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A wearable motion capture suit and machine 
learning predict disease progression  
in Friedreich’s ataxia
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Jackson Ping Kei Chan3, Suran Nethisinghe    4, Stavros Athanasopoulos    3, 
Valeria Ricotti    4,5, Thomas Voit    4,5, Paola Giunti6, Richard Festenstein3,6,7  
& A. Aldo Faisal    1,2,7,8,9,10 

Friedreichʼs ataxia (FA) is caused by a variant of the Frataxin (FXN) 
gene, leading to its downregulation and progressively impaired cardiac 
and neurological function. Current gold-standard clinical scales use 
simplistic behavioral assessments, which require 18- to 24-month-long 
trials to determine if therapies are beneficial. Here we captured full-body 
movement kinematics from patients with wearable sensors, enabling us to 
define digital behavioral features based on the data from nine FA patients 
(six females and three males) and nine age- and sex-matched controls, who 
performed the 8-m walk (8-MW) test and 9-hole peg test (9 HPT). We used 
machine learning to combine these features to longitudinally predict the 
clinical scores of the FA patients, and compared these with two standard 
clinical assessments, Spinocerebellar Ataxia Functional Index (SCAFI) 
and Scale for the Assessment and Rating of Ataxia (SARA). The digital 
behavioral features enabled longitudinal predictions of personal SARA 
and SCAFI scores 9 months into the future and were 1.7 and 4 times more 
precise than longitudinal predictions using only SARA and SCAFI scores, 
respectively. Unlike the two clinical scales, the digital behavioral features 
accurately predicted FXN gene expression levels for each FA patient in 
a cross-sectional manner. Our work demonstrates how data-derived 
wearable biomarkers can track personal disease trajectories and indicates 
the potential of such biomarkers for substantially reducing the duration or 
size of clinical trials testing disease-modifying therapies and for enabling 
behavioral transcriptomics.

About 1 in 17 people suffer from rare diseases, and to date, 6,000 rare 
diseases have been identified1,2. The challenge for drug development 
and regulatory approval in many rare diseases is their slow progression 
and small populations. The clinical scales currently used to quantify the 
progression of neurodegenerative diseases in patients are insensitive 
to the extremely slow progression of such diseases3,4. This means that it 

might take many months before they reveal any change. Additionally, 
some of their subcomponents have been shown to lack objectivity5–7 as 
they are mainly based on the subjective estimates collected by clinical 
personnel, often ‘by eyeʼ. Consequently, there is a pressing need for 
new methodologies that can achieve accurate and objective monitor-
ing of patientsʼ behavior for neurodegenerative assessments (Fig. 1a). 
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Fig. 1 | Overview of concepts, methodology and findings. a, Current gold-
standard clinical assessments for monitoring the effects of neurodegenerative 
diseases are often measured ‘by-eyeʼ and lack objectivity. Sensors can help 
achieve accurate and objective monitoring of patientsʼ behavior. b, Because of the 
lack of precision, it can take months before conventional clinical measures reveal 
any change in disease progression. Motion capture suit biomarkers provide digital 
biomarkers that can potentially capture subtle changes in patient performance 
in a shorter time span than conventional clinical measures. c, Using a full-body 
motion capture approach, we analyzed two subassessments SCAFI, the 8 MW and 
the 9 HPT, for which clinicians use only their duration for estimating FA disease 

progression. Using a machine learning approach, we generated a series of markers 
of patient performance with the goal of reconstructing the full SARA and SCAFI 
scores and predicting Frataxin expression levels. d, Reconstructed body posture 
of a participant performing the 8 MW while wearing a motion capture suit, which 
uses 17 inertial sensors to monitor the movement of the limbs. A typical time series 
from the angular positions of the neck, elbow, hip and knee joints captured by the 
suit and a frame sequence of the motion capture data of an FA patient performing 
the 8-MW test (each frame is 0.5 s apart) is shown. e, The 9-HPT setup showing a 
participant wearing the motion capture suit and a frame sequence of the motion 
capture data of an FA patient performing the 9 HPT.
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This is most important for monitoring progression in clinical trials 
that are often excessively long as a result. This is because the length of 
disease-modifying treatment trials is determined by the time it takes 
for current gold-standard methods of neurological clinical assessments 
to detect a slowing or stopping of disease progression (Fig. 1b), some-
times taking years (in the case of Friedreichʼs ataxia (FA) for 2 years) to 
conclusively establish disease progression.

We use FA as a proof-of-principle model to show how an artificial 
intelligence (AI)-defined digital biomarker can help to rapidly acceler-
ate and shrink clinical trials for disease-modifying treatments. FA afflicts 
1 in 40,000 Caucasian people8,9 and is a rare triplet-repeat-expansion 
neurodegenerative disease with slow progression, frequently leading 
to an early death by cardiomyopathy by affecting the heart and nerv-
ous system. FA predominantly affects the sensory proprioceptive 
system causing deterioration in patientsʼ coordination that worsens 
over time. It typically starts during childhood and the main symptoms 
include poor balance, gradual loss of strength and position-sense in the 
limbs, spasticity, the curvature of the spine (kyphoscoliosis), impaired 
speech, hypertrophic cardiomyopathy and it has also been associated 
with an increased incidence of diabetes, bladder symptoms, impair-
ment of vision and hearing10,11.

We are at an exciting time in the research of the underlying dis-
ease mechanisms in FA that promises to reveal radical new therapies. 
FA is caused by homozygosity for a noncoding guanine–adenine–
adenine (GAA) triplet repeat expansion within the first intron of 
the Frataxin (FXN) gene in about 96% of affected individuals. The 
other 4% are compound heterozygous for an expansion and another 
variant in the other FXN allele12. The expansion, on both alleles of the 
FXN gene, leads to its partial silencing sufficient to cause Frataxin 

deficiency and hence the disease. Frataxin repression in the dor-
sal root ganglia and heart is probably the most clinically relevant. 
Frataxin is essential for normal mitochondrial function and the 
synthesis of iron–sulfur cluster enzymes, and its deficiency leads to 
increased susceptibility to oxidative stress. Recent studies by some of 
us and others have demonstrated that FXN gene silencing triggered 
by the large GAA-repeat expansions involves epigenetic heterochro-
matinization of the FXN gene13–16. These findings led to potential 
disease-modifying therapies aimed at restoring Frataxin expression 
in patients by using epigenetic modifiers such as histone deacetylase 
inhibitors17–19. Other promising therapies which act downstream 
of Frataxin deficiency have also been recently trialed20 and several  
large pharmaceutical companies are investing in gene-therapy 
approaches following recent findings in mouse models21. There is 
currently no cure for FA, despite intensive research and trials of 
such new therapies. However, a recent trial of omaveloxolone20 has 
shown benefits in FA, and several other promising new treatments 
are under investigation.

Clinicians observe patients performing various tasks and extract 
scores, which can semiquantitatively define the stage of the disease. 
Among the most used tests are the Scale for the Assessment and Rating 
of Ataxia (SARA)22, Spinocerebellar Ataxia Functional Index (SCAFI)23 
and Friedreichʼs Ataxia Rating Scale (FARS)4. All these scales can assess 
patients’ motor control and coordination skills through a series of 
evaluations, such as the 8-m walk (8 MW), the 9-hole peg test (9 HPT), 
the finger-nose test, the finger tapping test and the heel-shin-slide test. 
Evaluating the overall clinical stage of FA disease requires converting 
patientsʼ physiological information (for example, stance, walking 
gait, sitting posture, etc.) into numerical scores, which in some cases 

Table 1 | Characteristics of the FA participants and healthy controls in our study. Data are presented as mean (range)

FA participants Healthy controls

Visit number Visit 1 Visit 2 Visit 3 Visit 4 Visit 1

N 9 9 8 8 9

Female:male 6:3 6:3 5:3 5:3 6:3

Ambulatory:nonambulatory 8:1 8:1 8:0 8:0 9:0

Age (years) 42.54
(24.18–63.32)

42.59
(24.25–63.36)

41.16
(24.50–63.55)

41.80
(24.92–64.16)

44.11
(25.00–66.00)

Disease duration (years) 14.32
(3.93–27.20)

14.37
(3.97–27.24)

13.12
(4.18–27.45)

13.76
(4.85–28.14)

NA

SARA 12.44
(4.00–33.50)

12.22
(5.00–32.50)

10.69
(6.00–16.00)

14.06
(7.50–21.50)

0
(0–0)

SCAFI −0.74
(−1.69 to 0.16)

−0.67
(−1.63 to 0.08)

−0.60
(−0.96 to 0.16)

−0.70
(−1.07 to −0.09)

1.41
(0.56–2.29)

8 MW
(s)

11.46
(6.20–26.90)

10.64
(5.85–18.35)

10.47
(5.45–15.50)

11.69
(5.95–22.45)

5.55
(3.60–8.00)

9 HPT—dominant hand
(s)

59.42
(30.10–88.60)

52.28
(33.15–71.35)

49.67
(30.55–84.55)

53.00
(34.00–68.00)

19.98
(15.85–23.95)

9 HPT—nondominant hand
(s)

81.07
(34.80–178.20)

60.09
(23.35–103.50)

58.77
(34.20–72.20)

61.55
(39.50–80.85)

23.16
(18.30–28.57)

PATA rate 18.94
(15.50–25.00)

18.56
(13.50–22.00)

18.94
(15.50–23.00)

18.50
(17.00–22.00)

32.56
(25.00–40.00)

FXN mRNA levels (in normalized Ct values) 6.06
(4.94–7.06)

6.55
(4.90–8.43)

6.50
(5.44–7.93)

6.27
(5.41–7.36)

–

Age of onset
(years)

28.14
(15.00–51.29)

NA

GAA short allele repeats 309
(88–582)

–

GAA long
allele repeats

803
(203–1,117)

–
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(FARS) include patient-reported ability to perform activities of daily 
living (ADL). Therefore, in many cases, the process of deriving discrete 
integer scores results in losing information about the disease state 
and is subjective.

