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A significant challenge in the experimental or computational characterisation of porous
bodies and wind turbines is the correction of the obtained flow quantities for wall
interference effects. Conventional corrective models are based on the Rankine-Froude
theory, which is valid when the body solidity, or turbine induction factor, is sufficiently
low. To resolve this issue, this work presents a new corrective model that builds on an
extension of the Rankine-Froude theory, valid at arbitrary solidities, coupled with the
method of mirror images to account for the existence of channel walls. The predictions
of the new model are validated using laboratory and numerical experiments of porous
plates and wind turbines. The results show that the new model performs equally well to
conventional ones when the solidity is low, but becomes increasingly more accurate as
the latter grows.
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1. Introduction

Experimental and numerical investigations of the aerodynamic behaviour of bodies that
in reality operate in unconfined environments often carry errors due to wall interference
effects. The presence of walls in a wind tunnel, or domain boundaries in a numerical
simulation, leads to local flow acceleration which affects both local and integral flow
quantities (e.g., drag). The magnitude and significance of wall effects are determined by
the blockage ratio b, defined as the ratio of projected body area, to the wind tunnel
or computational domain cross-sectional area. The effects of confinement are especially
important in wind energy applications, where the requirement for large Reynolds numbers
often leads to high tunnel blockage. Measured quantities (i.e. power, thrust, tip-speed
ratio, wake size, velocities, tip vortex breakdown location) thus need to be corrected
so that their full scale behaviour can be assessed (Garrett & Cummins 2007; Chen &
Liou 2011; McTavish et al. 2014; Segalini & Inghels 2014; Ryi et al. 2015; Sarlak et al.
2016; Zaghi et al. 2016; Kinsey & Dumas 2017; Ross & Polagye 2020b). Additionally, the
generation of local blockage due to the close proximity of turbines (not to be confused
with the “global” blockage induced by the whole farm), has been found to be a way of
increasing the power output of turbines beyond normal limits (see, for instance, Garrett
& Cummins (2007); Nishino & Draper (2015); Dehtyriov et al. (2021)).

Given the importance of blockage effects, a large number of models that attempt
to predict and correct the operation of turbines and other porous objects in confined
conditions have been developed over the past decades. The bulk of them is based on the
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actuator disk analogy of Rankine-Froude, in which the turbine is represented as a porous
plate/disk (Barnsley & Wellicome 1990; Mikkelsen & Sørensen 2002; Sørensen et al. 2006;
Bahaj et al. 2007; Houlsby et al. 2008; Whelan et al. 2009; Werle 2010) and blockage is
isotropic. A recent review of blockage correction models for wind energy applications can
be found in Ross & Polagye (2020a). While these models are reliable in conventional wind
turbine operation regimes, their use is deemed questionable when the effective solidity
of the turbine increases beyond a certain limit (Whelan et al. 2009; Kinsey & Dumas
2017; Ross & Polagye 2020a) due to the well-known failure of the Rankine-Froude theory
in high solidity regimes (Hansen 2015; Ayati et al. 2019; Bempedelis & Steiros 2022).
Blockage correction is customarily not applied in such cases (Apelt & West 1975; Ayati
et al. 2019; Steiros et al. 2020; Miller et al. 2021), an exception being the fully solid body
case with vortex shedding, where the semi-empirical model of Maskell (1963) is used.
Moreover, low-porosity corrections to the Rankine-Froude theory like the well-known
Glauert’s correction (Hansen 2015) rely on data fitting, and do not yield the necessary
information to develop a blockage correction model.

This work presents an analytical model for the prediction of characteristic flow quanti-
ties (e.g., drag, near wake velocities, wake width) of porous plates of arbitrary solidity in
isotropic blockage conditions. The model is subsequently used to correct measurements
from confined wind turbines of arbitrary loading. The model builds on a generalised
version of the Rankine-Froude theory proposed by Steiros & Hultmark (2018), which is
valid even in low porosity regimes, by incorporating the effects of pressure in the near
wake.

The structure of the paper is as follows. Section 2 presents the derivation of the
theoretical model. Section 3 describes the numerical and experimental set-ups that are
used to validate the model. Section 4 validates the proposed theory using porous plate
and wind turbine data, from this work and the literature. Finally, section 5 draws the
conclusions of this work.

