A combined experimental and modelling investigation of an overground compressed-air energy storage system with a reversible liquid-piston gas compressor/expander
File(s)ECM-KhaljaniEtAl-Manuscript(AcceptedVersion).pdf (1.68 MB)
Accepted version
Author(s)
Type
Journal Article
Abstract
We consider a small-scale overground compressed-air energy storage (CAES) system intended for use in micro-grid power networks. This work goes beyond previous efforts in the literature by developing and showing results from a first-of-a-kind small-scale (20 kWh) near-isothermal CAES system employing a novel, reversible liquid-piston gas compressor and expander (LPGC/E). Additionally, we extend our study to assessments, for the first time, of the economic and environmental characteristics of these small-scale overground CAES systems through a combination of experimental, thermodynamic, technoeconomic and environmental analyses. Five system configurations are considered: (1) CAESbase, which is the base-case system; (2) CAESplate, in which parallel plates are inserted into the LPGC/E as a heat exchanger for achieving near-isothermal compression and expansion; (3) CAESPCM, in which a phase change material (PCM) is employed to store thermal energy from the compressed air during charging that is later recovered during discharge; (4) CAESPCM&plate, which is a combination of the CAESplate and CAESPCM arrangements; and (5) CAESheater, in which a heater is utilised instead of the PCM to preheat the compressed air during discharge. Data for the validation of a computational design tool based on which the assessments were performed were obtained from a prototype of the CAESbase system. Results show that the CAESPCM&plate system exhibits the highest roundtrip efficiency of 63% and the shortest payback period of 7 years; the latter with the inclusion of governmental incentives and an electricity smart export guarantee (SEG) support rate of 5.5 p/kWh (6.8 ¢/kWh). The CAESPCM&plate system is found to be cost-effective even without incentives, with a payback period of 10 years. This system is also associated with 71 tonnes of fuel consumption savings and reduced CO2 emissions amounting to 51 tonnes over a lifetime of 20 years.
Date Issued
2021-10
Date Acceptance
2021-07-13
Citation
Energy Conversion and Management, 2021, 245, pp.1-19
ISSN
0196-8904
Publisher
Elsevier BV
Start Page
1
End Page
19
Journal / Book Title
Energy Conversion and Management
Volume
245
Copyright Statement
© 2021 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/
Sponsor
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Identifier
https://www.sciencedirect.com/science/article/pii/S0196890421007123?via%3Dihub
Grant Number
EP/P004709/1
EP/R045518/1
Subjects
0906 Electrical and Electronic Engineering
0913 Mechanical Engineering
Energy
Publication Status
Published
Article Number
114536
Date Publish Online
2021-08-06