Enhanced removal of trace pesticides and alleviation of membrane fouling using hydrophobic-modified inorganic-organic hybrid flocculants in the flocculation-sedimentation-ultrafiltration process for surface water treatment
File(s)Accepted version.pdf (1.84 MB)
Accepted version
Author(s)
Type
Journal Article
Abstract
Pesticide concentrations in surface water occasionally exceed regulated values due to seasonal events (rainy season in high intensity agricultural areas) or intermittent discharges (leakage, spillage, or other emergency events). The need to remove pesticide compounds in these situations poses a challenge for drinking water treatment plants (DWTPs). In this work, the performance of dosing hydrophobic-modified inorganic-organic hybrid flocculants (HOC-M; lower acute toxicity than corresponding metal salt coagulants; acceptable economic costs when M=Al or Fe; prepared in large-scale quantities), for the removal of four different pesticides (each initial concentration: 0.25 μg/L) from Yangtze River water, and in mitigating membrane fouling, by an integrated flocculation-sedimentation-ultrafiltration (FSUF) process, was evaluated over a period of 40 days; the FSUF is well-established in many DWTPs. The mechanisms underlying the treatment were unveiled by employing a combination of instrumental characterizations, chemical computations, material flow analyses, and statistical analyses. Efficient pesticide removal (80.3%∼94.3%) and membrane fouling reduction (26.6%∼37.3% and 28.3%∼57.6% for reversible and irreversible membrane resistance, respectively) in the FSUF process were achieved by dosing HOC-M, whereas conventional inorganic coagulants were substantially inferior for pesticide removal (< 50%) and displayed more severe fouling development. Hydrophobic association between the pesticides and the hydrophobic organic chain of HOC-M played a predominant role in the improvement in pesticide removal; coexisting particulate/colloid inorganic minerals and natural organic matter with HOC-M adsorbed on the surface, acting as floc building materials, provided sites for the indirect combination of pesticides into flocs. The observed fouling alleviation from dosing HOC-M was ascribed to both the pre-removal of fouling-causing materials in the flocculation-sedimentation prior to UF, and a stable hydrophilization modification effect of residual HOC-M in the UF unit. The latter effect resulted from a hydrophobic association between the PVDF substrate of the membranes and the hydrophobic organic chains of the HOC-M, causing the hydrophilic ends of the HOC-M to be exposed away from the membrane surface, thereby inhibiting foulant accumulation. This work has not only demonstrated the superior performance of dosing HOC-M in the FSUF process for trace pesticide removal in DWTPs, but also clarified the underlying mechanisms.
Date Issued
2023-02-01
Date Acceptance
2022-11-30
Citation
Water Research, 2023, 229
ISSN
0043-1354
Publisher
Elsevier
Journal / Book Title
Water Research
Volume
229
Copyright Statement
© 2022 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Identifier
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000904402400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=a2bf6146997ec60c407a63945d4e92bb
Subjects
Science & Technology
Technology
Life Sciences & Biomedicine
Physical Sciences
Engineering, Environmental
Environmental Sciences
Water Resources
Engineering
Environmental Sciences & Ecology
Hydrophobic -modified inorganic -organic
hybrid flocculant
Flocculation
Ultrafiltration
Pesticide
Fouling
Surface water treatment
COAGULATION
MATTER
Publication Status
Published
Article Number
ARTN 119447
Date Publish Online
2022-12-01