2. Flow model

2.1. Unconfined plate

The current model is based on the work of Taylor (1944), in which the wake is assumed
to be described by potential flow theory at the initial expansion region near the plate.
The porous plate is then represented by a distribution of sources of strength m and width
Lp (see figure 1). The sources induce the streamwise and crosswise velocities
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respectively. The flow velocity may then be computed by superposing the above velocities
to the unperturbed flow U = (U0, 0) which, for this flow case, is equal to the free
stream velocity U∞. Using this flow representation, Taylor (1944) obtained the following
prediction for the drag coefficient of an unconfined porous plate

CD = 4u∗(1− u∗) , (2.3)

where u∗ = u/U∞, with u being the velocity through the porous plate. The above
prediction is identical to the one obtained using the theory of Rankine-Froude (Hansen
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Figure 1. Left: comparison of the predictions of Taylor (1944) and Steiros & Hultmark (2018)
with drag measurements of plates of varying porosity β. In certain low porosity cases a splitter
plate is used to suppress vortex shedding. Data are taken from Steiros & Hultmark (2018).
Right: superposition of a distribution of sources of strength m on a free stream, corresponding
to the Taylor model.

2015), which constitutes the basis of most blockage correction models for porous plates
and wind turbines. Figure 1 shows the well-known failure of the Rankine-Froude-Taylor
theory when porosity becomes small, which limits the applicability of blockage correction
models to high porosity regimes (Apelt & West 1975; Ross & Polagye 2020a; Miller et al.
2021). Appendix A presents a relation that connects u∗ with β = Ap/A (where Ap and A
are the porous and gross areas of the plate, respectively), proposed by Taylor & Davies
(1944).

The above limitation can be corrected by refining the Taylor model so that (i)
continuity is imposed across the plate (Koo & James 1973), and (ii) the wake pressure
can assume lower than ambient values, which are calculated implicitly using momentum
theory (Steiros & Hultmark 2018). This representation then yields the revised prediction

CD =
4

3

(1− u∗)(2 + u∗)
2− u∗ , (2.4)

which, as shown in figure 1, is in much better agreement with experimental data for
small plate porosities, as long as vortex shedding is absent or suppressed via the use of
a splitter plate. A blockage correction model based on the refined theory of Steiros &
Hultmark (2018) could thus offer increased accuracy in high solidity regimes.

2.2. Confined plate kinematics

Following Koo & James (1973), the effect of channel walls in the above flow repre-
sentation is introduced via the method of mirror images. An infinite number of plates
are positioned side by side, with the distance of their centres being equal to the channel
width Lc (see figure 2). The induced velocities from each plate are then
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where n = {...,−2,−1, 0, 1, 2, ...} and n = 0 is the original plate. To calculate the velocity
of the fluid we need to sum the contribution of all plates, and on top of that add the
unperturbed velocity of the stream if no plates were present (U0, 0).
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Figure 2. Schematic of the flow model. An infinite number of plates, positioned side-by-side
at a distance Lc, represent the flow around a porous plate inside a channel.

It can be readily checked that the addition of the the image plates does not alter
the axial velocity through the plate u, which retains its unconfined value (see Steiros &
Hultmark (2018))

u = U0 −
m

2
. (2.5)

Far upstream or downstream from the plate, however, the induced velocities of the
images add up to a non-negligible axial velocity contribution. In particular, the velocity
at the centreline y = 0 becomes

ux→±∞ = U0 ± lim
x→±∞

∞∑
n=−∞

ûn (x, 0) ,

where the minus corresponds to upstream, and plus to downstream. For large dis-
tances from the plate |x| we have |ûn+1 (x, 0) − ûn (x, 0) | � |ûn (x, 0) |, and thus∑∞

n=−∞ ûn (x, 0) can to a good approximation be considered a continuous function of
the continuous variable ñ. The series can be therefore replaced by an integral, i.e. (note
that equation (2.5) is also used)

ux→±∞ = U0 ± lim
x→±∞

∫ ∞
−∞

ûñ (x, 0) dñ = U0 ± (U0 − u)b ,

where b = Lp/Lc. The above yields an expression for the free stream velocity in the
channel U∞ = ux→−∞, i.e.

U∞
U0

= 1−
(

1− u

U0

)
b =

1− b
1− u∗b , (2.6)

where u∗ = u/U∞. Expression (2.6) shows that the free stream velocity depends on the
level of blockage. For instance, when a plate is fully blocking the channel (b = 1) the free
stream velocity will be equal to the velocity through the plate, i.e. U∞ = u, even if the
“nominal” channel velocity U0 is larger than that.

