The torsional quartz-crystal viscometer
File(s)Our paper 2.pdf (1.41 MB)
Published version
Author(s)
de Castro, Carlos A Nieto
Richardson, Stephen M
Wakeham, William A
Type
Journal Article
Abstract
The paper describes the theory and practice associated with the torsional quartz-crystal viscometer for the measurement of the viscosity of Newtonian Fluids. It is an instrument that has been less often used than its quality merits, but it has the distinct advantages, shared with the vibrating-wire device, that it involves no bulk motion of fluid or a solid and that all measurements can be electrical. The temperature range that can be covered by the instrument is from 2 to 650 K and pressures have reached as much as 100 MPa. The review summarizes the most recent theory of the instrument and carefully sets out all of the many conditions that have to be satisfied by design so that a practical instrument conforms to the theory. Most of the conditions are readily satisfied. Two working equations are presented that could be used to evaluate the viscosity using the frequency at resonance of the crystal and the bandwidth of that resonance when the crystal is immersed in the fluid and in vacuo. It is explained that at present only one of these equations should be used for the evaluation. Several configurations of instruments that have been employed for measurements over a wide range of conditions are briefly described as well as the corrections necessary to operate the instrument with the highest accuracy. The overall relative uncertainty attainable with the instrument ranges from 0.005 to 0.02 at a 95% confidence level, depending upon the fluid density.
Date Issued
2024-07
Date Acceptance
2024-05-22
Citation
International Journal of Thermophysics, 2024, 45 (7)
ISSN
0195-928X
Publisher
Springer
Journal / Book Title
International Journal of Thermophysics
Volume
45
Issue
7
Copyright Statement
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
License URL
Identifier
http://dx.doi.org/10.1007/s10765-024-03389-1
Publication Status
Published
Article Number
103
Date Publish Online
2024-06-25