A Learning Theoretic Approach to Energy Harvesting Communication System Optimization
File(s)
Author(s)
Blasco, Pol
Gunduz, Deniz
Dohler, Mischa
Type
Journal Article
Abstract
A point-to-point wireless communication system in which the transmitter is
equipped with an energy harvesting device and a rechargeable battery, is
studied. Both the energy and the data arrivals at the transmitter are modeled
as Markov processes. Delay-limited communication is considered assuming that
the underlying channel is block fading with memory, and the instantaneous
channel state information is available at both the transmitter and the
receiver. The expected total transmitted data during the transmitter's
activation time is maximized under three different sets of assumptions
regarding the information available at the transmitter about the underlying
stochastic processes. A learning theoretic approach is introduced, which does
not assume any a priori information on the Markov processes governing the
communication system. In addition, online and offline optimization problems are
studied for the same setting. Full statistical knowledge and causal information
on the realizations of the underlying stochastic processes are assumed in the
online optimization problem, while the offline optimization problem assumes
non-causal knowledge of the realizations in advance. Comparing the optimal
solutions in all three frameworks, the performance loss due to the lack of the
transmitter's information regarding the behaviors of the underlying Markov
processes is quantified.
equipped with an energy harvesting device and a rechargeable battery, is
studied. Both the energy and the data arrivals at the transmitter are modeled
as Markov processes. Delay-limited communication is considered assuming that
the underlying channel is block fading with memory, and the instantaneous
channel state information is available at both the transmitter and the
receiver. The expected total transmitted data during the transmitter's
activation time is maximized under three different sets of assumptions
regarding the information available at the transmitter about the underlying
stochastic processes. A learning theoretic approach is introduced, which does
not assume any a priori information on the Markov processes governing the
communication system. In addition, online and offline optimization problems are
studied for the same setting. Full statistical knowledge and causal information
on the realizations of the underlying stochastic processes are assumed in the
online optimization problem, while the offline optimization problem assumes
non-causal knowledge of the realizations in advance. Comparing the optimal
solutions in all three frameworks, the performance loss due to the lack of the
transmitter's information regarding the behaviors of the underlying Markov
processes is quantified.
Date Issued
2013
Citation
IEEE Transactions on Wireless Communications, 2013, 12 (4), pp.1872-1882
ISSN
1536-1276
Publisher
IEEE
Start Page
1872
End Page
1882
Journal / Book Title
IEEE Transactions on Wireless Communications
Volume
12
Issue
4
Copyright Statement
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Identifier
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000321198300042&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
Subjects
Science & Technology
Technology
Engineering, Electrical & Electronic
Telecommunications
Engineering
Dynamic programming
energy harvesting
machine learning
Markov processes
optimal scheduling
wireless communication
Publication Status
Published
Article Number
4