The wake velocity can be obtained from ux→∞ after applying a correction to it. In
particular, as Koo & James (1973) first noted, the source representation produces a
discontinuity at the plate location (x, y) = (0, 0), as the velocity immediately upstream
of the of the plate u− = U0−m/2 is different to the velocity immediately downstream of
the plate u+ = U0 +m/2, violating the conservation of mass and momentum. To impose
continuity across the plate, Koo & James (1973) proposed a rescaling of the velocities of
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the whole wake by a factor E = u−/u+. Using equations (2.5) and (2.6), E becomes in
our case

E =
U0 −m/2
U0 +m/2

=
u∗

2U0/U∞ − u∗
=

u∗ (1− b)
2− u∗ − u∗b , (2.7)

and thus the far wake velocity after the rescaling becomes

Uw

U∞
=
Eux→∞
U∞

= E

(
U0

U∞
+

(
U0

U∞
− u∗

)
b

)
=
u∗ (1− 2u∗b+ b)

2− u∗ − u∗b . (2.8)

The above equation shows that by increasing the tunnel blockage b = Lp/Lc (i.e. by
narrowing the channel) the wake velocities are also increased. Then, conservation of mass
dictates that the wake would be squeezed, as expected.

Finally, we consider the square crosswise velocity v21 at the neighbourhood of the plate,
i.e. at x → 0. This varies along y, but for simplicity we consider it constant, and equal
to its average value v21 . Appendix B shows that the latter can be approximated by the
expression

v21 ≈
(U∞ − u)

2

3
. (2.9)

2.3. Conservation laws

Given the above description of the flow kinematics, we may apply conservation of mass,
momentum and energy in the control volume shown in figure 2 to calculate the drag and
wake pressure coefficients of the confined plate, given the normalised velocity through
the plate u∗ = u/U∞ and the blockage ratio b = Lp/Lc. Conservation of mass within the
wake and channel regions yields,

Lpu = LwUw , (2.10)

LcU∞ = LwUw + Ue (Lc − Lw) . (2.11)

Conservation of momentum in the channel yields,

D − p∞Lc + pwLw + pe (Lc − Lw) = ρLcU
2
∞ − ρLwU

2
w − ρ (Lc − Lw)U2

e , (2.12)

where D = (p1 − p2)Lp is the drag per unit length. We note that after the end of the
control volume turbulent stresses are assumed to emerge, balancing the vertical pressure
gradient (see Tennekes & Lumley (1972)). In the inviscid control volume on the other
hand, turbulent stresses are neglected, even though in reality they will exist in small
magnitudes. We may thus expect a slight imbalance of the pressure gradient in the
crosswise momentum equation.

Applying Bernoulli’s equation upstream, downstream, and around the plate, we obtain

p∞ + 0.5ρU2
∞ = p1 + 0.5ρ

(
u2 + v21

)
, (2.13)

p2 + 0.5ρ
(
u2 + v22

)
= pw + 0.5ρU2

w , (2.14)

p∞ + 0.5ρU2
∞ = pe + 0.5ρU2

e , (2.15)

where v21 is given from expression (2.9), v2 = Ev1, and Uw from expression (2.8). By
solving the system of equations (2.10)-(2.15) the following analytical expressions of the
flow quantities of interest can be derived, given as a function of u∗ and b,

CD =
4 (u∗b− 1) (1− u∗)

(1− b) (2− u∗ − u∗b)

(
1− u∗

3
− 1− 2u∗b+ b

1− b

)
(2.16)

u∗e =
Ue

U∞
=

1− 2u∗b+ b

1− b (2.17)
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Lw

Lc
=

(2− u∗ − u∗b) b
1− 2u∗b+ b

(2.18)

Cpw = −CD +
4 (1− u∗) (u∗b− 1)

(2− u∗ − u∗b)2

(
(1− u∗)2

3
−
(
1− u∗2b

))
(2.19)

which reduce to the unconfined plate expressions of Steiros & Hultmark (2018) for b = 0.

2.4. Blockage correction method

The above theoretical framework can be used to convert the flow quantities from
one level of blockage (i.e. experimental conditions) to another (typically unconfined
conditions). Similar to most existing blockage correction models (see e.g., Barnsley &
Wellicome (1990); Mikkelsen & Sørensen (2002); Houlsby et al. (2008); Werle (2010)),
we achieve that following the rationale of Glauert (1935), i.e. we seek the “corrected”
free-stream velocity U c

∞ which would produce the same values of thrust T , through-
velocity u and angular velocity ω (if turbines are considered) of the blocked model, but
in unconfined conditions, i.e.,

