Virtual reality as an engaging and enjoyable method for delivering emergency clinical simulation training: a prospective, interventional study of medical undergraduates
File(s)s12916-024-03433-9.pdf (720.6 KB)
Published version
Author(s)
Type
Journal Article
Abstract
Background
It is a requirement that medical students are educated in emergencies and feel well prepared for practice as a doctor, yet national surveys show that many students feel underprepared. Virtual reality (VR), combined with 360-degree filming, provides an immersive, realistic, and interactive simulation experience. Unlike conventional in-person simulation, it is scalable with reduced workforce demands. We sought to compare students’ engagement and enjoyment of VR simulation to desktop computer-based simulation.
Methods
We conducted a prospective, interventional, evaluation study. The study was carried out on final year medical students undertaking their Pre-Foundation Assistantship (n = 116) at Imperial College School of Medicine (ICSM) in London. We compared objective engagement, subjective engagement, and subjective enjoyment of VR simulation to desktop computer-based simulation using cardiac arrest and life-threatening asthma scenarios. Engagement was measured objectively using students’ physiological parameters, including heart rate and eye tracking, and facilitator observations using the validated ‘Behavioural Engagement Related to Instruction’ (BERI) protocol. Students’ subjective engagement and enjoyment levels were measured using a post-session survey.
Results
Students’ maximum heart rates were significantly higher during VR simulation with a mean difference of 4.2 beats per minute (3.2 to 5.2, p < 0.001), and eye tracking showed they spent a significantly greater mean percentage of time of 6.4% (5.1 to 7.7, p < 0.001) focusing on the scenarios in VR compared to standard desktop. Qualitative data showed students enjoyed and felt engaged with the sessions, which provided a safe space for learning.
Conclusions
Our study shows that students found VR simulations enjoyable and were more engaged compared to standard desktop simulation. This suggests that 360-degree VR simulation experiences provide students with immersive, realistic training, which is scalable, giving them the unique opportunity to manage emergencies and work within emergency teams, which would not typically occur during traditional training.
It is a requirement that medical students are educated in emergencies and feel well prepared for practice as a doctor, yet national surveys show that many students feel underprepared. Virtual reality (VR), combined with 360-degree filming, provides an immersive, realistic, and interactive simulation experience. Unlike conventional in-person simulation, it is scalable with reduced workforce demands. We sought to compare students’ engagement and enjoyment of VR simulation to desktop computer-based simulation.
Methods
We conducted a prospective, interventional, evaluation study. The study was carried out on final year medical students undertaking their Pre-Foundation Assistantship (n = 116) at Imperial College School of Medicine (ICSM) in London. We compared objective engagement, subjective engagement, and subjective enjoyment of VR simulation to desktop computer-based simulation using cardiac arrest and life-threatening asthma scenarios. Engagement was measured objectively using students’ physiological parameters, including heart rate and eye tracking, and facilitator observations using the validated ‘Behavioural Engagement Related to Instruction’ (BERI) protocol. Students’ subjective engagement and enjoyment levels were measured using a post-session survey.
Results
Students’ maximum heart rates were significantly higher during VR simulation with a mean difference of 4.2 beats per minute (3.2 to 5.2, p < 0.001), and eye tracking showed they spent a significantly greater mean percentage of time of 6.4% (5.1 to 7.7, p < 0.001) focusing on the scenarios in VR compared to standard desktop. Qualitative data showed students enjoyed and felt engaged with the sessions, which provided a safe space for learning.
Conclusions
Our study shows that students found VR simulations enjoyable and were more engaged compared to standard desktop simulation. This suggests that 360-degree VR simulation experiences provide students with immersive, realistic training, which is scalable, giving them the unique opportunity to manage emergencies and work within emergency teams, which would not typically occur during traditional training.
Date Issued
2024-06-03
Date Acceptance
2024-05-21
Citation
BMC Medicine, 2024, 22
ISSN
1741-7015
Publisher
BMC
Journal / Book Title
BMC Medicine
Volume
22
Copyright Statement
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
License URL
Identifier
https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-024-03433-9#Sec2
Publication Status
Published
Article Number
222
Date Publish Online
2024-06-03