Although these score-based metrics can quantify the ataxia 
disease, they are still subject to variability due to the subjective esti-
mates of some of their components6,24. This variability can be partially 
reduced with extensive training of the assessors25. These metrics also 
suffer from low accuracy and sensitivity, resulting in extended periods 
to measure changes in the behavior in FA and the need for much larger 
numbers of patients in clinical trials: for a 2-year parallel-group trial, 
230 patients would be required to detect a 50% reduction in SARA pro-
gression at 80% power; 118 if only ambulatory individuals are included. 
With ADL questionnaire as the primary outcome, 190 patients would 
be needed, and less patients would be required if only individuals with 
early onset are included26,27.

Here we have applied behavior analytics to capture subtle changes 
more objectively and accurately and therefore in a shorter time  
span than the conventional clinical measures. Several motor- 
behavior-based digital biomarkers for ataxia have been reported  
in the literature recently28–32. While these biomarkers are shown to 
differentiate between patients and controls, they are gait-based and 
focused on lower body performance and hence exclude nonambu-
lant patients. In our study, we have taken a more holistic view of the  
patientsʼ  motor capability and have used full-body motion  
data to define kinematic features that comprised gait and not-gait 
activities. We used machine learning to evaluate how well these  
features are predictive of the disease progression and FXN levels.  
We have demonstrated the utility of the digital kinematic features  
by showing that their predictive power far exceeds that of clinical 
scales.

Results
Overview of approach
Nine FA participants and nine age- and sex-matched healthy controls 
participated in the study (see Table 1 for the characteristics of the study 
participants). To enable monitoring of the FA disease progression on a 
longitudinal timescale, the trial consisted of four clinical measurement 
points as follows: baseline visit on day-1 visit and follow-up visits on  
3 weeks and 3 and 9 months. We used a motion capture suit to record 
the behavior of FA patients and healthy controls. Participants came 
into the clinic and performed clinical scales wearing a motion capture 
suit. We analyzed the movement data and identified kinematic features 
from the suit data, which were different between the patients and the 
controls. Then, we established the cross-sectional and longitudinal pre-
dictive capacity of the suit features using machine learning and tested 
the effectiveness of our predictions against the current gold-standard 
approach using data from a separate and larger EFACTS study26 (a 
two-year longitudinal study with a larger cohort size). Finally, we used 
the kinematic suit features to regress against FXN gene expression—a 
key FA molecular biomarker.

Kinematic features
To benchmark how FA patientsʼ movement differs from normal,  
we analyzed the following two subassessments of the SCAFI scale:  
the 8 MW and the 9 HPT. Currently, clinicians only use the crude  
measure of duration of these activities for quantifying disease 
severity23. We defined a series of kinematic features of patient per-
formance (Table 2), which can be used to objectively distinguish the  
differences in the behavior of FA patients from the control popula-
tion. More specifically, in the 8-MW case, we focused on the behav-
ioral changes of the full-body kinematics whereas for the 9 HPT, we  
focused on the upper body kinematics because participants 

Table 2 | Suit features from the 8-MW task (F1–F10) and 9-HPT task (F11–F18) used to train the GP regression algorithm

ID Feature name Description Number of features

F1 Workspace probability density volume and 
entropy

Volume occupied by the joints calculated using the 3D location of the joints 2

F2 Lower body joint variability Average variability of the hip and knee joint velocities 2

F3 Walk autocorrelation PCs of the autocorrelation of the joint angular velocities 2

F4 Channel-delay cross-correlation Eigen spectrum values (1, 5 and 35) of the channel-delay cross-correlation matrix 3

F5 Extremities velocity Average peak velocities of the lower body extremities (ankles) 2

F6 Walk complexity Human movement complexity metric and degrees of freedom to explain 90% 
variance

2

F7 Leg s̓ root mean square power spectrum Average energy per walk cycle of the hip and knee joint velocities 6

F8 Joint velocities correlation coefficient Pearsons̓ correlation coefficients between lower body joints 9

F9 Head spine movement plane area Area and variability of the head movements on the frontal and sideways plane 3

F10 Average upper body joint velocity Average joint angular velocities of the shoulder and elbow joints 5

F11 Upper body complexity Human movement complexity metric and degrees of freedom to explain 90% 
variance of the upper body joint velocities

2

F12 Workspace probability density volume and 
entropy

Volume occupied by the joints calculated using the 3D location of the joints of the 
upper body

2

F13 Upper body autocorrelation full width at 
half-maximum

The width of the autocorrelation curve (of the joint angular velocities of the upper 
body joints) at the point when it reaches a value of 0.5

5

F14 Channel-delay cross-correlation Eigen spectrum values (1, 5, 30 and 300) of the channel-delay cross-correlation 
matrix

4

F15 Arm root mean square power spectrum Average energy of the shoulder and elbow joint angular velocities 5

F16 Wrist average velocity Average velocities of the wrist in space 1

F17 Logistic fit on upper body jointsʼ velocity Scale parameter of the logistic distribution of upper body joint s̓ angular velocities 
and wrist’s velocity in space

8

F18 Head spine movement plane area Area of the head movements on the frontal and sideways plane 1
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were seated during the task (Fig. 1c–e). The latter is important as  
current scales exhibit ceiling effects26, resulting in the exclusion  
of wheelchair-bound patients from clinical trials. These features  
have been inspired by the currently used clinical scales, standard  
gait analysis methods, works on other neurodegenerative diseases  
with similar movement disorders33–38 and direct clinical experience. 
Several of these features are intuitively meaningful, perhaps even  
subjectively visible by the eye, while others capture complex and sub-
tle spatiotemporal patterns that may escape even very experienced 
clinicians.

Validation of features
A detailed explanation of all these features is presented in the  
Methods section (and Extended Data Figs. 1–8) and their validation 
by test–retest correlation is presented in Extended Data Fig. 9. Most 
of these features are substantially different between FA patients and 
controls thereby quantitatively capturing the effects of FA on move-
ment. To develop a clinically useful and improved measure of dete-
rioration, we set out to predict the continuous values of the clinical 
scales quantitatively. We calculated Pearsonʼs correlation coefficient 
of each feature with respect to the SARA and SCAFI scales and most  
of the features presented absolute correlations in the range of  
0.3–0.5 with respect to the two clinical scales. Therefore, none of  
them can be independently used for monitoring disease progression. 
However, a more robust prediction can be potentially achieved by 
combining all these behavioral features—the same way as is applied 
in the standard clinical scales.

The relationships linking our features and clinical scales are non-
linear. Hence, we used a Gaussian Process (GP) Regression algorithm 
to find the mapping between the extracted behavioral features and the 
SARA and SCAFI clinical assessments. GP regression is a state-of-the-art 
method that applies a nonlinear regression and can capture the uncer-
tainty in the presence of high variability in the data in a principled 
manner39.

Cross-sectional predictions of SARA and SCAFI
Firstly, we did a cross-sectional prediction of the clinical asses-
ments using the suit features from the corresponding visits and 
the leave-one-participant-out cross-validated results are shown in  
Fig. 2a–d. The algorithm achieved a coefficient of determination (R2) 
of 0.79 and a root mean square error (RMSE) of 2.49 when predicting 
SARA scales using suit features of 8 MW and an R2 of 0.51 and an RMSE 
of 5.22 when using suit features of 9 HPT. When predicting SCAFI, the 
algorithmʼs performance increased in both the cases of 8-MW and 
9-HPT suit features with R2 of 0.87 and 0.74, respectively. It should be 
noted that one participant could not do the 8-MW test and did only the 
9 HPT. This establishes that our methodology can be used to predict 
the clinical scales for nonambulatory patients too. The challenge with 
leave-one-subject-out cross-validation is that every time the algorithm 
is tested it is on a new subject with completely new dynamics. Neverthe-
less, the suit features can still predict the disease state of the patients 
with good accuracy. The features selected by the feature selection 
algorithm for predicting SARA and SCAFI are presented in Supple-
mentary Figs. 1 and 2.