T c = Tm, uc = um, ωc = ωm, (2.20)

where the superscripts c and m denote corrected/unconfined data, and mea-
sured/confined data, respectively. Using the actuator disk relation for power P = Tu,
the above also yield P c = Pm. Expressed in non-dimensional form, the correction model
consists of a set of expressions for the “corrected” flow quantities as a function of the
confined flow data and the free-stream velocity ratio RV = Um

∞/U
c
∞,

λc = λmRV , (2.21)

Cc
T = Cm

T R
2
V , (2.22)

Cc
P = Cm

P R
3
V , (2.23)

where λ = ωR/U∞ is the turbine tip speed ratio, R is the turbine radius, and CT =
2T/(ρU2

∞πR
2), CP = 2P/(ρU3

∞πR
2) are the turbine thrust and power coefficients,

respectively. The blockage correction thus rests on the determination of the free stream
velocity ratio RV . The latter is calculated using potential flow theory, i.e. the Rankine-
Froude theory in existing models, and the framework of sections 2.2 and 2.3 in the
current work. The necessary inputs are the blockage ratio and one confined flow property,
typically the thrust/drag coefficient, even though other quantities can also be used (e.g.,
flow-through velocity, wake width). Summarizing, the blockage correction process rests
on the calculation of RV = Um

∞/U
c
∞ = u∗,c/u∗,m and consists of the following steps:

1: Given the measured thrust coefficient Cm
T and blockage ratio bm, solve equation (2.16)

to obtain u∗,m.
2: Solve equation (2.22) for u∗,c, where Cc

T is given by equation (2.16) and b = bc is the
target blockage ratio (typically zero).

3: Compute the free stream velocity ratio RV = u∗,c/u∗,m.
4: Compute the “blockage-corrected” rotor/plate performance using equations (2.21)-

(2.23).

The above described blockage correction method is expected to work for two-
dimensional plates (strips) of arbitrary porosity, as long as vortex shedding is suppressed
or absent. When considering turbines the additional complexity of three-dimensionality
appears, i.e. horizontal axis turbines are circular, while vertical axis turbines have a finite
aspect ratio. Therefore, the current blockage model can be thought strictly appropriate
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for correcting rows of closely spaced turbines (Draper et al. 2016). However, in section
4.3 we show that the current model produces accurate corrections for the thrust and
power of single horizontal axis wind turbines of any porosity, while it yields almost
identical results to conventional correction models at high effective porosities, despite
the conceptual differences of two- and three-dimensional flows.

3. Validation methodology

3.1. Experimental set-up

To validate the predictions of equations (2.16)-(2.18), experiments were carried out in
the aerodynamics flume of the Aeronautics Department at Imperial College London. The
facility has a test section Lc = 0.6 m wide with variable water height, which can achieve
flow speed up to 0.8 ms−1 with free stream turbulence intensities below 1.5% (Cicolin
et al. 2021). The experiments were performed at the speed range from 0.2 to 0.5 ms−1,
leading to a variation in the Reynolds number based on the plate width, Re = U∞Lp/ν,
between 9×103 and 5.5×104; all porosity/blockage combinations (see below) were tested
at two different Reynolds numbers (different by a factor of ' 1.5− 1.7). The variation in
the measured quantities was found to be negligible.

Force measurements were made using two force transducers (see figure 3), one attached
to the bottom of the plates (i.e. submerged in the water), and the other one attached
to the top of the plates (outside the water). Each transducer (model ATI Mini 40)
measures forces up to 80 N with a resolution of 0.005 N. The sum of the values from the
two transducers yielded the total drag D acting on the plate. The drag coefficient was
then calculated as CD = 2D/(ρU2

∞A), with A the gross wetted area of the plate (i.e.
without subtracting the perforations). Particle image velocimetry (PIV) measurements
were acquired at two different positions. The illumination source was a high-speed Litron
LDY 304 Nd:YLF laser, which operated at a constant frequency of 1 kHz. An optical
system split the laser beam into two components. One illuminated a small field of view
upstream, intended to measure the incoming flow speed, while the second laser sheet
illuminated the wake of the plate, as illustrated in figure 3. The images were captured and
recorded by two cameras, model Phantom v641, with a maximum resolution of 2460×1600
px and internal storage memory for 5700 images at the highest resolution. The laser pulse
and each camera operated at different acquisition rates, and their synchronisation was
performed through an external pulse generator (Stanford DG645).

