Mycobacterium abscessus pathogenesis identified by phenogenomic analyses
File(s)s41564-022-01204-x.pdf (3.59 MB)
Published version
Author(s)
Type
Journal Article
Abstract
The medical and scientific response to emerging and established pathogens is often severely hampered by ignorance of the genetic determinants of virulence, drug resistance and clinical outcomes that could be used to identify therapeutic drug targets and forecast patient trajectories. Taking the newly emergent multidrug-resistant bacteria Mycobacterium abscessus as an example, we show that combining high-dimensional phenotyping with whole-genome sequencing in a phenogenomic analysis can rapidly reveal actionable systems-level insights into bacterial pathobiology. Through phenotyping of 331 clinical isolates, we discovered three distinct clusters of isolates, each with different virulence traits and associated with a different clinical outcome. We combined genome-wide association studies with proteome-wide computational structural modelling to define likely causal variants, and employed direct coupling analysis to identify co-evolving, and therefore potentially epistatic, gene networks. We then used in vivo CRISPR-based silencing to validate our findings and discover clinically relevant M. abscessus virulence factors including a secretion system, thus illustrating how phenogenomics can reveal critical pathways within emerging pathogenic bacteria.
Date Issued
2022-09
Date Acceptance
2022-07-19
Citation
Nature Microbiology, 2022, 7 (9), pp.1431-1441
ISSN
2058-5276
Publisher
Nature Research
Start Page
1431
End Page
1441
Journal / Book Title
Nature Microbiology
Volume
7
Issue
9
Copyright Statement
© The Author(s) 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
License URL
Identifier
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000844587900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=a2bf6146997ec60c407a63945d4e92bb
Subjects
CYSTIC-FIBROSIS
DISEASE
DROSOPHILA-MELANOGASTER
GENOME-WIDE ASSOCIATION
INFECTION
Life Sciences & Biomedicine
Microbiology
MODEL
MUTATIONS
Science & Technology
TUBERCULOSIS
Publication Status
Published
Date Publish Online
2022-07-25