Solar wind current sheets and deHoffmann-Teller analysis First results from Solar Orbiter's DC electric field measurements
File(s)aa40855-21.pdf (1.35 MB)
Published version
Author(s)
Type
Journal Article
Abstract
Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields.
Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind speed.
Methods. We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, Leff of the E-field probes. We then used the HT method to estimate the speed of the solar wind.
Results. Using the HT method, we find that the observed variations in Ey are often in excellent agreement with the variations in the magnetic field. The magnitude of Ey, however, is uncertain due to the fact that the Leff depends on the plasma environment. Here, we derive an empirical model relating Leff to the Debye length, which we can use to improve the estimate of Ey and, consequently, the estimated solar wind speed.
Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter’s magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.
Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind speed.
Methods. We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, Leff of the E-field probes. We then used the HT method to estimate the speed of the solar wind.
Results. Using the HT method, we find that the observed variations in Ey are often in excellent agreement with the variations in the magnetic field. The magnitude of Ey, however, is uncertain due to the fact that the Leff depends on the plasma environment. Here, we derive an empirical model relating Leff to the Debye length, which we can use to improve the estimate of Ey and, consequently, the estimated solar wind speed.
Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter’s magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.
Date Issued
2021-12-14
Date Acceptance
2021-04-26
Citation
Astronomy and Astrophysics: a European journal, 2021, 656, pp.1-7
ISSN
0004-6361
Publisher
EDP Sciences
Start Page
1
End Page
7
Journal / Book Title
Astronomy and Astrophysics: a European journal
Volume
656
Copyright Statement
© ESO 2021
Sponsor
Science and Technology Facilities Council (STFC)
Science and Technology Facilities Council (STFC)
Identifier
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000730246400018&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Grant Number
ST/S000364/1
ST/T001062/1
Subjects
Science & Technology
Physical Sciences
Astronomy & Astrophysics
solar wind
plasmas
magnetic reconnection
methods
data analysis
MAGNETIC-FIELD
MAGNETOPAUSE
RECONNECTION
SWITCHBACKS
Publication Status
Published
Article Number
ARTN A9
Date Publish Online
2021-12-14