Earthquake hazard uncertainties improved using precariously balanced rocks
File(s)2020AV000182.pdf (3.3 MB)
Published version
OA Location
Author(s)
Type
Journal Article
Abstract
Probabilistic seismic hazard analysis (PSHA) is the state‐of‐the‐art method to estimate ground motions exceeded by large, infrequent, and potentially damaging earthquakes; however, a fundamental problem is the lack of an accepted method for both quantitatively validating and refining the hazard estimates using empirical geological data. In this study, to reduce uncertainties in such hazard estimates, we present a new method that uses empirical data from precariously balanced rocks (PBRs) in coastal Central California. We calculate the probability of toppling of each PBR at defined ground‐motion levels and determine the age at which the PBRs obtained their current fragile geometries using a novel implementation of cosmogenic 10Be exposure dating. By eliminating the PSHA estimates inconsistent with at least a 5% probability of PBR survival, the mean ground‐motion estimate corresponding to the hazard level of 10−4 yr−1 (10,000 yr mean return period) is significantly reduced by 27%, and the range of estimated 5th–95th fractile ground motions is reduced by 49%. Such significant reductions in uncertainties make it possible to more reliably assess the safety and security of critical infrastructure in earthquake‐prone regions worldwide.
Date Issued
2020-12
Date Acceptance
2020-07-20
Citation
AGU Advances, 2020, 1 (4), pp.1-24
ISSN
2576-604X
Publisher
American Geophysical Union (AGU)
Start Page
1
End Page
24
Journal / Book Title
AGU Advances
Volume
1
Issue
4
Copyright Statement
©2020. The Authors.
This is an open access article under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
This is an open access article under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
License URL
Identifier
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020AV000182
Publication Status
Published online
Date Publish Online
2020-10-01