Because our patients do not cover the whole range of the clinical  
scores (0–40), the algorithmʼs performance is not very good  
in predicting the SARA scores at the higher end of the scale (for 
example, the two sporadic values at the top right corner of the plot). 
It is clear from the results that the GP regression performance can 
be improved with a bigger dataset. It can also be observed that both 
the 8-MW and 9-HPT suit features are better at predicting SCAFI 
when compared to SARA. This should not be surprising as both  
8 MW and 9 HPT are part of the SCAFI test suite and the suit features 
of the 8-MW and 9-HPT subtasks will have more predictive power at 
predicting the SCAFI score.

Longitudinal predictions of SARA and SCAFI
We then wanted to analyze how well the kinematic features extracted 
from the suit data of 8 MW and 9 HPT can accurately predict the longi-
tudinal disease progression occurring in FA patients when compared 
to scales obtained following conventional assessment by clinicians 
(Fig. 3a–f). First, we wanted to understand how the clinical scales 
change over a year as a function of their day-1 clinical scale. In Fig. 3a,d,  
we have plotted the change in SARA and SCAFI scales, respectively, 
against their day-1 clinical scale for the FA patients of our study and 
also patients from EFACTS study26 (a two-year longitudinal study with 
a larger cohort size).

We used GP regression to predict the month-9 SARA and SCAFI 
scales of the participants from our study using the suit features from 
day-1 8-MW and suit features from day-1 9 HPT as predictors. We then 
compared these longitudinal predictions against the predictions of 
the month-9 SARA and SCAFI scales using the day-1 SARA and SCAFI 
scales from our study (Fig. 3b,e). For the longitudinal predictions 
of SARA, both the day-1 suit features of 8 MW and 9 HPT achieved a 
good leave-one-subject-out cross-validated R2 of 0.80 and 0.85 in 
comparison with an R2 of 0.47 using day-1 SARA. Again, for the longi-
tudinal predictions of SCAFI, the 8-MW and 9-HPT day-1 suit features 
outperformed day-1 SCAFI (R2 of 0.75 and 0.86 versus 0.21). Please see 
Supplementary Fig. 3 for plot of the RMSE of the results. This implies 
that our suit features contained sufficiently rich information not only 
to score the disease state of the patient in the present but also to predict 
how the disease would evolve. The features selected by the feature 
selection algorithm for the longitudinal predictions of SARA and SCAFI 
are presented in Supplementary Figs. 4 and 5.
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Fig. 2 | Cross-sectional predictions of SARA and SCAFI scores. a–d, Actual 
SARA (a,b) or actual SCAFI (c,d) scores are plotted versus predicted values, 
as derived from the cross-sectional prediction of the clinical scales using suit 
features from the 8-MW (a,c) and 9-HPT (b,d) tasks. Each data point represents 
a single actual versus predicted score of an FA patient (9 participants, 33 visits) 
or control (9 participants, 9 visits). One participant could not perform the 8-MW 
task and performed only the 9 HPT. Two data points were obtained per clinical 
visit of each participant, as two suit measurements for both 8 MW and 9 HPT were 
obtained from each visit. A small jitter is added to the points to show overlapping 
points. A leave-one-subject-out cross-validation and GP regression were used for 
the predictions of the SARA and SCAFI scores.
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We then plotted the RMSE of the longitudinal predictions as a 
function of number of participants used to build the machine learning 
model (Fig. 3c,e). Here we used the data from the larger EFACTS study to 
build the models using SARA and SCAFI as predictors to allow a larger 
data size for the models using the clinical scales. The model using suit 
features achieved better performance with a smaller number of par-
ticipants (n = 7) compared to the model using the clinical scales with a 
larger cohort from the EFACTS study (n = 164). This establishes that a 
small population size is sufficient to build prediction models with high 
accuracy when using the rich set of suit features, which would therefore 
substantially reduce the numbers of patients required in the context 
of drug development.

Cross-sectional prediction of FXN mRNA levels
FA is caused by a GAA-repeat expansion in the FXN gene leading to 
transcriptional repression of FXN and the disease. The length of the 
shorter GAA-repeat has been shown to correlate inversely with the  
age of onset10,26. We have confirmed this in our data (Supplementary  
Fig 6) and shown that this correlation improves when removing patients  
with interruptions in the short GAA repeat length40. We cross-sectionally 
predicted the FXN mRNA levels of the participants using four sets of  
predictors: 8-MW suit features, 9-HPT suit features, SARA and SCAFI,  
and the results for the leave-one-subject-out cross-validation are  
presented in Fig. 4a–d. Suit features of 8 MW and 9 HPT achieved an  
R2 of 0.59 and 0.53 (and an RMSE of 0.53 and 0.62) for the leave-one- 
subject-out cross-validated case. In comparison, both SARA and  

SCAFI achieved only R2 values close to zero (with RMSE values of  
0.97 and 0.98). (Please see Supplementary Fig. 7a,b for the features 
selected by the feature selection algorithm for the prediction of 
 FXN and Supplementary Fig. 7c for a scatter plot of the FXN against 
SARA and SCAFI).

The total scores of SARA and SCAFI might be poorer at prediction 
because they contain less information. We reasoned that by using the 
individual components of the SARA and SCAFI scales as predictors, 
we would improve the predictive capacity (Supplementary Fig. 8).  
Although this led to an improvement (R2 of predictions using the com-
ponents of SARA increased to 0.36 and that of SCAFI increased to 0.20), 
the prediction using the suit features of the 8 MW (R2 of 0.59) and 9 HPT 
(R2 of 0.53) still outperformed the individual components of SARA and 
SCAFI in predicting FXN levels.

Discussion
Clinical scales, which attempt to quantify the clinical examination, 
are widely used as gold-standard neurological and cardiovascular 
assessments. These are often measured ‘by-eyeʼ and are subject to 
intrarater variability (the same assessors reporting different outcomes 
on repeated trials)7, inter-rater variability (different assessors scor-
ing the same assessment differently)41 and variability in the patient 
performance ability (which may vary based on the time and days of 
the week, seasons, etc.). Such clinical scales are composed of a bat-
tery of different behavioral subassessments (for example, walking 
and picking up things) to capture the performance across different 
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domains of the bodyʼs capabilities and average out variability across 
individual subassessments (for example, FA SCAFI has three subass-
essments whereas SARA has eight subassessments). This results in 
longer times to perform clinical tests and more opportunity for rater 
variability. Moreover, variability from each subassessment may, in the 
worst case, be additive.

We show here that the kinematic features from one test can predict 
the clinical scales of another test and future scores. and indeed, the key 
molecular marker—FXN levels, indicating that they carry crucial infor-
mation about the disease and can directly link behavior with FXN gene 
expression. Our data-driven approach also revealed new observational 
information that can complement the current clinical evaluations. For 
example, one of our main findings, which was supported by multiple 
metrics, was the substantially reduced movement structure and com-
plexity in the patientsʼ activities compared to controls during the two 
subtests. The high accuracy of the collected data can also be used to 
better understand the subtle changes in behavior secondary to the 
disease or ameliorated by therapeutic intervention.

Our features quantify the complex and subtle movement pat-
terns that may escape even very experienced clinicians. The larger 
workspace volume and the entropy of the workspace density of the 
FA patients quantify the more disordered movement patterns of FA 
patients. Ataxia patients develop complex compensatory movement 
mechanisms to balance out their sensorimotor dysfunction and this 
is captured by our movement complexity metric. The low principal 

component (PC) values of the autocorrelations of the joint angular 
velocities reflect the low repeatability of body postures while walk-
ing in FA patients and what clinicians subjectively characterize as 
the ataxic gait. The reported muscle weakness in the arms and legs 
of FA patients is consistent with the low power spectrum values of 
the hip and joint velocities. The qualitative ‘by-eyeʼ observations of 
the swaying of the head of the FA patients are captured by our planar 
movement area feature.

The fact that the kinematic features of each of the subtasks  
(8 MW and 9 HPT) can predict the overall clinical scores with good 
accuracy suggests that our data-driven approach can predict the 
overall performance of a patient with a minimal number of tasks in 
the clinical assessment although they will have to have the suit fitted, 
which takes about 10 min. A further benefit is that subjective, by-eye 
measurements are replaced with data-rich, digitally accurate data. 
Our data-driven analysis also allowed us to characterize the kinematic 
alterations in FA patients and verify and objectify the various observa-
tions that clinicians use in their verbal characterization such as slower 
irregular movements.

Recent efforts42–46 used movement sensors in an attempt to over-
come the errors caused by subjective clinical scales. Patients with 
Parkinsonʼs disease47 donned full-body suits to capture the patientsʼ 
behavior during clinical tasks. The analysis on cross-sectional classi-
fication of the severity of the disease (mild versus severe) rather than 
capturing changes in the disease progression through time. Similarly, a 
recent cross-sectional study used wearable motion sensors to quantify 
the SARA scale and thereby identify very early signs in the spinocerebel-
lar ataxias48. Here we go further in developing algorithms to accurately 
predict outcomes longitudinally and moreover predict a molecular 
biomarker of FA.

