Gastro-Esophageal Reflux Disease Symptoms and Demographic Factors as a Pre-Screening Tool for Barrett’s Esophagus
File(s)journal.pone.0094163.PDF (331.81 KB)
Published version
Author(s)
Type
Journal Article
Abstract
Background
Barrett’s esophagus (BE) occurs as consequence of reflux and is a risk factor for esophageal adenocarcinoma. The current “gold-standard” for diagnosing BE is endoscopy which remains prohibitively expensive and impractical as a population screening tool. We aimed to develop a pre-screening tool to aid decision making for diagnostic referrals.
Methodology/Principal Findings
A prospective (training) cohort of 1603 patients attending for endoscopy was used for identification of risk factors to develop a risk prediction model. Factors associated with BE in the univariate analysis were selected to develop prediction models that were validated in an independent, external cohort of 477 non-BE patients referred for endoscopy with symptoms of reflux or dyspepsia. Two prediction models were developed separately for columnar lined epithelium (CLE) of any length and using a stricter definition of intestinal metaplasia (IM) with segments ≥2 cm with areas under the ROC curves (AUC) of 0.72 (95%CI: 0.67–0.77) and 0.81 (95%CI: 0.76–0.86), respectively. The two prediction models included demographics (age, sex), symptoms (heartburn, acid reflux, chest pain, abdominal pain) and medication for “stomach” symptoms. These two models were validated in the independent cohort with AUCs of 0.61 (95%CI: 0.54–0.68) and 0.64 (95%CI: 0.52–0.77) for CLE and IM≥2 cm, respectively.
Conclusions
We have identified and validated two prediction models for CLE and IM≥2 cm. Both models have fair prediction accuracies and can select out around 20% of individuals unlikely to benefit from investigation for Barrett’s esophagus. Such prediction models have the potential to generate useful cost-savings for BE screening among the symptomatic population.
Barrett’s esophagus (BE) occurs as consequence of reflux and is a risk factor for esophageal adenocarcinoma. The current “gold-standard” for diagnosing BE is endoscopy which remains prohibitively expensive and impractical as a population screening tool. We aimed to develop a pre-screening tool to aid decision making for diagnostic referrals.
Methodology/Principal Findings
A prospective (training) cohort of 1603 patients attending for endoscopy was used for identification of risk factors to develop a risk prediction model. Factors associated with BE in the univariate analysis were selected to develop prediction models that were validated in an independent, external cohort of 477 non-BE patients referred for endoscopy with symptoms of reflux or dyspepsia. Two prediction models were developed separately for columnar lined epithelium (CLE) of any length and using a stricter definition of intestinal metaplasia (IM) with segments ≥2 cm with areas under the ROC curves (AUC) of 0.72 (95%CI: 0.67–0.77) and 0.81 (95%CI: 0.76–0.86), respectively. The two prediction models included demographics (age, sex), symptoms (heartburn, acid reflux, chest pain, abdominal pain) and medication for “stomach” symptoms. These two models were validated in the independent cohort with AUCs of 0.61 (95%CI: 0.54–0.68) and 0.64 (95%CI: 0.52–0.77) for CLE and IM≥2 cm, respectively.
Conclusions
We have identified and validated two prediction models for CLE and IM≥2 cm. Both models have fair prediction accuracies and can select out around 20% of individuals unlikely to benefit from investigation for Barrett’s esophagus. Such prediction models have the potential to generate useful cost-savings for BE screening among the symptomatic population.
Date Issued
2014-04-15
Date Acceptance
2014-03-11
Citation
PLOS One, 2014, 9 (4)
ISSN
1932-6203
Publisher
Public Library of Science
Journal / Book Title
PLOS One
Volume
9
Issue
4
Copyright Statement
© 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
License URL
Subjects
General Science & Technology
MD Multidisciplinary
Publication Status
Published
Article Number
e94163