Supplemental material

A hybrid stochastic Lagrangian - cellular automata framework for modelling fire propagation in inhomogeneous terrains

Epaminondas Mastorakos^a, Savvas Gkantonas^a, Georgios Efstathiou^a, Andrea Giusti^b

^a Department of Engineering, University of Cambridge, Cambridge, UK ^b Mechanical Engineering Department, Imperial College London, UK

Videos showing the flame propagation in the Australian fire experiment and the fire in Mati are found in the Supplementary Material. A description of the videos is given in the following.

• S1_Australian_Fl_0.15.avi

Movement of fire particles, sized and coloured by their $Y_{st,p}$, at the indicated time from line ignition at x=0 in the controlled fire experiment of <u>Section 3.2</u> (Australian fire). Here the factor appearing the random walk equation is *F*₁=0.15. Other parameters are taken from Table 1 in the paper.

• S2_Australian_Fl_0.05.avi

Movement of fire particles, sized and coloured by their $Y_{st,p}$, at the indicated time from line ignition at x=0 in the controlled fire experiment of <u>Section 3.2</u> (Australian fire). Here the factor appearing the random walk equation is F_{i} =0.05. Other parameters are taken from Table 1 in the paper.

• S3_Australian_Fl_0.25.avi

Movement of fire particles, sized and coloured by their $Y_{st,p}$, at the indicated time from line ignition at x=0 in the controlled fire experiment of <u>Section 3.2</u> (Australian fire). Here the factor appearing the random walk equation is F_{i} =0.25. Other parameters are taken from Table 1 in the paper.

• S4_Mati_tauign_60_s.avi

Movement of active fire particles in the case of Mati fire (Section 3.3), coloured with red for radiation particles and with yellow for convection particles, and iso-lines of the fire spread (denoted with black) at the indicated time of ignition at x=760 m and y=3760 m (with the origin being the most south-west point of the simulation domain). Thick lines: outline of the high fire intensity region (red) and the extent of the fire scar (blue), from post-fire satellite images. Here the assumed ignition delay time is τ_{ign} =60 s with other parameters taken from Table 1 in the paper.

S5_Mati_tauign_120_s.avi

Movement of active fire particles in the case of Mati fire (Section 3.3), coloured with red for radiation particles and with yellow for convection particles, and iso-lines of the fire spread (denoted with black) at the indicated time of ignition at x=760 m and y=3760 m (with the origin being the most south-west point of the simulation domain). Thick lines: outline of the high fire intensity region (red) and the extent of the fire scar (blue), from post-fire satellite images. Here the assumed ignition delay time is τ_{ign} =120 s with other parameters taken from Table 1 in the paper.