The digital kinematic features we have developed do not depend 
on a specific ’suitʼ or even the use of wearable sensors. The only infor-
mation needed for the generation of the kinematic features is the 
skeletal movement data, that is, time series of body poses. The kin-
ematic features are agnostic to the source of the skeletal movement 
data. We believe that as technology progresses for the accurate skel-
etal reconstruction of human movement from video, remote clinical 
evaluation of patientsʼ motor performance, even in a home setting, 
will become possible.

This work promises to shorten clinical trials that would  
otherwise be prohibitively long or reduce the number of patients 
required to measure the deterioration of the neurological state. The 
latter is especially important in rare neurodegenerative diseases. There-
fore, such technology is likely to facilitate the possibility of finding 
treatment for these relatively neglected and incurable conditions.

The study presented here was exploratory in nature and has pro-
vided proof of concept that this approach would outperform clinical 
scales in a clinical trial setting. Notwithstanding the results, our study 
has some limitations. Our cohort consisted of predominantly late-onset 
ambulatory patients. Further studies are needed to validate our tech-
nology and methodology in a larger and wider demographic cohort 
with participants across different ambulatory statuses. Also, the supe-
riority of our digital kinematic features over the existing clinical scales 
needs to be established in interventional drug trials of FRDA and other 
motor diseases. We have already demonstrated the usefulness of our 
kinematic features in a different patient group, children, for another 
degenerative disease49. Further studies will establish this in a larger 
and wider cohort and will also investigate the use of kinematic features 
from daily life activities at home. We believe that these features have 
the potential to be universal and not only recognize disease progres-
sion in one disease but also allow us to distinguish between diseases 
and potentially multimorbidities.

In addition, the finding that the motion capture features could be 
used to predict the FXN mRNA level, in contrast to the clinical scales, 
was an interesting result as the kinematics do change over time and 
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FXN levels do not change appreciably. Consistent with our results, a 
previous study could also correlate clinical scales with FXN levels (R2 of 
0.24 for FARS)50. Our population consisted of predominantly late-onset 
ambulatory patients, which may have contributed to the accuracy of 
the predictions (R2 of 0.53). Another clinically relevant possibility is 
that FXN levels might be able to predict disease trajectory and further 
studies are required to address this. Notwithstanding, our results are 
consistent with the knowledge that FXN deficiency causes movement 
disorder in FA.

We show here that FA provides a model neurodegenerative 
condition where a holistic machine learning analysis of full-body  
kinematics from a longitudinal study demonstrates accurate pre-
diction of dysfunction progression in individual patients. We not 
only determine clinical phenotype but also predict the molecular  
cause of the disease (repressed Frataxin) cross-sectionally from 
movement data alone, albeit on a restricted population. While 
high-resolution behavioral genomics was previously successful in 
genetic model organisms such as Caenorhabditis elegans45 at dif-
ferentiating mutants through pure digital behavioral analysis and 
was able to pick up subtle changes in physiological and reproductive 
state from the movement behavior of Drosophila Melanogaster46, 
such data-driven approaches have been lacking in human clinical 
and genomic applications. Existing digital biomarkers applied in 
human clinical settings involve supplanting conventional meas-
ures such as distance walked on a treadmill with digitally measured 
proxies obtained through digital devices (such as step counters). 
However, these approaches overlook the richness of signal con-
tained in full-body kinematic data and instead revert to reusing 
existing clinical measures. To date, the monitoring of neurode-
generative disease progression frequently fails to adequately test 
disease-modifying therapies because it is slow and of low precision, 
making drug development risky and expensive. Our digital behav-
ioral biomarker approach promises to be of benefit to patients with 
rare diseases where potential disease-modifying treatments are 
becoming available.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41591-022-02159-6.

References
1.	 European Commission. Rare diseases. https://research-and- 

innovation.ec.europa.eu/research-area/health/rare-diseases_en 
(2020).

2.	 Wakap, S. N. et al. Estimating cumulative point prevalence of rare 
diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 
28, 165–173 (2020).

3.	 Mancini, M. et al. Postural sway as a marker of progression in 
Parkinson’s disease: a pilot longitudinal study. Gait Posture 36, 
471–476 (2012).

4.	 Fahey, M. C., Corben, L., Collins, V., Churchyard, A. J. &  
Delatycki, M. B. How is disease progress in Friedreich’s ataxia best 
measured? A study of four rating scales. J. Neurol. Neurosurg. 
Psychiatry 78, 411–413 (2007).

5.	 Albanese, M. A., Clarke, W. R., Adams, H. P. Jr. & Woolson, R. F. 
Ensuring reliability of outcome measures in multicenter clinical 
trials of treatments for acute ischemic stroke. The program 
developed for the Trial of Org 10172 in Acute Stroke Treatment 
(TOAST). Stroke 25, 1746–1751 (1994).

6.	 Subramony, S. et al. Measuring Friedreich ataxia: interrater 
reliability of a neurologic rating scale. Neurology 64, 1261–1262 
(2005).

7.	 Burk, K., Schulz, S. R. & Schulz, J. B. Monitoring progression in 
Friedreich ataxia (FRDA): the use of clinical scales. J. Neurochem. 
126, 118–124 (2013).

8.	 Koeppen, A. H. Friedreich’s ataxia: pathology, pathogenesis, and 
molecular genetics. J. Neurol. Sci. 303, 1–12 (2011).

9.	 Koeppen, A. H. Nikolaus Friedreich and degenerative atrophy of 
the dorsal columns of the spinal cord. J. Neurochem. 126, 4–10 
(2013).

10.	 Durr, A. et al. Clinical and genetic abnormalities in patients with 
Friedreich’s ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

11.	 Gibilisco, P. & Vogel, A. P. Friedreich ataxia. BMJ 347, f7062 (2013).
12.	 Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive 

disease caused by an intronic GAA triplet repeat expansion. 
Science 271, 1423–1427 (1996).

13.	 Chan, P. K. et al. Heterochromatinization induced by GAA-repeat 
hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC 
inhibition by vitamin B3. Hum. Mol. Genet. 22, 2662–2675 (2013).

14.	 Chutake, Y. K., Lam, C., Costello, W. N., Anderson, M. & 
Bidichandani, S. I. Epigenetic promoter silencing in Friedreich 
ataxia is dependent on repeat length. Ann. Neurol. 76, 522–528 
(2014).

15.	 De Biase, I., Chutake, Y. K., Rindler, P. M. & Bidichandani, S. I. 
Epigenetic silencing in Friedreich ataxia is associated with 
depletion of CTCF (CCCTC-binding factor) and antisense 
transcription. PLoS ONE 4, e7914 (2009).

16.	 Saveliev, A., Everett, C., Sharpe, T., Webster, Z. & Festenstein, R. 
DNA triplet repeats mediate heterochromatin-protein-1-sensitive 
variegated gene silencing. Nature 422, 909–913 (2003).

17.	 Festenstein, R. Breaking the silence in Friedreich’s ataxia.  
Nat. Chem. Biol. 2, 512–513 (2006).

18.	 Gottesfeld, J. M. Small molecules affecting transcription in 
Friedreich ataxia. Pharm. Ther. 116, 236–248 (2007).

19.	 Libri, V. et al. Epigenetic and neurological effects and safety of 
high-dose nicotinamide in patients with Friedreich’s ataxia: an 
exploratory, open-label, dose-escalation study. Lancet 384, 
504–513 (2014).

20.	 Lynch, D. R. et al. Safety and efficacy of omaveloxolone in 
Friedreich ataxia (MOXIe study). Ann. Neurol. 89, 212–225 (2021).

21.	 Ocana-Santero, G., Diaz-Nido, J. & Herranz-Martin, S. Future 
prospects of gene therapy for Friedreich’s ataxia. Int. J. Mol. Sci. 
22, 1815 (2021).

22.	 Schmitz-Hübsch, T. et al. Scale for the assessment and rating 
of ataxia: development of a new clinical scale. Neurology 66, 
1717–1720 (2006).

23.	 Schmitz-Hübsch, T. et al. SCA functional index: a useful 
compound performance measure for spinocerebellar ataxia. 
Neurology 71, 486–492 (2008).

24.	 Fillyaw, M. J. et al. Quantitative measures of neurological function 
in chronic neuromuscular diseases and ataxia. J. Neurol. Sci. 92, 
17–36 (1989).

25.	 Storey, E., Tuck, K., Hester, R., Hughes, A. & Churchyard, A. Inter‐
rater reliability of the international cooperative Ataxia Rating 
Scale (ICARS). Mov. Disord. 19, 190–192 (2004).

26.	 Reetz, K. et al. Progression characteristics of the European 
Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): 
a 2 year cohort study. Lancet Neurol. 15, 1346–1354 (2016).

