-T6/SiC/Muscovite-hybrid metal-matrix composites for high strength applications
File(s)1-s2.0-S2238785421003227-main.pdf (3.23 MB)
Published version
Author(s)
Type
Journal Article
Abstract
The wide range of aluminium variants (alloys and composites) has made it an important material for aviation, automotive components, auto-transmission locomotive section units, S.C.U.B.A. tanks, ship, vessels, submarines fabrication and design etc. regardless of the fact that the aluminium alloys were being utilized in myriads of sectors owing to its exceptional superior and versatile functional characteristics, the property such as wear-resistant ought to be enhanced in order to further prolong diverse spectrum of applications. An aluminium alloy having lower hardness and tensile strength has been incorporated with silicon carbide that drastically strengthens the properties. This study involves fabrication of aluminium silicon carbide with muscovite/hydrated aluminium potassium silicate/aluminosilicate in stir casting method to obtain a hybrid metal matrix composite. Maintaining a constant amount of aluminium and silicon carbide, muscovite or hydrated aluminium potassium silicate is varied to obtain three distinctive compositions of (Al/SiC/muscovite) composites. The mechanical characteristics like tensile-strength, flexural-strength, toughness, hardness, scratch adhesion, percent-porosity and density were studied. The dispersion of muscovite and silicon carbide particles were observed by viewing the microstructure photographs obtained using optical microscopy and Scanning Electron Microscope (SEM). EDAX analysis affirms the presence of reinforcing constituents in Al–Mg–Si–T6 alloy matrix. A drum type wear apparatus was utilized to evaluate the percentage of wear-loss in different compositions using different loads and it was found that the wear-loss decreases linearly as the muscovite percentage was increased.
Date Issued
2021-05-01
Date Acceptance
2021-03-23
ISSN
2238-7854
Publisher
Elsevier
Start Page
1564
End Page
1581
Journal / Book Title
Journal of Materials Research and Technology
Volume
12
Copyright Statement
©2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Publication Status
Published
Date Publish Online
2021-03-27