Distributionally robust optimization with applications to risk management
Author(s)
Zymler, Steve
Type
Thesis or dissertation
Abstract
Many decision problems can be formulated as mathematical optimization models. While deterministic
optimization problems include only known parameters, real-life decision problems
almost invariably involve parameters that are subject to uncertainty. Failure to take this
uncertainty under consideration may yield decisions which can lead to unexpected or even
catastrophic results if certain scenarios are realized.
While stochastic programming is a sound approach to decision making under uncertainty, it
assumes that the decision maker has complete knowledge about the probability distribution
that governs the uncertain parameters. This assumption is usually unjustified as, for most
realistic problems, the probability distribution must be estimated from historical data and
is therefore itself uncertain. Failure to take this distributional modeling risk into account
can result in unduly optimistic risk assessment and suboptimal decisions. Furthermore, for
most distributions, stochastic programs involving chance constraints cannot be solved using
polynomial-time algorithms.
In contrast to stochastic programming, distributionally robust optimization explicitly accounts
for distributional uncertainty. In this framework, it is assumed that the decision maker has
access to only partial distributional information, such as the first- and second-order moments
as well as the support. Subsequently, the problem is solved under the worst-case distribution
that complies with this partial information. This worst-case approach effectively immunizes
the problem against distributional modeling risk.
The objective of this thesis is to investigate how robust optimization techniques can be used
for quantitative risk management. In particular, we study how the risk of large-scale derivative
portfolios can be computed as well as minimized, while making minimal assumptions about
the probability distribution of the underlying asset returns. Our interest in derivative portfolios
stems from the fact that careless investment in derivatives can yield large losses or even
bankruptcy. We show that by employing robust optimization techniques we are able to capture
the substantial risks involved in derivative investments. Furthermore, we investigate how
distributionally robust chance constrained programs can be reformulated or approximated as
tractable optimization problems. Throughout the thesis, we aim to derive tractable models
that are scalable to industrial-size problems.
optimization problems include only known parameters, real-life decision problems
almost invariably involve parameters that are subject to uncertainty. Failure to take this
uncertainty under consideration may yield decisions which can lead to unexpected or even
catastrophic results if certain scenarios are realized.
While stochastic programming is a sound approach to decision making under uncertainty, it
assumes that the decision maker has complete knowledge about the probability distribution
that governs the uncertain parameters. This assumption is usually unjustified as, for most
realistic problems, the probability distribution must be estimated from historical data and
is therefore itself uncertain. Failure to take this distributional modeling risk into account
can result in unduly optimistic risk assessment and suboptimal decisions. Furthermore, for
most distributions, stochastic programs involving chance constraints cannot be solved using
polynomial-time algorithms.
In contrast to stochastic programming, distributionally robust optimization explicitly accounts
for distributional uncertainty. In this framework, it is assumed that the decision maker has
access to only partial distributional information, such as the first- and second-order moments
as well as the support. Subsequently, the problem is solved under the worst-case distribution
that complies with this partial information. This worst-case approach effectively immunizes
the problem against distributional modeling risk.
The objective of this thesis is to investigate how robust optimization techniques can be used
for quantitative risk management. In particular, we study how the risk of large-scale derivative
portfolios can be computed as well as minimized, while making minimal assumptions about
the probability distribution of the underlying asset returns. Our interest in derivative portfolios
stems from the fact that careless investment in derivatives can yield large losses or even
bankruptcy. We show that by employing robust optimization techniques we are able to capture
the substantial risks involved in derivative investments. Furthermore, we investigate how
distributionally robust chance constrained programs can be reformulated or approximated as
tractable optimization problems. Throughout the thesis, we aim to derive tractable models
that are scalable to industrial-size problems.
Date Issued
2010-06
Date Awarded
2010-10
Advisor
Rustem, Berc
Creator
Zymler, Steve
Publisher Department
Computing
Publisher Institution
Imperial College London
Qualification Level
Doctoral
Qualification Name
Doctor of Philosophy (PhD)