27.	 Reetz, K. et al. Progression characteristics of the European 
Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): 
a 4-year cohort study. Lancet Neurol. 20, 362–372 (2021).

28.	 Thierfelder, A. et al. Real‐life turning movements capture  
subtle longitudinal and preataxic changes in cerebellar ataxia. 
Mov. Disord. 37, 1047–1058 (2022).

29.	 Velázquez‐Pérez, L. et al. Prodromal spinocerebellar ataxia  
type 2 subjects have quantifiable gait and postural sway deficits.  
Mov. Disord. 36, 471–480 (2021).

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-022-02159-6
https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en
https://research-and-innovation.ec.europa.eu/research-area/health/rare-diseases_en


Nature Medicine | Volume 29 | January 2023 | 86–94 94

Article https://doi.org/10.1038/s41591-022-02159-6

30.	 Shah, V. V. et al. Gait variability in spinocerebellar ataxia assessed 
using wearable inertial sensors. Mov. Disord. 36, 2922–2931 
(2021).

31.	 Ilg, W. et al. Real-life gait assessment in degenerative cerebellar 
ataxia: toward ecologically valid biomarkers. Neurology 95, 
e1199–e1210 (2020).

32.	 Milne, S.C. et al. The responsiveness of gait and balance 
outcomes to disease progression in Friedreich ataxia. Cerebellum 
21, 963–975 (2021).

33.	 Hollman, J. H., Kovash, F. M., Kubik, J. J. & Linbo, R. A. Age-related 
differences in spatiotemporal markers of gait stability during dual 
task walking. Gait Posture 26, 113–119 (2007).

34.	 Plotnik, M., Giladi, N. & Hausdorff, J. M. Bilateral coordination 
of walking and freezing of gait in Parkinson’s disease. Eur. J. 
Neurosci. 27, 1999–2006 (2008).

35.	 Sofuwa, O. et al. Quantitative gait analysis in Parkinson’s disease: 
comparison with a healthy control group. Arch. Phys. Med. 
Rehabil. 86, 1007–1013 (2005).

36.	 Van Meulen, F. B. et al. Objective evaluation of the quality of 
movement in daily life after stroke. Front. Bioeng. Biotechnol. 3, 
210 (2016).

37.	 van Meulen, F. B., Reenalda, J. & Veltink, P. H. Replace, Repair, 
Restore, Relieve–Bridging Clinical and Engineering Solutions in 
Neurorehabilitation 191–193 (Springer, 2014).

38.	 Yu, L., Xiong, D., Guo, L. & Wang, J. A remote quantitative 
Fugl-Meyer assessment framework for stroke patients based on 
wearable sensor networks. Comput. Methods Prog. Biomed. 128, 
100–110 (2016).

39.	 Rasmussen, A., Gomez, M., Alonso, E. & Bidichandani, S. I. Clinical 
heterogeneity of recessive ataxia in the Mexican population.  
J. Neurol. Neurosurg. Psychiatry 77, 1370–1372 (2006).

40.	 Nethisinghe, S. et al. Interruptions of the FXN GAA repeat 
tract delay the age at onset of Friedreich’s ataxia in a 
location-dependent manner. Int. J. Mol. Sci. 22, 7507 (2021).

41.	 Hobson, J., Edwards, N. & Meara, R. The Parkinson’s disease 
activities of daily living scale: a new simple and brief subjective 
measure of disability in Parkinson’s disease. Clin. Rehabil. 15, 
241–246 (2001).

42.	 Jobbágy, Á., Harcos, P., Karoly, R. & Fazekas, G. Analysis of finger- 
tapping movement. J. Neurosci. Methods 141, 29–39 (2005).

43.	 McPartland, M. D., Krebs, D. E. & Wall, C. Quantifying ataxia: 
ideal trajectory analysis-a technical note. J. Rehabil. Res. Dev. 37, 
445–454 (2000).

44.	 Zampieri, C. et al. The instrumented timed up and go test: potential 
outcome measure for disease-modifying therapies in Parkinson’s 
disease. J. Neurol. Neurosurg. Psychiatry 81, 171–176 (2010).

45.	 Gavriel, C., Thomik, A. A., et al. Kinematic body sensor networks 
and behaviormetrics for objective efficacy measurements in 
neurodegenerative disease drug trials. 2015 IEEE 12th International 
Conference on Wearable and Implantable Body Sensor Networks 
(BSN) (IEEE, 2015).

46.	 Gavriel, C., Thomik, A. A., et al. Towards neurobehavioral 
biomarkers for longitudinal monitoring of neurodegeneration 
with wearable body sensor networks. 2015 7th International  
IEEE/EMBS Conference on Neural Engineering (NER) 348–351 
(IEEE, 2015).

47.	 Das, S., et al. Quantitative measurement of motor symptoms in 
Parkinson’s disease: a study with full-body motion capture data. 
2011 Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society 6789–6792 (IEEE, 2011).

48.	 Kashyap, B. et al. Objective assessment of cerebellar Ataxia: a 
comprehensive and refined approach. Sci. Rep. 10, 1–17 (2020).

49.	 Ricotti, V. et al. Wearable full-body motion tracking of activities 
of daily living predicts disease trajectory in Duchenne muscular 
dystrophy. Nat. Med. (in the press).

50.	 Lazaropoulos, M. et al. Frataxin levels in peripheral tissue in 
Friedreich ataxia. Ann. Clin. Transl. Neurol. 2, 831–842 (2015).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

1Brain & Behaviour Lab, Department of Bioengineering, Imperial College London, London, UK. 2Brain & Behaviour Lab, Department of Computing, 
Imperial College London, London, UK. 3Epigenetic Mechanisms and Disease Group, Department of Brain Sciences, Imperial College London, London, 
UK. 4NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK. 5Great Ormond 
Street Hospital for Children, NHS Foundation Trust, London, UK. 6Institute of Neurology, UCL, National Hospital for Neurology and Neurosurgery 
(UCLH), London, UK. 7MRC London Institute of Medical Sciences, London, UK. 8Behaviour Analytics Lab, Data Science Institute, Imperial College 
London, London, UK. 9Brain & Behaviour Lab, Institute for Artificial and Human Intelligence, University of Bayreuth, Bayreuth, Germany. 10Chair in 
Digital Health, Faculty of Life Sciences, University of Bayreuth, Bayreuth, Germany. 11These authors contributed equally: Balasundaram Kadirvelu, 
Constantinos Gavriel, Sathiji Nageshwaran, Jackson Ping Kei Chan.  e-mail: aldo.faisal@imperial.ac.uk

http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:aldo.faisal@imperial.ac.uk


Nature Medicine

Article https://doi.org/10.1038/s41591-022-02159-6

Methods
Subjects and measurements
Nine FA patients and nine age- and sex-matched controls participated 
in this study. FA patients had all been diagnosed with Friedreichʼs 
ataxia based on clinical criteria and a genetically confirmed GAA-repeat 
expansion on both alleles of the FXN gene. More information on the 
patient selection process is available in ref. 19. Study participants had 
provided written informed consent before any study-related proce-
dures were initiated. Consent was obtained from the individual whose 
image is shown in Fig. 1 for publication of the image. Our clinical trial 
was approved by the UK Medicines and Healthcare Products Regulatory 
Agency (EudraCT 2011-002744-27), the Riverside Research Ethics Com-
mittee (11/LO/0998) and the Imperial College London Joint Research & 
Compliance Office (see supplementary note for the study protocol). All 
measurements were done at our clinical facility (NIHR Imperial Clinical 
Research Facility, Imperial Centre for Translational and Experimental 
Medicine, Hammersmith Hospital, London).

Measurements were taken four times from the FA patients and 
once from the controls during the course of the study (day-1/base-
line, after 3 weeks and 3 and 9 months) and this enabled collection of 
behavioral data that can be used in monitoring the progression of the 
ataxic disease on a longitudinal scale. One of the FA patients dropped 
out of the study after second visit due to personal reasons; however, 
we still included the collected data in further analysis where possible. 
Motion capture suit data was not collected during the last visit of 
another patient because of technical issues. A blood sample for FXN 
measurement was not collected for a patient. The characteristics of 
the participants in our study are listed in Table 1.

The EFACTS study data comes from a longitudinal study26 of a large 
cohort of Friedreichʼs ataxia patients from 11 European study sites 
where the patients were seen at baseline, 1 and 2 years, and the different 
clinical scales were recorded. All our study participants have an onset of 
FA over 18 years of age (except one participant who had an age of onset 
of 15 years). We, therefore, included only participants from EFACTS who 
had onset after 18 years. The characteristics of the EFACTS study par-
ticipants included in our analysis are listed in Supplementary Table 1.  
The EFACTS study (ClinicalTrials.gov Identifier, NCT02069509) was 
approved by the local ethics committees of each participating site in 
the study. All patients or their authorized surrogates provided written 
informed consent upon enrollment into EFACTS.

