A portable X-pinch design for x-ray diagnostics of warm dense matter
File(s)MRE Strucka Xpinch.pdf (3.8 MB)
Published version
Author(s)
Type
Journal Article
Abstract
We describe the design and x-ray emission properties (temporal, spatial, and spectral) of Dry Pinch I, a portable X-pinch driver developed at Imperial College London. Dry Pinch I is a direct capacitor discharge device, 300 × 300 × 700 mm3 in size and ∼50 kg in mass, that can be used as an external driver for x-ray diagnostics in high-energy-density physics experiments. Among key findings, the device is shown to reliably produce 1.1 ± 0.3 ns long x-ray bursts that couple ∼50 mJ of energy into photon energies from 1 to 10 keV. The average shot-to-shot jitter of these bursts is found to be 10 ± 4.6 ns using a combination of x-ray and current diagnostics. The spatial extent of the x-ray hot spot from which the radiation emanates agrees with previously published results for X-pinches—suggesting a spot size of 10 ± 6 µm in the soft energy region (1–10 keV) and 190 ± 100 µm in the hard energy region (>10 keV). These characteristics mean that Dry Pinch I is ideally suited for use as a probe in experiments driven in the laboratory or at external facilities when more conventional sources of probing radiation are not available. At the same time, this is also the first detailed investigation of an X-pinch operating reliably at current rise rates of less than 1 kA/ns.
Date Issued
2022-01-01
Date Acceptance
2021-10-19
Citation
Matter and Radiation at Extremes, 2022, 7 (1), pp.1-11
ISSN
2468-080X
Publisher
Elsevier
Start Page
1
End Page
11
Journal / Book Title
Matter and Radiation at Extremes
Volume
7
Issue
1
Copyright Statement
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/).
creativecommons.org/licenses/by/4.0/).
License URL
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000719738500001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Physical Sciences
Physics, Multidisciplinary
Physics
Publication Status
Published
Article Number
ARTN 016901
Date Publish Online
2021-11-16