TD-CARMA: Painless, accurate, and scalable estimates of gravitational-lens time delays with flexible CARMA processes
File(s)Meyer_2023_ApJ_950_37.pdf (1.2 MB)
Published version
Author(s)
Meyer, Antoine
van Dyk, David
Tak, Hyunsuk
Siemiginowska, Aneta
Type
Journal Article
Abstract
Cosmological parameters encoding our understanding of the expansion history of the universe can be constrained by the accurate estimation of time delays arising in gravitationally lensed systems. We propose TD-CARMA, a Bayesian method to estimate cosmological time delays by modeling observed and irregularly sampled light curves as realizations of a continuous auto-regressive moving average (CARMA) process. Our model accounts for heteroskedastic measurement errors and microlensing, an additional source of independent extrinsic long-term variability in the source brightness. The semiseparable structure of the CARMA covariance matrix allows for fast and scalable likelihood computation using Gaussian process modeling. We obtain a sample from the joint posterior distribution of the model parameters using a nested sampling approach. This allows for "painless" Bayesian computation, dealing with the expected multimodality of the posterior distribution in a straightforward manner and not requiring the specification of starting values or an initial guess for the time delay, unlike existing methods. In addition, the proposed sampling procedure automatically evaluates the Bayesian evidence, allowing us to perform principled Bayesian model selection. TD-CARMA is parsimonious, and typically includes no more than a dozen unknown parameters. We apply TD-CARMA to six doubly lensed quasars HS2209+1914, SDSS J1001+5027, SDSS J1206+4332, SDSS J1515+1511, SDSS J1455+1447, and SDSS J1349+1227, estimating their time delays as −21.96 ± 1.448, 120.93 ± 1.015, 111.51 ± 1.452, 210.80 ± 2.18, 45.36 ± 1.93, and 432.05 ± 1.950, respectively. These estimates are consistent with those derived in the relevant literature, but are typically two to four times more precise.
Date Issued
2023-06-10
Date Acceptance
2023-02-22
Citation
The Astrophysical Journal: an international review of astronomy and astronomical physics, 2023, 950 (1)
ISSN
0004-637X
Publisher
IOP Publishing
Journal / Book Title
The Astrophysical Journal: an international review of astronomy and astronomical physics
Volume
950
Issue
1
Copyright Statement
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
License URL
Publication Status
Published
Article Number
ARTN 37