A role for Biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics
File(s)s41467-020-18130-3.pdf (1.04 MB)
Published version
Author(s)
Type
Journal Article
Abstract
The SARS-CoV-2 pandemic has shown how a rapid rise in demand for patient and community sample testing can quickly overwhelm testing capability globally. With most diagnostic infrastructure dependent on specialized instruments, their exclusive reagent supplies quickly become bottlenecks, creating an urgent need for approaches to boost testing capacity. We address this challenge by refocusing the London Biofoundry onto the development of alternative testing pipelines. Here, we present a reagent-agnostic automated SARS-CoV-2 testing platform that can be quickly deployed and scaled. Using an in-house-generated, open-source, MS2-virus-like particle (VLP) SARS-CoV-2 standard, we validate RNA extraction and RT-qPCR workflows as well as two detection assays based on CRISPR-Cas13a and RT-loop-mediated isothermal amplification (RT-LAMP). In collaboration with an NHS diagnostic testing lab, we report the performance of the overall workflow and detection of SARS-CoV-2 in patient samples using RT-qPCR, CRISPR-Cas13a, and RT-LAMP. The validated RNA extraction and RT-qPCR platform has been installed in NHS diagnostic labs, increasing testing capacity by 1000 samples per day.
Date Issued
2020-09-08
Date Acceptance
2020-08-05
Citation
Nature Communications, 2020, 11, pp.1-11
ISSN
2041-1723
Publisher
Nature Research
Start Page
1
End Page
11
Journal / Book Title
Nature Communications
Volume
11
Copyright Statement
© The Author(s) 2020. This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.
License URL
Sponsor
Engineering & Physical Science Research Council (E
Engineering & Physical Science Research Council (EPSRC)
Biotechnology and Biological Sciences Research Council (BBSRC)
NPL Management Limited
UK DRI Ltd
Identifier
https://www.nature.com/articles/s41467-020-18130-3
Grant Number
RG91264
EP/S001859/1
BB/M025632/1
N/A
'CR & T IMP'
Publication Status
Published
Article Number
4464
Date Publish Online
2020-09-08