Propagation phase-contrast micro-computed tomography allows laboratory-based three-dimensional imaging of articular cartilage down to the cellular level
File(s)OAC9848_R1.pdf (1.62 MB)
Accepted version
Author(s)
Type
Journal Article
Abstract
Objective
High-resolution non-invasive three-dimensional (3D) imaging of chondrocytes in articular cartilage remains elusive. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) permits imaging cells within articular cartilage.
Design
Bovine osteochondral plugs were prepared four ways: in phosphate-buffered saline (PBS) or 70% ethanol (EtOH), both with or without phosphotungstic acid (PTA) staining. Specimens were imaged with micro-CT following two protocols: 1) absorption contrast (AC) imaging 2) propagation phase-contrast (PPC) imaging. All samples were scanned in liquid. The contrast to noise ratio (C/N) of cellular features quantified scan quality and were statistically analysed. Cellular features resolved by micro-CT were validated by standard histology.
Results
The highest quality images were obtained using propagation phase-contrast imaging and PTA-staining in 70% EtOH. Cellular features were also visualised when stained in PBS and unstained in EtOH. Under all conditions PPC resulted in greater contrast than AC (p < 0.0001 to p = 0.038). Simultaneous imaging of cartilage and subchondral bone did not impede image quality. Corresponding features were located in both histology and micro-CT and followed the same distribution with similar density and roundness values.
Conclusions
Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration.
High-resolution non-invasive three-dimensional (3D) imaging of chondrocytes in articular cartilage remains elusive. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) permits imaging cells within articular cartilage.
Design
Bovine osteochondral plugs were prepared four ways: in phosphate-buffered saline (PBS) or 70% ethanol (EtOH), both with or without phosphotungstic acid (PTA) staining. Specimens were imaged with micro-CT following two protocols: 1) absorption contrast (AC) imaging 2) propagation phase-contrast (PPC) imaging. All samples were scanned in liquid. The contrast to noise ratio (C/N) of cellular features quantified scan quality and were statistically analysed. Cellular features resolved by micro-CT were validated by standard histology.
Results
The highest quality images were obtained using propagation phase-contrast imaging and PTA-staining in 70% EtOH. Cellular features were also visualised when stained in PBS and unstained in EtOH. Under all conditions PPC resulted in greater contrast than AC (p < 0.0001 to p = 0.038). Simultaneous imaging of cartilage and subchondral bone did not impede image quality. Corresponding features were located in both histology and micro-CT and followed the same distribution with similar density and roundness values.
Conclusions
Three-dimensional visualisation and quantification of the chondrocyte population within articular cartilage can be achieved across a field of view of several millimetres using laboratory-based micro-CT. The ability to map chondrocytes in 3D opens possibilities for research in fields from skeletal development through to medical device design and treatment of cartilage degeneration.
Date Issued
2020-01
Date Acceptance
2019-10-03
Citation
Osteoarthritis and Cartilage, 2020, 28 (1), pp.102-111
ISSN
1063-4584
Publisher
Elsevier
Start Page
102
End Page
111
Journal / Book Title
Osteoarthritis and Cartilage
Volume
28
Issue
1
Copyright Statement
© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/
Sponsor
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Identifier
https://www.sciencedirect.com/science/article/pii/S1063458419312427?via%3Dihub
Grant Number
EP/K027549/1
MMRE_P60111
EP/R042721/1
Subjects
3D
Articular cartilage
Chondrocyte
Imaging
Micro-CT
Osteoarthritis
1103 Clinical Sciences
0903 Biomedical Engineering
Arthritis & Rheumatology
Publication Status
Published online
Date Publish Online
2019-10-31