Wearable full-body motion capture system (the ’suit )
The movement from the entire body was recorded using an IGS-180 
motion capture suit (Animazoo). The suit consists of an elastic Lycra 
trouser and jacket with 17 sensors embedded into the fabric to meas-
ure the movement of various limbs. The sensors are nine-axis inertial 
measurement units and the data from all sensors can be streamed 
wirelessly to a laptop at 60 Hz. The calibration of the motion capture 
suit is performed using a simple routine provided by the manufacturer 
as part of the control software. The suit reports the motion data fused 
with a skeleton structure in a Biovision hierarchical data (BVH) format, 
which saves each jointʼs position as Euler angles. In Fig. 1d, we show a 
FA patient performing the 8-MW clinical assessment while wearing the 
motion capture suit. The same figure also shows a few of the reported 
joint angular positions throughout the task and a reconstruction of 
the body posture at a single frame.

Standard operating procedures for the suit
The suit required the assistance of a trained health professional (not 
the carer) when putting it on or taking it off during the experiments, to 
avoid damaging the sensors in the process. First, the participants took 
off their shoes and trousers and put on the suit trousers (we allowed 
participants to wear tights, leggings or other tight-fitting clothes 
underneath). The suit trousers were tightened by adjusting the Velcro 
straps around the hips, thighs and calves. The participants then put the 

shoes back on and the foot sensors were attached on top of each foot 
using Velcro straps. Afterward, the participants took off any heavy 
clothes worn on top ( jackets, jumpers or any loose/warm clothes) 
and put on the suitʼs jacket. The trouser cables were connected to the 
splitters inside the jacket and the jacket was zipped and tightened 
using the Velcro straps on both sides of the trunk, the upper and the 
lower arms. The jacket was also attached to the trousers using Velcro 
patches. Then the cap was placed on the participantsʼ head with the 
sensor on the left-hand side. Finally, the transmitter was connected to 
the suit and was placed in the left front pocket along with the battery 
pack. Taking the suit off followed exactly the reverse process. All these 
steps are part of our Standard Operating Procedures in accordance with 
the Good Clinical Practice standards, and they have been approved 
for studies involving monitoring of patients with neurodegenerative 
disorders. These steps ensured patientsʼ safety during the experiments 
and protected the integrity of the suit.

Standard FA clinical assessments (SARA and SCAFI clinical 
scales)
We used two clinical assesments, the SARA and the SCAFI. The SARA 
has been found to be one of the most appropriate ways to measure 
disease severity and progression in FA patients51. SARA is a discrete 
scale scored from 0 (no ataxia) to 40 (severe ataxia) and it is based on 
an aggregate score of the following eight subtests: gait (0–8 score), 
stance (0–6 score), sitting (0–4 score), speech disturbance (0–6 score), 
lack of coordination in finger chase (0–4 score), tremor during nose to 
finger test (0–4 score), fast alternating hand movements (0–4 score) 
and heel-shin slide (0–4 score)22. The SCAFI is a continuous index com-
posed of the following three time-based subtests: the 8 MW, the 9 HPT 
and the rate of repetition of the phrase ‘PATAʼ over 10 s (PATA). These 
components are then z-scored across all participants and expressed as 
a standard deviation from the baseline mean. Being further away from 
the baseline suggests a more severe ataxia23.

We focused on the analysis of the 8 MW and 9 HPT, two simple 
scenarios that are closely related to activities we perform on a daily 
basis (that is, walking around in the house and performing tasks while 
seated on a table).

The 8-MW clinical subscale is measured as the time needed to 
walk an 8 m distance with any assistive device as quickly as possible but 
safely (without the help of another person). The 8 MW is measured from 
standing with feet behind the start line until one of the legs reaches the 
8-m mark23. Figure 1d presents a typical 8-MW time-lapse (every frame 
shown is 0.5 s apart) as collected by the motion capture suit. The second 
clinical subscale we focused on is the 9 HPT, which is defined as the time 
taken by a participant to complete the 9-hole pegboard (Rolyan 9-hole 
peg test apparatus, plastic one-piece model (Patterson Medical)) and 
then remove all pegs23. During our clinical trials, the 9 HPT was repeated 
twice for each hand separately (D, dominant; ND, not dominant) with 
the writing hand considered to be the dominant one. The hand that was 
not involved in the test was rested on the participanatʼs lap. Figure 1e 
presents our setup where a participant is wearing the motion capture 
suit while performing the 9 HPT, and the blue 9-hole board is clearly 
shown on the table. Additionally, in Fig. 1e, we present a typical 9-HPT 
time-lapse (every frame shown is 0.5 s apart) from a single participant 
as collected by the motion capture suit.

Feature generation
The full-body suit supplied us with 51 degrees of freedom (DoF) (3 
DoF × 17 joints) joint angular data and 78 DoF (3 DoF × 26 segments) 3D 
position data of the body segments. The BVH files from all participants 
and visits were imported in Matlab R2015b and Matlab R2019b (The 
Mathworks) for analysis. A simple preprocessing has been applied 
to the data to transform the data into biomechanically meaningful 
values52. Using the joint angular and 3D body segment positions from 
the suit data of the 8-MW and 9-HPT subtasks, we extracted the features 
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(F1–F18) listed in Table 2. A detailed description of the generation of 
these features is presented later in the methods. Both the 8-MW task 
and the 9-HPT task (for each hand) were repeated twice as per the SCAFI 
protocol. For each repeat of the task, we have a suit recording. Features 
were generated for each of the two suit recordings separately. So, for 
each visit of the participant, we have two sets of features for the 8-MW 
task and two sets of features for the 9-HPT task.

Feature selection and model evaluation
We applied a GP regression algorithm to combine the extracted behav-
ioral features and find a mapping against the clinical scales. We used 
a nested cross-validation procedure for feature selection and model 
evaluation (to avoid leakage of the test data during the feature selec-
tion process). The inner cross-validation loop was used for the feature 
selection and the outer cross-validation loop was used to evaluate the 
performance of the model. We used a leave-one-subject-out (leave 
the rows corresponding to all visits of a subject) for both the inner 
feature selection cross-validation loop and the outer model evalua-
tion cross-validation loop. We used an exhaustive feature selection 
approach to select the most optimal subset of features.

For s number of participants with each v visits, the data consists 
of s × v rows and the outer cross-validation splits the data into s folds 
(ensuring all the visits of a participant are in a single fold and each 
fold contains only the rows corresponding to the visits of a single 
participant). So, we have s training and test folds. For example, for the 
cross-sectional predictions of the SARA scale using 8-MW suit features 
to predict the SARA scores of patient-1, all the visits of patient-1 were 
the test data and all the visits of the other eight FA patients and nine 
healthy controls were the training data. To predict the SARA scores of 
patient-2, all the visits of patient-2 were the test data and all the visits 
of the other eight FA patients and nine healthy controls were the train-
ing data, and so on. Feature selection of features was done for each of 
the s training folds using the leave-one-subject-out cross-validation 
error of the inner cross-validation loop as the objective function and s 
subsets of features were generated. The most frequent subset among 
the s subsets was selected as the optimal subset as the frequency of 
the subset of features is a measure of the robustness of the subset 
of selected features to changes in the training data. Finally, the over-
all performance of the GP regression was evaluated for the selected 
optimal subset of features using the outer cross-validation for the  
s test sets. This method ensured that an optimum subset of features is 
selected without any data leakage of the test set into the training set. 
This nested cross-validation approach ensured that the test data in each 
fold of the outer cross-validation loop was never used during feature 
selection in the inner cross-validation loop and therefore provides a 
reliable estimate of the model performance. The hyperparameters of 
the GP were chosen based on the cross-validation error on the inner 
nested loop. The predicted values from all the test folds of the outer 
fold were aggregated and the aggregate RMSE and the coefficient of 
determination (R2) were calculated and reported in the results section.

The cross-sectional predictions of the SARA and SCAFI scores were 
done for the FA patients and healthy controls. The longitudinal predic-
tion of the clinical scales (SARA and SCAFI) using the scales themselves 
(for example, predicting SCAFI at T + 9 months using SCAFI at T + 0 
months) was done on the clinical scales data from our study and a larger 
EFACTS study. This longitudinal prediction performance of the scales 
was then compared against the longitudinal prediction performance of 
the suit features from our study (for example, predicting SCAFI at T + 9 
months using suit features from T + 0 months in our study cohort). The 
longitudinal prediction of the clinical scales using the scales themselves 
was done on a much larger cohort of EFACTS patients to increase the 
predictive power of the clinical scales. All our study participants have 
an onset of FA over 18 years of age (except one participant who had an 
age of onset of 15 years). We, therefore, included only participants from 
EFACTS cohort who had onset after 18 years. These EFACTS participants 

(Supplementary Table 1) were found to be matched for age, sex and age 
of onset with our study cohort. For the longitudinal results (Fig. 3c,f), 
which show the performance of the predictions as a function of the 
number of participants used to build the machine learning models, nCk 
(up to a maximum of 1,000) combinations (where n is the total number 
of participants in the dataset and k is the number of participants used 
for building the machine learning model) of the models were built for 
each k and the mean and standard deviation of the aggregate perfor-
mance of the nCk models was reported.