In total, 16 plates of 5 mm thickness aluminum were tested, where circular holes were
water jetted leading to porosity ratios β of 0, 15, 30 and 50%. The plates spanned the
whole height of the flume (with the exception of a small area underneath the plates where
the force sensor was positioned). Each porosity ratio was applied to four different plate
widths Lp, leading to four blockage ratios for each porosity case (see table 1). For the
β cases of 0 and 15% a 450 mm long splitter plate was positioned in the wake of the
plates, in order to suppress vortex shedding, which otherwise appears in low porosities
(Steiros et al. 2021). Acquisition started after the flow was stabilised, typically after two
minutes from the moment the flume speed was set up. Force and PIV measurements
were acquired simultaneously. The forces were acquired at a constant frequency of 100
Hz, whereas the PIV acquisition varied from 4 to 20 Hz, depending on the temporal scale
of the model. The acquisition period was chosen to be sufficient to obtain at least 100
cycles of vortex shedding, considering the reference case of the solid plate. The field of
view was constant in all experiments, covering an area of 340 × 210 mm2, as shown in
figure 4. The wake width Lw was calculated as the maximum distance from the centreline
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Figure 3. Schematic of the experimental apparatus and measurement techniques.

Case Lp [mm] b [%]

b1 30 5.00
b2 70 11.67
b3 110 18.33
b4 150 25.00

Table 1. Details of experimental configurations. Channel width is Lc = 600 mm. Lp is the
plate width and b = Lp/Lc the blockage ratio.

(a) (b)

Figure 4. Mean velocity fields for two plates of β = 50% at different blockage ratios obtained
using PIV, (a) b = 11.67%, (b) b = 25%.

reached by the streamline of the mean flow starting from the tip of the plate. The velocity
between the channel wall and the wake border Ue was calculated as the asymptotic value
of the streamwise velocity away from the plate.
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3.2. Numerical simulations

Large-Eddy Simulations (LES) of the flow around model wind turbines were performed
using Xcompact3d, a finite-difference framework that uses 6th-order compact schemes to
solve the incompressible Navier-Stokes equations (Laizet & Lamballais 2009; Laizet & Li
2011; Bartholomew et al. 2020; Deskos et al. 2020). In the present work, the wind turbines
were modelled by the actuator line method, the standard Smagorinsky model was used
to model the effects of the unresolved fluid motions, and a third-order Adams-Bashforth
method was used for time integration.

The considered configurations were loosely based on the experiments of the “Blind Test
1” (BT1) workshop (Krogstad & Eriksen 2013). Xcompact3d has been previously used to
study this particular problem, showing very good agreement with the experimental results
(Deskos et al. 2019; Bempedelis & Steiros 2022). In this work, we considered the high-
solidity six-bladed variant of the BT1 turbine. Two square channels, a small one of two
turbine diameters width, and a large one of five diameters width allowed the simulation
of blockage ratios of ' 19.6% and ' 3.1%, respectively. The turbines were positioned at
the centre of the square channel, creating close to isotropic blockage. The channel length
in both cases was 12 turbine diameters. Slip conditions were used at the lateral domain
boundaries, and laminar inflow (U∞ = 10 ms−1, yielding Re = U∞D/ν = 5.95 × 105)
was considered at the inlet (very low turbulence levels, I ' 0.3%, were present in the
experiments (Krogstad & Eriksen 2013)). A uniform grid consisting of 32 fluid mesh
points per turbine radius was used, resulting in meshes of size ' 13 and ' 79 × 106

points, respectively; such a resolution has been shown to be sufficient for the purposes of
this study through comparisons with experimental data (Deskos et al. 2019; Bempedelis
& Steiros 2022). Each blade/actuator line was discretised with 52 elements, and the
tower and nacelle were omitted. After an initialisation period, time-series of thrust T and
power P were extracted over ' 64 − 128 rotations, depending on the angular velocity
of the turbine ω. The thurst and power coefficients were subsequently calculated as
CT = 2T/(ρU2

∞πR
2) and CP = 2P/(ρU3

∞πR
2), respectively, with R being the turbine

radius. An example view of the mean streamwise velocity of the same wind turbine in
the two different channels is shown in figure 5.

4. Results

The accuracy of the proposed framework is first assessed by comparing the predictions
of equations (2.16)-(2.18) with the experimental measurements for the porous plates,
as described in section 3.1. We subsequently test the validity of the blockage correction
method that builds on the theoretical model, using wind turbine data. Comparisons
against existing blockage correction models are also performed.

