Auto-deconvolution and molecular networking of gas chromatography-mass spectrometry data
File(s)
Author(s)
Type
Journal Article
Abstract
We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.
Date Issued
2020-11-09
Date Acceptance
2020-09-09
Citation
Nature Biotechnology, 2020, 39, pp.169-173
ISSN
1087-0156
Publisher
Nature Research
Start Page
169
End Page
173
Journal / Book Title
Nature Biotechnology
Volume
39
Copyright Statement
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
Sponsor
The Vodafone Foundation
National Institutes of Health
The Vodafone Foundation
Identifier
https://www.ncbi.nlm.nih.gov/pubmed/33169034
PII: 10.1038/s41587-020-0700-3
Grant Number
N/A
GR109132(CON-80002316)
P87048
Subjects
Science & Technology
Life Sciences & Biomedicine
Biotechnology & Applied Microbiology
METABOLOMICS
REPOSITORY
STANDARDS
Publication Status
Published
Coverage Spatial
United States
Date Publish Online
2020-11-09