Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis.
File(s)elife-72579-v2.pdf (8.69 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified Kallikrein-Related Peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial endothelial cells, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo& mouse models and in vitro studies with cultured endothelial cells (ECs). Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs (HAECs), as determined by NFkB activation, expression of vascular cell adhesion molecule 1 (VCAM1) and intracellular adhesion molecule 1 (ICAM1), and monocyte adhesion. Further, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.
Date Issued
2022-01-11
Date Acceptance
2022-01-08
Citation
eLife, 2022, 11, pp.1-23
ISSN
2050-084X
Publisher
eLife Sciences Publications Ltd
Start Page
1
End Page
23
Journal / Book Title
eLife
Volume
11
Copyright Statement
© Williams et al. This
is an open-access article, free
of all copyright, and may be
freely reproduced, distributed,
transmitted, modified, built
upon, or otherwise used by
anyone for any lawful purpose.
The work is made available under
the Creative Commons CC0
public domain dedication.
is an open-access article, free
of all copyright, and may be
freely reproduced, distributed,
transmitted, modified, built
upon, or otherwise used by
anyone for any lawful purpose.
The work is made available under
the Creative Commons CC0
public domain dedication.
Sponsor
Cancer Research UK
Identifier
https://www.ncbi.nlm.nih.gov/pubmed/35014606
PII: 72579
Grant Number
25192
Subjects
cell biology
human
immunology
inflammation
mouse
Publication Status
Published
Coverage Spatial
England
Date Publish Online
2022-01-11