4.1. Flow model validation

The predictions of the model for the drag coefficient CD, bypass velocity u∗e = Ue/U∞,
and wake size Lw/Lc at different levels of confinement (given by equations (2.16)-(2.18))
are shown in figure 6, where they are compared with the data measured in the porous
plate experiments. The flow quantities are plotted as a function of the plate porosity
β instead of the normalised velocity through the plate u∗, as the latter is not easy
to determine experimentally. The relation that was used to link u∗ and β is given in
appendix A. The proposed model demonstrates, in general, convincing agreement with
the experimental results, showing an intensification of blockage effects as porosity is
decreased. It is noted, however, that there is a deterioration of the model accuracy as
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(a)

(b)

Figure 5. Mean streamwise velocity contours at a horizontal cut through the turbine
centerline, λ = 6, for two channels of different size, (a) b = 3.1%, (b) b = 19.6%.
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Figure 6. Predictions of the proposed theoretical model for flow quantities (given by equations
(2.16)-(2.18)) at different levels of confinement (solid lines). Experimental measurements
(markers).

blockage and solidity increase. This could perhaps be attributed to the gradual emergence
of viscous phenomena, which are not taken into account by the potential flow analysis.
For instance, the effect of boundary layers on the flow field is not modelled by the slip
condition of the method of images. This effect will be negligible when the plate is far
from the channel walls (low blockage), but will increase in relevance as blockage grows.
Another possibility is the emergence of shear layer instabilities which mix the wake.
Potential flow models assume that these only become significant far enough from the
plate and do not directly affect the inviscid near wake. However, the increasing velocity
gradients at higher blockages might cause them to appear earlier, introducing additional
uncertainties.
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Figure 7. Predictions of the confined Rankine-Froude theory for flow quantities at different
levels of confinement (solid lines). Experimental measurements (markers).

4.2. Comparison with confined Rankine-Froude theory

Figure 7 compares the predictions of the Rankine-Froude theory, derived for confined
conditions by a number of authors (e.g., Garrett & Cummins (2007)), with the porous
plate data. Though agreement is worse than that of the currently proposed theory (see
figure 6), especially regarding the channel velocity and wake width, the confined Rankine-
Froude theory captures qualitatively the trends of the experimental measurements. This
result might seem a bit counter-intuitive, given the complete failure of the unconfined
Rankine-Froude theory at low porosities (for instance, a solid plate is predicted to
produce zero drag, see figure 1). To understand what changes with the introduction
of confinement, we consider the wake width prediction of Rankine-Froude in unconfined
conditions (Hansen 2015)

Lw

Lp
=

u∗

2u∗ − 1
, (4.1)

which yields an infinite wake width at u∗ = 0.5 (corresponding to β ≈ 0.5), and
unrealistic wakes of negative width for smaller porosities. We note that 0 6 β < 0.5
is the range of porosities where the unconfined drag predictions depart from observations
(see figure 1). This unrealistic expansion occurs because Rankine-Froude theory assumes
a strict equalisation of pressures (pw = p∞) at the end of the control volume. Given
that turbulent mixing is not included in the inviscid analysis, the only mechanism that
enables pressure recovery is the initial expansion of the wake. As porosities decrease, the
necessary expansion becomes larger, and eventually infinite at u∗ = 0.5.

In confined conditions on the other hand, the outer pressure pe is not fixed to p∞.
Similar to the unconfined case, the wake has to expand in order for pw to become equal
with pe. As a result, the outer flow is squeezed, leading to an increase in ue and a
decrease in pe. Therefore, Lw will tend to approach the channel (driven by the unrealistic
wake expansion) but will never reach it, because the limit Lw → Lc would lead to
pe → −∞, and the wake pressure will be equalised with pe before that happens. It is
perhaps instructive to consider the limit of b→ 0 (but not exactly zero), shown in figure
8 (note that the confined Rankine-Froude theory may admit multiple solutions; here,
we choose the most realistic one, i.e. the one yielding positive wake sizes). In that case,
Lw will assume unrealistically large values at u∗ = 0.5, as in the unconfined case (see
equation 4.1). For lower u∗, however, the wake size will not become negative, as in the
unconfined case, but will continue to tend to infinity. As a result, the predicted drag
will reach CD = 1 at u∗ = 0.5, as in the unconfined case, and will then plateau at that
value for lower porosities. It may then be concluded that, despite giving the impression
of correct modelling, at least for the drag, the imposition of channel walls may result in
a behaviour that is equally unphysical to the unconfined case.
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Figure 8. Predictions of the confined Rankine-Froude theory (CRF) for β → 0, unconfined
Rankine-Froude theory (URF), and the Steiros & Hultmark (2018) theory for drag (left) and
wake size (right). Also shown is a zoomed-in plot of the wake size.

