Data-driven multivariate and multiscale methods for brain computer interface
Author(s)
Park, Cheolsoo
Type
Thesis or dissertation
Abstract
This thesis focuses on the development of data-driven multivariate and multiscale methods
for brain computer interface (BCI) systems. The electroencephalogram (EEG), the
most convenient means to measure neurophysiological activity due to its noninvasive nature,
is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its
multichannel recording nature require a new set of data-driven multivariate techniques to
estimate more accurately features for enhanced BCI operation. Also, a long term goal
is to enable an alternative EEG recording strategy for achieving long-term and portable
monitoring.
Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully
data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary
EEG signal into a set of components which are highly localised in time and frequency. It
is shown that the complex and multivariate extensions of EMD, which can exploit common
oscillatory modes within multivariate (multichannel) data, can be used to accurately
estimate and compare the amplitude and phase information among multiple sources, a
key for the feature extraction of BCI system. A complex extension of local mean decomposition
is also introduced and its operation is illustrated on two channel neuronal
spike streams. Common spatial pattern (CSP), a standard feature extraction technique
for BCI application, is also extended to complex domain using the augmented complex
statistics. Depending on the circularity/noncircularity of a complex signal, one of the
complex CSP algorithms can be chosen to produce the best classification performance
between two different EEG classes.
Using these complex and multivariate algorithms, two cognitive brain studies are
investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user
attention to a sound source among a mixture of sound stimuli, which is aimed at improving
the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments
elicited by taste and taste recall are examined to determine the pleasure and displeasure
of a food for the implementation of affective computing. The separation between two
emotional responses is examined using real and complex-valued common spatial pattern
methods.
Finally, we introduce a novel approach to brain monitoring based on EEG recordings
from within the ear canal, embedded on a custom made hearing aid earplug. The new
platform promises the possibility of both short- and long-term continuous use for standard
brain monitoring and interfacing applications.
for brain computer interface (BCI) systems. The electroencephalogram (EEG), the
most convenient means to measure neurophysiological activity due to its noninvasive nature,
is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its
multichannel recording nature require a new set of data-driven multivariate techniques to
estimate more accurately features for enhanced BCI operation. Also, a long term goal
is to enable an alternative EEG recording strategy for achieving long-term and portable
monitoring.
Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully
data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary
EEG signal into a set of components which are highly localised in time and frequency. It
is shown that the complex and multivariate extensions of EMD, which can exploit common
oscillatory modes within multivariate (multichannel) data, can be used to accurately
estimate and compare the amplitude and phase information among multiple sources, a
key for the feature extraction of BCI system. A complex extension of local mean decomposition
is also introduced and its operation is illustrated on two channel neuronal
spike streams. Common spatial pattern (CSP), a standard feature extraction technique
for BCI application, is also extended to complex domain using the augmented complex
statistics. Depending on the circularity/noncircularity of a complex signal, one of the
complex CSP algorithms can be chosen to produce the best classification performance
between two different EEG classes.
Using these complex and multivariate algorithms, two cognitive brain studies are
investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user
attention to a sound source among a mixture of sound stimuli, which is aimed at improving
the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments
elicited by taste and taste recall are examined to determine the pleasure and displeasure
of a food for the implementation of affective computing. The separation between two
emotional responses is examined using real and complex-valued common spatial pattern
methods.
Finally, we introduce a novel approach to brain monitoring based on EEG recordings
from within the ear canal, embedded on a custom made hearing aid earplug. The new
platform promises the possibility of both short- and long-term continuous use for standard
brain monitoring and interfacing applications.
Date Issued
2011
Date Awarded
2012-02
Advisor
Mandic, Danilo
Sponsor
Ungstrup and Mike Lind Rank
Creator
Park, Cheolsoo
Publisher Department
Electrical and Electronic Engineering
Publisher Institution
Imperial College London
Qualification Level
Doctoral
Qualification Name
Doctor of Philosophy (PhD)