Machine learning demonstrates high accuracy for disease diagnosis and prognosis in plastic surgery
File(s)Machine_Learning_Demonstrates_High_Accuracy_for.41.pdf (902.35 KB)
Published version
Author(s)
Mantelakis, Angelos
Assael, Yannis
Sorooshian, Parviz
Khajuria, Ankur
Type
Journal Article
Abstract
Introduction:
Machine learning (ML) is a set of models and methods that can detect patterns in vast amounts of data and use this information to perform various kinds of decision-making under uncertain conditions. This review explores the current role of this technology in plastic surgery by outlining the applications in clinical practice, diagnostic and prognostic accuracies, and proposed future direction for clinical applications and research.
Methods:
EMBASE, MEDLINE, CENTRAL and ClinicalTrials.gov were searched from 1990 to 2020. Any clinical studies (including case reports) which present the diagnostic and prognostic accuracies of machine learning models in the clinical setting of plastic surgery were included. Data collected were clinical indication, model utilised, reported accuracies, and comparison with clinical evaluation.
Results:
The database identified 1181 articles, of which 51 articles were included in this review. The clinical utility of these algorithms was to assist clinicians in diagnosis prediction (n=22), outcome prediction (n=21) and pre-operative planning (n=8). The mean accuracy is 88.80%, 86.11% and 80.28% respectively. The most commonly used models were neural networks (n=31), support vector machines (n=13), decision trees/random forests (n=10) and logistic regression (n=9).
Conclusions:
ML has demonstrated high accuracies in diagnosis and prognostication of burn patients, congenital or acquired facial deformities, and in cosmetic surgery. There are no studies comparing ML to clinician's performance. Future research can be enhanced using larger datasets or utilising data augmentation, employing novel deep learning models, and applying these to other subspecialties of plastic surgery.
Machine learning (ML) is a set of models and methods that can detect patterns in vast amounts of data and use this information to perform various kinds of decision-making under uncertain conditions. This review explores the current role of this technology in plastic surgery by outlining the applications in clinical practice, diagnostic and prognostic accuracies, and proposed future direction for clinical applications and research.
Methods:
EMBASE, MEDLINE, CENTRAL and ClinicalTrials.gov were searched from 1990 to 2020. Any clinical studies (including case reports) which present the diagnostic and prognostic accuracies of machine learning models in the clinical setting of plastic surgery were included. Data collected were clinical indication, model utilised, reported accuracies, and comparison with clinical evaluation.
Results:
The database identified 1181 articles, of which 51 articles were included in this review. The clinical utility of these algorithms was to assist clinicians in diagnosis prediction (n=22), outcome prediction (n=21) and pre-operative planning (n=8). The mean accuracy is 88.80%, 86.11% and 80.28% respectively. The most commonly used models were neural networks (n=31), support vector machines (n=13), decision trees/random forests (n=10) and logistic regression (n=9).
Conclusions:
ML has demonstrated high accuracies in diagnosis and prognostication of burn patients, congenital or acquired facial deformities, and in cosmetic surgery. There are no studies comparing ML to clinician's performance. Future research can be enhanced using larger datasets or utilising data augmentation, employing novel deep learning models, and applying these to other subspecialties of plastic surgery.
Date Issued
2021-06
Date Acceptance
2021-04-14
Citation
Plastic and Reconstructive Surgery Global Open, 2021, 9 (6), pp.1-13
ISSN
2169-7574
Publisher
Lippincott, Williams & Wilkins
Start Page
1
End Page
13
Journal / Book Title
Plastic and Reconstructive Surgery Global Open
Volume
9
Issue
6
Copyright Statement
© 2021 The Authors. Published by Wolters Kluwer Health,
Inc. on behalf of The American Society of Plastic Surgeons. This
is an open-access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the
work provided it is properly cited. The work cannot be changed in
any way or used commercially without permission from the journal.
DOI: 10.1097/GOX.0000000000003638
Inc. on behalf of The American Society of Plastic Surgeons. This
is an open-access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the
work provided it is properly cited. The work cannot be changed in
any way or used commercially without permission from the journal.
DOI: 10.1097/GOX.0000000000003638
Identifier
https://journals.lww.com/prsgo/Fulltext/2021/06000/Machine_Learning_Demonstrates_High_Accuracy_for.41.aspx
Publication Status
Published
Date Publish Online
2021-06