Rapid Evolution of Virulence and Drug Resistance in the Emerging Zoonotic Pathogen Streptococcus suis
Author(s)
Type
Journal Article
Abstract
Background: Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in
humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been
described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly
understood.
Methodology/Principal Findings: The sequencing of whole genomes of S. suis isolates provides opportunities to
investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same
lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was
used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for
which genome sequences are currently available. Accordingly, ,40% of the ,2 Mb genome is unique in comparison to
other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation;
virtually all of the genome is common to the S. suis strains. The only exceptions are three ,90 kb regions, present in the two
isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding
sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in
putative virulence and colonization factors.
Conclusions/Significance: The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and
diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has
contributed to the evolution of drug resistance.
humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been
described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly
understood.
Methodology/Principal Findings: The sequencing of whole genomes of S. suis isolates provides opportunities to
investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same
lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was
used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for
which genome sequences are currently available. Accordingly, ,40% of the ,2 Mb genome is unique in comparison to
other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation;
virtually all of the genome is common to the S. suis strains. The only exceptions are three ,90 kb regions, present in the two
isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding
sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in
putative virulence and colonization factors.
Conclusions/Significance: The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and
diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has
contributed to the evolution of drug resistance.
Date Issued
2009-07-15
Date Acceptance
2009-04-22
Citation
PLOS One, 2009, 4 (7)
ISSN
1932-6203
Publisher
Public Library of Science
Journal / Book Title
PLOS One
Volume
4
Issue
7
Copyright Statement
© 2009 Holden et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
License URL
Subjects
Science & Technology
Multidisciplinary Sciences
Science & Technology - Other Topics
MULTIDISCIPLINARY SCIENCES
Publication Status
Published
Article Number
e6072