Kinematics of polygonal fault systems: observations from the Northern North Sea
File(s)feart-05-00101.pdf (12.07 MB)
Published version
Author(s)
Wrona, T
Magee, C
Jackson, CA-L
Huuse, M
Taylor, KG
Type
Journal Article
Abstract
Layer-bound, low-displacement normal faults, arranged into a broadly polygonal pattern, are common in many sedimentary basins. Despite having constrained their gross geometry, we have a relatively poor understanding of the processes controlling the nucleation and growth (i.e., the kinematics) of polygonal fault systems. In this study we use high-resolution 3-D seismic reflection and borehole data from the northern North Sea to undertake a detailed kinematic analysis of faults forming part of a seismically well-imaged polygonal fault system hosted within the up to 1,000 m thick, Early Palaeocene-to-Middle Miocene mudstones of the Hordaland Group. Growth strata and displacement-depth profiles indicate faulting commenced during the Eocene to early Oligocene, with reactivation possibly occurring in the late Oligocene to middle Miocene. Mapping the position of displacement maxima on 137 polygonal faults suggests that the majority (64%) nucleated in the lower 500 m of the Hordaland Group. The uniform distribution of polygonal fault strikes in the area indicates that nucleation and growth were not driven by gravity or far-field tectonic extension as has previously been suggested. Instead, fault growth was likely facilitated by low coefficients of residual friction on existing slip surfaces, and probably involved significant layer-parallel contraction (strains of 0.01–0.19) of the host strata. To summarize, our kinematic analysis provides new insights into the spatial and temporal evolution of polygonal fault systems.
Date Issued
2017-12
Date Acceptance
2017-11-17
Citation
Frontiers in Earth Science, 2017, 5
ISSN
2296-6463
Publisher
Frontiers Media S.A.
Journal / Book Title
Frontiers in Earth Science
Volume
5
Copyright Statement
© 2017 Wrona, Magee, Jackson, Huuse and Taylor. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Publication Status
Published
Article Number
101
Date Publish Online
2017-12-04