Metal-centred states control carrier lifetimes in transition metal oxide photocatalysts
File(s)s41557-025-01868-y.pdf (1.76 MB) Sachs_et_al_Supplementary_Information.pdf (2.87 MB)
Published version (online)
Accepted version
Author(s)
Type
Journal Article
Abstract
Efficient sunlight-to-energy conversion requires materials that can generate long-lived charge carriers upon illumination. However, the targeted design of semiconductors possessing intrinsically long lifetimes remains a key challenge. Here using a series of transition metal oxides, we establish a link between carrier lifetime and electronic configuration in transition metal-based semiconductors. We identify a subpicosecond relaxation mechanism via metal-centred ligand field states that compromise quantum yields in open d-shell transition metal oxides (for example, Fe2O3, Co3O4, Cr2O3 and NiO), which is more reminiscent of molecular complexes than crystalline semiconductors. We found that materials with spin-forbidden ligand field transitions could partially mitigate this relaxation pathway, explaining why Fe2O3 achieves higher photoelectrochemical activity than other visible light-absorbing transition metal oxides. However, achieving high yields of long-lived charges requires transition metal oxides with d0 or d10 electronic configurations (for example, TiO2 and BiVO4), where ligand field states are absent. These trends translate to transition metal-containing semiconductors beyond oxides, enabling the design of photoabsorbers with better-controlled recombination channels in photovoltaics, photocatalysis and communication devices.
Date Issued
2025-07-02
Date Acceptance
2025-03-20
Citation
Nature Chemistry, 2025
ISSN
1755-4330
Publisher
Nature Research
Journal / Book Title
Nature Chemistry
Copyright Statement
© The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
License URL
Identifier
10.1038/s41557-025-01868-y
Publication Status
Published online
Date Publish Online
2025-07-02