FXN measurement—RNA extraction and quantitative RT-PCR
Human blood samples were obtained from FA patients in accord-
ance with UK Human Tissue Authority ethical guidelines. Peripheral 
blood mononuclear cells (PBMC) were isolated from the blood sam-
ples using a Ficoll-Hypaque TM gradient (Sigma) kit by following the 
manufacturerʼs protocol. Total RNA was isolated from the pelleted 
PBMC using Trizol (Invitrogen) and reverse transcribed using the 
ThermoScript TM Reverse Transcription system (Invitrogen) by fol-
lowing the manufacturerʼs instructions. Multiplexed qRT-PCR using 
TaqMan gene expression assays (ThermoFisher) targeting FXN (Assay 
ID = Hs00175940_m1) and TATA-box binding protein (TBP) (Assay 
ID = Hs00427621_m1) were performed in TaqMan Fast Advanced Mas-
ter Mix (Applied Biosystems). The measured FXN mRNA levels were 
expressed relative to TBP as the endogenous control mRNA levels. The 
data presented are the normalized Ct values and therefore the higher 
the value the lower the level of FXN mRNA.

GAA repeat tract analysis
Long-range PCR was performed with the Expand High Fidelity PCR 
system (Roche Diagnostics), using 200 ng input DNA per 50 µl reac-
tion and GAA-B-F (5′-AATGGATTTCCTGGCAGGACGC-3′) and GAA-B-R 
(5′-GCATTGGGCGATCTTGGCTTAA-3′) primers53,54. The thermocycling 
conditions were 94 °C for 5 min; 10 cycles of 94 °C for 20 s, 61 °C for 30 s 
and 68 °C for 5 min; 20 cycles of 94 °C for 20 s, 62 °C for 30 s and 68 °C 
for 5 min with 20 s increments; and a final cycle of 68 °C for 10 min. The 
amplified PCR products contain the GAA repeat tract with flanking 
sequences of 157 bp at the 5′ end and 125 bp at the 3′ end. GAA repeat 
tracts were sized by separating on a 1% (wt/vol) SeaKem LE agarose 
TBE gel (Lonza). The number of GAA repeats was calculated from the 
size of the PCR product (SPCR, in bp) using the formula (SPCR – 282)/3.

Triplet repeat (TP) PCR assays were used to examine interruptions 
at the 5′ and 3′ ends of the FXN GAA repeat tract independently40.

Suit features
This section gives a description of the behavioral features that we 
extracted from the data of the 8-MW test and the 9 HPT. Features F1–F9 
were extracted from the suit data of the 8-MW task and features F10–F18 
were extracted from the suit data of the 9-HPT task.

F1—workspace probability density volume and entropy
We measured the workspace volume, a concept that is extensively 
applied in biomechanics and rehabilitation applications for measur-
ing the rigidity of body parts55,56. Workspace volume can be described 
as the volume generated by the movements of the limbs in space. 
The idea of workspace volume is illustrated in Extended Data Fig. 1a. 
Because the participants were not stationary in the 8-MW test, we 
adapted the concept of the workspace volume to make the computa-
tion more robust. We set the participantʼs trunk to a fixed reference 
point and adjusted the position of the other joints relative to the 
trunk. We then computed the occupancy density of the joints by 
separating the jointʼs 3D locations in space in a grid of 2 × 2 × 2 cm 
voxels. An example is shown in Extended Data Fig. 1a, where the color 
of each voxel represents the occupancy frequency on a log10 scale. 
Using the generated occupancy density of the joints, we computed the 
workspace volume by counting the nonempty voxels and multiplying 
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the result by the volume of a single voxel (that is, 8 cm3). Applying 
this analysis across all participants, we observed that FA patients 
needed substantially more space (almost double) than the controls 
to perform the 8-MW task (Extended Data Fig. 1b, P < 0.001, Kruskal–
Wallis one-way ANOVA).

To obtain a measure that is sensitive to the variability of workspace 
used, we defined the workspace entropy as negative log (probability) 
averaged over all nonempty voxels. Zero entropy implies no variabil-
ity in the system: the body part occupies only a single voxel, while 
maximum entropy is achieved when a body part occupies all reach-
able voxels with equal probability, thus higher entropy implies more 
disorder/variability. We found that patients applied a wider range of 
joint configurations, which correlated with an increased entropy of the 
workspace density, as shown in Extended Data Fig. 1c, demonstrating a 
higher entropy in FA patients than controls (P < 0.001, Kruskal–Wallis 
one-way ANOVA). This suggested that not only was the FA patientsʼ 
workspace volume larger than controls, but their movements were 
also more variable, within their workspace volume. Thus, the walking 
patterns of FA patients were more disordered and less predictable, 
probably caused by the presence of compensatory mechanisms to 
balance their sensorimotor dysfunction during the walk.

F2—lower body joint variability
We examined the variability of hip and knee velocities during the walk 
in the same way as standard gait analysis methods had been previously 
applied to Parkinsonʼs patients57,58. Using a step detection algorithm, 
we segmented the time-series data into walking cycles, afterward we 
Z-scored the joint angular velocities of hip and knee joints of each leg 
across all angular joint movement dimensions (flexion, abduction 
and rotation) to make a comparison across participants fairer. We 
calculated the average variability along each joint dimension. Patients 
exhibited a statistically higher variability across hip flexion and knee 
rotation (Kruskal–Wallis one-way ANOVA, where an asterisk represents 
P < 0.05, **P < 0.01 and ***P < 0.001), which supports our initial hypoth-
esis that FA patientsʼ walk is more disordered.

F3—walk autocorrelation and decay
While our measures up to this point focused on spatial features, as 
defined by the posture of the body, we next wanted to investigate the 
temporal structure. Autocorrelation is defined as the cross-correlation 
of a signal with itself at different points in time. We calculated the auto-
correlation of the joint angular velocities of each one of the 51 DoF as 
collected by the suit and the result is shown in Extended Data Fig. 1d.  
While the 51 individual DoF exhibit some clear periodical patterns and 
some fewer periodical patterns, we wanted to analyze if there were 
underlying commonalities that were conserved. Because the autocor-
relation was in a periodic setting, we converted the individual jointʼs 
autocorrelations across time into vectors: We discretized at 50-time 
points the autocorrelation function using bins of a width correspond-
ing to 4% of a walk cycle. This produces a 50-dimensional vector cover-
ing two walk cycles (200%). We then performed Principal Component 
Analysis (PCA) on the collection of these 51 autocorrelation vectors 
and found that just three PCs can explain 80% of the variability in the 
autocorrelation signals across the 51 joints (Extended Data Fig. 1e).  
The first, second and third PCs are plotted in Extended Data Fig. 1f. 
These data-driven features of the walk cycle correspond to the various 
swings of legs, arms and body during walking. Comparing the PC value 
at the first walk cycle (Extended Data Fig. 1g), there is a significant dif-
ference between patients and controls on the first (P < 0.05) and second 
(P < 0.01) PCs but not on the third (P = 0.63, Kruskal–Wallis one-way 
ANOVA). This means that both leg and arm swings are more variable 
in duration than in controls. This suggests that the repeatability of 
body postures while walking is substantially reduced in FA patients in 
the temporal domain–they effectively accelerate and decelerate their 
swings more randomly than healthy controls.

F4—channel delay cross-correlation
While the measures so far focused on spatial or temporal measures, 
we wanted to capture the correlation structure of the data across 
space and time. Therefore, we used the channel delay cross-correlation 
measure, which has been applied for extracting abnormalities in high 
dimensional neurological and motion capture data59,60. We applied the 
channel delay cross-correlation on our 8-MW dataset to capture the spa-
tiotemporal correlation changes between all 51 joints of FA patients and 
controls. The main step for applying channel delay cross-correlation 
method is the construction of a 51 × 51 block matrix based on the joint 
angular velocities we get from the motion capture suit (51 DoF). The 
blocks along the main diagonal contain the within-channel autocor-
relations and the off-diagonal blocks contain the cross-channel cor-
relations. Within each block, the correlations are calculated for ten 
different lags (ten linearly spaced lags from zero up to the average walk 
cycle of the participant). Therefore, the channel delay cross-correlation 
matrix captures both spatial and temporal correlations of the joints 
during the walk. The matrix for one participant is shown in Extended 
Data Fig. 2a.

The next step is to calculate the matrix eigen spectrum, that is 
the array of eigenvalues, sorted from largest to smallest. The eigen 
spectrum encodes the magnitude of covariance in each (decorre-
lated) dimension and it is invariant to the ordering of the channel delay 
cross-correlation matrix columns and thus to relationships among 
particular time-delayed joints of the body. The eigen spectrums are 
reported in Extended Data Fig. 2b where the averaged eigen spectrum 
for patients and controls is shown in red and blue, respectively. The 
decreased power in the patient’s first few eigenvalues (that is, eigen-
values with indices 1–20) and the equivalent increase in power for 
the patientʼs remaining eigenvalues (that is, eigenvalues with indices 
20–200) reflect the increased dynamical complexity in their walk 
when compared with controls. We speculate that this is a reflection 
of what clinicians subjectively characterize as the more ataxic gait of 
FA patients.

