A whole cell-based Matrix-assisted laser desorption/ionization mass spectrometry lipidomic assay for the discovery of compounds that target lipid a modifications
File(s)fmicb-14-1156795.pdf (2.25 MB)
Published version
Author(s)
Larrouy-Maumus, Gerald
Type
Journal Article
Abstract
Introduction: Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a powerful analytical technique that has been applied to a wide variety of applications ranging from proteomics to clinical diagnostics. One such application is its use as a tool for discovery assays, such as monitoring the inhibition of purified proteins. With the global threat from antimicrobial-resistant (AMR) bacteria, new and innovative solutions are required to identify new molecules that could revert bacterial resistance and/or target virulence factors. Here, we used a whole cell-based MALDI-TOF lipidomic assay using a routine MALDI Biotyper Sirius system operating in linear negative ion mode combined with the MBT Lipid Xtract kit to discover molecules targeting bacteria that are resistant to polymyxins, which are considered last-resort antibiotics.
Methods: A library of 1200 natural compounds was tested against an E. coli strain expressing mcr-1, which is known to modify lipid A by adding phosphoethanolamine (pETN), making the strain resistant to colistin.
Results and Discussion: Using this approach, we identified 8 compounds that led to a decrease in this lipid A modification by MCR-1 and could potentially be employed to revert resistance. Taken together, as-proof-of-principle, the data we report here represent a new workflow based on the analysis of bacterial lipid A by routine MALDI-TOF for the discovery of inhibitors that could target bacterial viability and/or virulence.
Methods: A library of 1200 natural compounds was tested against an E. coli strain expressing mcr-1, which is known to modify lipid A by adding phosphoethanolamine (pETN), making the strain resistant to colistin.
Results and Discussion: Using this approach, we identified 8 compounds that led to a decrease in this lipid A modification by MCR-1 and could potentially be employed to revert resistance. Taken together, as-proof-of-principle, the data we report here represent a new workflow based on the analysis of bacterial lipid A by routine MALDI-TOF for the discovery of inhibitors that could target bacterial viability and/or virulence.
Date Issued
2023-04-17
Date Acceptance
2023-03-28
Citation
Frontiers in Microbiology, 2023, 14, pp.1-7
ISSN
1664-302X
Publisher
Frontiers Media S.A.
Start Page
1
End Page
7
Journal / Book Title
Frontiers in Microbiology
Volume
14
Copyright Statement
Copyright © 2023 Tang, Osborne, Dortet and Larrouy-Maumus. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
License URL
Identifier
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1156795/full
Publication Status
Published
Article Number
1156795
Date Publish Online
2023-04-17