A more physical approach is to assume that the eventual pressure recovery will be
partly due to the initial wake expansion, and partly due to turbulent mixing, the latter
assumed to occur after the end of the inviscid control volume. The assumption pw = p∞
is thus relaxed to pw assuming arbitrary values, which have to be determined using
additional information (e.g., experimental data (Roshko 1954), or the source description
in the current work). Such treatment is known to considerably improve the model
predictions (see figure 1), and has been employed in numerous studies (see, for instance,
Yeung & Parkinson (2000) and references therein) including the current article. A purely
inviscid pressure recovery can be considered a valid approximation only for highly porous
plates, where the pressure is only minimally perturbed and turbulent mixing is negligible.
In that case, the Rankine-Froude theory indeed produces reliable and consistent results.

4.3. Blockage correction

Having validated the flow model, we proceed to assess the accuracy of the blockage
correction method that builds on it. Figure 9 plots the thrust and power coefficients
of the simulated high solidity turbines presented in section 3.2 as a function of the tip
speed ratio λ = ωR/U∞. As expected, a smaller computational domain contributes to
a significantly larger thrust and power, underlining the need for blockage corrections.
The corrections of the present method (i.e. section 2.4) and from Barnsley & Wellicome
(1990) (described in Ross & Polagye (2020a)) are also plotted in figure 9. Note that
the method of Barnsley & Wellicome (1990) is similar to that described in Bahaj et al.
(2007), and was among the best-performing ones in Ross & Polagye (2020a). The two
methods produce comparable results that agree with the negligible blockage simulation
data at low tip-speed ratios, as the induction factor (and thus the effective solidity of a
turbine) is expected to be analogous to λ. However, as the latter increases, the method
of Barnsley & Wellicome (1990) becomes increasingly more inaccurate compared with
the current method, due to the failure of the Rankine-Froude theory at high solidities.

Figure 10 provides an inspection of the changes in the velocity field induced by the
increase in blockage. First, we plot the relation between the velocity through the rotor u∗

and the thrust coefficient for the simulated turbines. The calculation of u∗ was performed
by integrating the mean streamwise velocity immediately upstream of the turbine rotor.
The model predictions are in good agreement with the turbine data at both low and high
blockage conditions. However, u∗ is an integrated quantity, and as seen in figure 5, the
velocity can vary along the turbine radius. Figure 10 also shows the numerically predicted
near wake velocity profiles in the two channels, along a horizontal cut (i.e. along the z
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Figure 9. Application of the corrections by Barnsley & Wellicome (1990) and the present
model to the simulated high induction factor (i.e. solidity) wind turbines.
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direction) from the turbine centerline to the domain edge. The profiles are extracted at a
location where the streamlines passing from the rotor tip achieve their maximum width.
Also plotted are the predictions of the model, which assumes a top hat profile for all
quantities. The model captures qualitatively the wake deficit, size, and channel velocity,
as well as their trends with increasing blockage and induction factor. However, similar
to the plate data, it underestimates the channel velocities as blockage increases. The top
hat assumption of the model is shown to be more relevant for small induction factors,
as strong gradients appear at higher induction factors. However, these gradients are to
a large degree manifest in the simulations due to the omission of the nacelle (see section
3.2), which leads to the formation of a high speed jet at the center of the turbine, that
would not appear in realistic configurations.

Figure 10 shows that the smallest simulated u∗ was approximately 0.46, i.e. the turbine
operates at a regime where the predictions of the Rankine-Froude theory for the thrust
are not significantly inaccurate (see figure 8). At higher solidity regimes, the departure
of classical blockage models is expected to be larger. This is verified by applying the two
corrective methods to the porous plate data for the highest tested blockage ratio, b = 25%
(see figure 11). The predictions of the proposed correction display good agreement with
the “near-unconfined” data, b = 5%. On the other hand, the deviation in the predictions
of the Barnsley & Wellicome (1990) correction becomes quite significant as porosity (and
thus u∗) tends to zero.

The above results suggest that the present model is indeed appropriate for correcting
blockage effects in high solidity turbines and plates. A natural question is then how
does the current model fare in low solidity wind turbine regimes, where conventional
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Figure 11. Predictions of the blockage correction model (dashed line) against experimental
measurements (solid lines). Also shown is the correction of the Barnsley & Wellicome (1990)
model (dotted line).
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Figure 12. Application of the corrections by Barnsley & Wellicome (1990) and the present
model to the low induction factor (i.e. solidity) axial-flow turbine data of Ross & Polagye
(2020a). Both corrective models show comparable accuracy.

models are still accurate. To answer that, we use the publicly available experimental
data of Ross & Polagye (2020a), who tested the performance of low induction turbines
at two facilities of different size (under high blockage, b = 35%, and negligible blockage,
b = 2%). The reader is referred to Ross & Polagye (2020a) for details on the experimental
configurations.

