A characterization of the relation between two $\ell $-modular correspondences
File(s)CRMATH_2020__358_2_201_0.pdf (976.17 KB)
Published version
Author(s)
Kurinczuk, Robert
Matringe, Nadir
Type
Journal Article
Abstract
Let F be a non archimedean local field of residual characteristic p and ℓ a prime number different from p. Let V denote Vignéras’ ℓ-modular local Langlands correspondence [7], between irreducible ℓ-modular representations of GLn(F) and n-dimensional ℓ-modular Deligne representations of the Weil group WF. In [4], enlarging the space of Galois parameters to Deligne representations with non necessarily nilpotent operators allowed us to propose a modification of the correspondence of Vignéras into a correspondence C, compatible with the formation of local constants in the generic case. In this note, following a remark of Alberto Mínguez, we characterize the modification C∘V−1 by a short list of natural properties.
Date Issued
2020-06-15
Date Acceptance
2020-03-03
Citation
Comptes Rendus Mathematique (Academie des Sciences), 2020, 358 (2), pp.201-209
ISSN
0764-4442
Publisher
Elsevier
Start Page
201
End Page
209
Journal / Book Title
Comptes Rendus Mathematique (Academie des Sciences)
Volume
358
Issue
2
Copyright Statement
© Académie des sciences, Paris and the authors, 2020.
Some rights reserved. This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/
Some rights reserved. This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/
Identifier
https://comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_2_201_0/
Subjects
General Mathematics
0101 Pure Mathematics
Publication Status
Published
Date Publish Online
2020-06-15