Experimental ischaemic stroke induces transient cardiac atrophy and dysfunction
File(s)
Author(s)
Type
Journal Article
Abstract
Background
Stroke can lead to cardiac dysfunction in patients, but the mechanisms underlying the interaction between the injured brain and the heart are poorly understood. The objective of the study is to investigate the effects of experimental murine stroke on cardiac function and molecular signalling in the heart.
Methods and results
Mice were subjected to filament‐induced left middle cerebral artery occlusion for 30 or 60 min or sham surgery and underwent repetitive micro‐echocardiography. Left ventricular contractility was reduced early (24–72 h) but not late (2 months) after brain ischaemia. Cardiac dysfunction was accompanied by a release of high‐sensitive cardiac troponin (hsTNT (ng/ml): d1: 7.0 ± 1.0 vs. 25.0 ± 3.2*; d3: 7.3 ± 1.1 vs. 52.2 ± 16.7*; d14: 5.7 ± 0.8 vs. 5.2 ± 0.3; sham vs. 60 min. MCAO; mean ± SEM; *p < 0.05); reduced heart weight (heart weight/tibia length ratio: d1: 6.9 ± 0.2 vs. 6.4 ± 0.1*; d3: 6.7 ± 0.2 vs. 5.8 ± 0.1*; d14: 6.7 ± 0.2 vs. 6.4 ± 03; sham vs. 60 min. MCAO; mean ± SEM; *p < 0.05); resulting from cardiomyocyte atrophy (cardiomyocyte size: d1: 12.8% ± 0.002**; d3: 13.5% ± 0.002**; 14d: 6.3% ± 0.003*; 60 min. MCAO vs. sham; mean ± SEM; **p < 0.01; *p < 0.05), accompanied by increased atrogin‐1 and the E3 ubiquitin ligase murf‐1. Net norepinephrine but not synthesis was increased, suggesting a reduced norepinephrine release or an increase of norepinephrine re‐uptake, resulting in a functional denervation. Transcriptome analysis in cardiac tissue identified the transcription factor peroxisome proliferator‐activated receptor gamma as a potential mediator of stroke‐induced transcriptional dysregulation involved in cardiac atrophy.
Conclusions
Stroke induces a complex molecular response in the heart muscle with immediate but transient cardiac atrophy and dysfunction.
Stroke can lead to cardiac dysfunction in patients, but the mechanisms underlying the interaction between the injured brain and the heart are poorly understood. The objective of the study is to investigate the effects of experimental murine stroke on cardiac function and molecular signalling in the heart.
Methods and results
Mice were subjected to filament‐induced left middle cerebral artery occlusion for 30 or 60 min or sham surgery and underwent repetitive micro‐echocardiography. Left ventricular contractility was reduced early (24–72 h) but not late (2 months) after brain ischaemia. Cardiac dysfunction was accompanied by a release of high‐sensitive cardiac troponin (hsTNT (ng/ml): d1: 7.0 ± 1.0 vs. 25.0 ± 3.2*; d3: 7.3 ± 1.1 vs. 52.2 ± 16.7*; d14: 5.7 ± 0.8 vs. 5.2 ± 0.3; sham vs. 60 min. MCAO; mean ± SEM; *p < 0.05); reduced heart weight (heart weight/tibia length ratio: d1: 6.9 ± 0.2 vs. 6.4 ± 0.1*; d3: 6.7 ± 0.2 vs. 5.8 ± 0.1*; d14: 6.7 ± 0.2 vs. 6.4 ± 03; sham vs. 60 min. MCAO; mean ± SEM; *p < 0.05); resulting from cardiomyocyte atrophy (cardiomyocyte size: d1: 12.8% ± 0.002**; d3: 13.5% ± 0.002**; 14d: 6.3% ± 0.003*; 60 min. MCAO vs. sham; mean ± SEM; **p < 0.01; *p < 0.05), accompanied by increased atrogin‐1 and the E3 ubiquitin ligase murf‐1. Net norepinephrine but not synthesis was increased, suggesting a reduced norepinephrine release or an increase of norepinephrine re‐uptake, resulting in a functional denervation. Transcriptome analysis in cardiac tissue identified the transcription factor peroxisome proliferator‐activated receptor gamma as a potential mediator of stroke‐induced transcriptional dysregulation involved in cardiac atrophy.
Conclusions
Stroke induces a complex molecular response in the heart muscle with immediate but transient cardiac atrophy and dysfunction.
Date Issued
2019-02-01
Date Acceptance
2018-06-28
Citation
Journal of Cachexia, Sarcopenia and Muscle, 2019, 10 (1), pp.54-62
ISSN
2190-6009
Publisher
Wiley Open Access
Start Page
54
End Page
62
Journal / Book Title
Journal of Cachexia, Sarcopenia and Muscle
Volume
10
Issue
1
Copyright Statement
© 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders Journal of Cachexia, Sarcopenia and Muscle 2019; 10: 54–62 Published online 30 October 2018 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jcsm.12335. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes (https://creativecommons.org/licenses/by-nc/4.0/).
Sponsor
St Marys Development Trust
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000462626100007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Grant Number
RE:SOBELL CHAIR
Subjects
Science & Technology
Life Sciences & Biomedicine
Geriatrics & Gerontology
Medicine, General & Internal
General & Internal Medicine
Ischaemic stroke
Cardiac dysfunction
Atrophy
Cardiomyocytes
Left ventricular contractility
NERVOUS-SYSTEM
FOCAL ISCHEMIA
HEART
EXPRESSION
GAMMA
CARDIOMYOPATHY
KNOCKOUT
BRAIN
Publication Status
Published
Date Publish Online
2018-10-30