Figure 12 compares the results of the proposed theory with the axial-flow turbine data
of Ross & Polagye (2020a), as well as with the predictions of the method of Barnsley
& Wellicome (1990) (also extracted from Ross & Polagye (2020a)). The two methods
produce almost identical predictions for both thrust and power coefficients, showing that
the current model can potentially replace standard ones at any induction factor. It is
noteworthy to mention that at high tip speed ratios (λ > 7) the current model predicts
unconfined thrust coefficients that exceed unity, slightly departing from the method of
Barnsley & Wellicome (1990) which plateaus at unity as soon as it reaches this value. The
latter behaviour is problematic, and reflects the limitations of the Rankine-Froude-Taylor
theory, where drag coefficients may not exceed unity.

5. Summary and conclusions

By combining the potential flow representation of Steiros & Hultmark (2018) for porous
plates with the method of images to simulate channel walls, a novel blockage correction
model for wind turbines and porous plates of arbitrary solidity/induction factor was
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developed. The steps of the correction algorithm are presented in section 2. High fidelity
laboratory and numerical experiments of porous plates and wind turbines indicated that
the proposed correction performs equally well to conventional ones in low solidity regimes,
but becomes more accurate as the solidity/induction factor increases. The applicability
of the current model might be somewhat limited in conventional horizontal axis wind
turbines, as they tend to operate in low solidity regimes, but might become especially
relevant when considering blockage effects in high solidity configurations such as many-
bladed vertical axis wind turbines, tidal turbines, and more generally bluff bodies of
arbitrary porosity, including the fully solid limit in which splitter plates are used to
suppress vortex shedding, and where no blockage correction model is currently available
(see, for instance, Apelt & West (1975); Chapman et al. (2013); Miller et al. (2021)).
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Appendix A. Connection between u∗ and β

The current theoretical framework uses the variable u∗ = u/U∞ as its input. However,
in many cases the latter is difficult to measure, and it is more convenient to express all
quantities as a function of the porosity ratio β. To connect the two, Taylor & Davies
(1944) proposed the following expression when friction losses are negligible

CD ≈ u∗2
(

1

β2
− 1

)
. (A 1)

The main assumptions behind this expression are that the surplus kinetic energy, due to
acceleration of the fluid which enters the plate pores, becomes irreversibly heat, and that
the effect of the vena contracta is negligible. Taylor & Davies (1944) provide experimental
validation for the above formula (see Steiros & Hultmark (2018) for a reproduction of
their validation plot). This formula has been repeatedly used in previous works (see,
for instance, Castro (1971); Graham (1976)). Combination of the above equation with
equation (2.16), yields an expression linking β and u∗.

Appendix B. Crosswise velocity at the vicinity of the plate

Using the method of images described in section 2.2 we obtain the following crosswise
velocity for x→ 0

v1 =
m

4π

+∞∑
n=−∞

[
ln

(
y′ + 1− n/b
y′ − n/b

)]
,

where y′ = y/Lp − 1/2. At the unconfined limit, b→ 0, the above yields the unconfined
plate velocity (2.2), whose average square value, as shown in Steiros & Hultmark (2018),
is

v21 = m2/12 = (U0 − u)2/3 = (U∞ − u)2/3 .
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In the above we have used equation (2.5), and the fact that at b = 0, U∞ = U0 from
equation (2.6). On the other hand, at the fully confined limit, b = 1, the velocity v1
becomes

v1 =
m

4π
ln

∏+∞
n=−∞ (y′ + 1− n)∏+∞

n=−∞ (y′ − n)
= 0 ,

i.e. if the plate fully spans the channel, there cannot be any crosswise velocity. In that
case as well then, the average square crosswise velocity is

v21 = 0 = (U∞ − u)2/3 ,

where we used the fact that U∞ = u when b = 1 (see expression (2.6)). Given the

above, we use the approximation v21 ≈ (U∞ − u)2/3 for any level of blockage 0 6 b 6 1.
This expression is strictly valid only at the two limits b = 0 and b = 1, while it can
be readily shown that it expresses a linear approximation of the velocity v1 for the in-
between blockage values, i.e. vconf1 ≈ vunc1 (1 − b), where vconf1 and vunc1 are the confined
and unconfined crosswise velocities at the vicinity of the plate, respectively.
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