F5—extremities velocity
The next feature we were interested to explore was the difference in 
the velocity profiles of subjectsʼ extremities as performed in standard 
gait analysis practices61. Using the extremitiesʼ 3D locations in space 
(wrists, ankles and head), as provided by the suitsʼ biomechanical 
model, we estimated the velocity on each body plane (sagittal, frontal 
and transverse) and then calculated the magnitude of the velocity by 
applying RMS operation. Using our step detection algorithm, we seg-
mented the velocity signal at each walking step and then averaged the 
peak velocities observed at extremities across all voxels. The results 
for each extremity (separated in dominant (D) and nondominant (ND) 
side) are presented in Extended Data Fig. 2c where there is a statistical 
difference between FA patients and controls on the D and ND ankles 
and the ND wrist (P < 0.05, Kruskal–Wallis one-way ANOVA).

F6—walk complexity
We have quantified the complexity of human walking using a dimen-
sionality reduction algorithm PCA, where we observed the number of 
PCs required to successfully explain the variability in walking motion 
(higher number of PCs implies a more complex movement)62,63. We have 
applied the same analysis to our participantsʼ joint angular velocities 
and the results are presented in Extended Data Fig. 2d. It seems like 
the patientsʼ kinematics are a lot more complex because they require 
more PCs to explain the variability present (that is, to explain 80% of 
the motion variability in FA patients it requires at least five PCs, but only 
two PCs are needed for the controls). This observation is supported 
by the fact that ataxia patients are known to develop compensatory 
mechanisms to balance out the effects of the disease64.

To achieve quantification of the human movement complexity, 
we developed a metric based on the previous observations. For each 
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participant, we calculated the area developed under the arc of the vari-
ability curve, divided that by the whole area of the upper left triangle 
and expressed the results as a percentage. We applied this analysis to 
all participants and the results are shown in Extended Data Fig. 2e, high-
lighting the statistically increased walk complexity of FA patients when 
compared to controls (P < 0.001, Kruskal–Wallis one-way ANOVA).

F7—legs movement root mean square power spectrum
Our next feature is based on the analysis of the walking signature on 
the frequency domain. Spectral analysis of kinematic signals has been 
efficiently used for detecting abnormal gait patterns65. We low-pass 
filtered the angular velocities of hip flexion, hip abduction and knee 
flexion with a 10 Hz cut-off and then extracted a Short-Time Fourier 
Transform (STFT) based on a 200 ms window with 100 ms overlap. 
An example is shown in Extended Data Fig. 3a, where we calculated 
the STFT on the angular velocities from a participantʼs dominant (D) 
knee flexion and used different colors in the spectrogram (Extended 
Data Fig. 3b) to represent the power carried by a specific frequency 
of the signal at a specific moment in time. Afterward, we computed 
RMS on each window, which summarizes the information content 
of the power spectrum at each time point (Extended Data Fig. 3c). 
Finally, for each walk cycle, we calculated the area under the curve, 
which combines the total energy used by that joint. We applied the 
same analysis on the lower body joints of each leg and then averaged 
the energy presented across all walk cycles. The results are shown in 
Extended Data Fig. 3d where the FA patients present substantially 
lower energy in their D hip flexion, D knee flexion and ND knee flex-
ion (Kruskal–Wallis one-way ANOVA) than controls. This finding is 
consistent with the muscle weakness in the arms and legs clinically 
reported to frequently occur in FA10.

F8—joint velocities correlation coefficient
We additionally investigated the correlations between the movement of 
the joints of the lower body during the walk by estimating the Pearsonʼs 
product–moment correlation coefficients (ρ)66. Because FA patients 
exhibit a less standardized walking pattern, we would expect the corre-
lations between various joints to be lower. Therefore, we used the angu-
lar velocities from the hip flexion and abduction and knee flexion joints 
and evaluated the correlation coefficients both across joints but also 
between D and ND leg. The results are shown in Extended Data Fig. 4,  
which compares the correlation coefficients of FA patients (blue) and 
controls (red) with most presenting a statistical difference between 
the two groups (Kruskal–Wallis one-way ANOVA, where an asterisk 
represents P < 0.05, **P < 0.01 and ***P < 0.001).

F9—head-spine movement plane area
The last feature we extracted from the 8-MW data is based on the 
clinical observations that subjectively characterize FA patients as 
‘wobblingʼ or sideways ’swayingʼ during the 8 m walk. The degree of 
sway has been suggested to be an early indication of the disease stage 
in ataxia22. To objectively quantify the ‘wobblingʼ walking effect, we 
used the following approach: we tracked the location of the head in 
a coordinate system that is stationary with respect to the axes of the 
hips. Thus, all motion in this coordinate system is seen relative to the 
hips and is hence always centered on the hips even during locomotion. 
Then, we calculated the location of the head marker with respect to 
the hip as shown in Extended Data Fig. 5a. The distance between the 
head and hips is relatively constant and so the head movements with 
respect to the hips are localized mainly in a 2-dimensional surface 
that is orthogonal to the line connecting the hipʼs center of mass with 
the head maker. During walking, the head markers move through this 
plane, and hence we calculated the area covered by the head move-
ments generated during the walk of all subjects. Our results show a 
statistically higher area covered by the FA patients than the controls 
(Extended Data Fig. 5b; P < 0.001, Kruskal–Wallis one-way ANOVA), 

which confirms the qualitative observations ‘by eyeʼ during the clini-
cal trial. Analyzing the variability of head movements independently 
for the frontal and sideways axis shows that there is a statistical dif-
ference between FA patients and controls for the forward movement 
(Extended Data Fig. 5c; P < 0.05; Kruskal–Wallis one-way ANOVA) and 
the sideways movement (Extended Data Fig. 5d; P < 0.001, Kruskal–
Wallis one-way ANOVA).

F10—average joint velocity
The first feature we extracted from the 9-HPT data is based on the 
average angular velocities of the shoulder and elbow joints. The FA 
disease causes progressive neurodegeneration, and this should result 
in slower joint velocities during the 9-HPT task. The results in Extended 
Data Fig. 6a support our hypothesis as the joint velocities of the FA 
patients are statistically lower than controls (P < 0.001, Kruskal–Wallis 
one-way ANOVA).

F11—upper body complexity
Our next feature was also used in the 8-MW analysis, and it is based 
on a PCA of the joint angular velocities during the 9 HPT. In this case, 
although we only applied the analysis to the upper body joints, we also 
excluded the joints of the hand not performing the task. Extended Data 
Fig. 6b shows the variability explained by using different numbers of 
PCs. Observing the plot, we can see that FA patients require slightly 
more PCs to explain the variability in their movements than the con-
trols. This result is consistent with our findings in the 8-MW task. We 
have additionally calculated our complexity metric in the same way as 
described in the 8-MW section and found that FA Patients have statisti-
cally more complexity in their movements than controls (Extended 
Data Fig. 6c; P < 0.001, Kruskal–Wallis one-way ANOVA).

F12—workspace probability density volume and entropy
Similar to the workspace density analysis done for 8 MW, we first 
calculated the density plot for each subject (an example is shown in 
Extended Data Fig. 6d), which was then used to estimate the overall 
workspace volume. Because the task was performed twice per hand, 
we averaged the volume of each trial based on hand dominance. The 
results are shown in Extended Data Fig. 6e where the FA patients seem 
to have a significant difference between the volume generated by each 
hand (P = 0.003, paired t test), something that is not true for controls 
as they occupy roughly the same space when performing the task with 
either hand (P = 0.08, paired t test). Furthermore, comparing the per-
formance between the two subject groups, the FA patients use a much 
larger workspace than controls when they perform the task with the 
D hand (P < 0.001, Kruskal–Wallis one-way ANOVA) and the ND hand 
(P < 0.001, Kruskal–Wallis one-way ANOVA). We additionally extracted 
the entropy of the subjectsʼ density plot as a measure of how ordered 
the space occupancy was. Based on the results in Extended Data  
Fig. 6f, FA patients have a lot more disorder across both hands than  
the controls during the 9 HPT.

F13—upper body autocorrelation full width at half-maximum
The next feature we explored for the 9-HPT analysis was the jointsʼ 
autocorrelation full-width at half-maximum (FWHM), which is used 
as an indication of how rapidly the joint kinematics change52. We first 
calculated the autocorrelation up to a 10 s lag. Because the 9-HPT 
task is not a cyclic task, the output was a single bell-shaped curve cen-
tered around the 0 s lag. The FWHM is defined as the width of the 
bell-shaped curve at the point when it reaches a 0.5 autocorrelation 
value (half-maximum). We calculated the FWHM of all the joints of the 
arm performing the 9 HPT and the results are shown in Extended Data 
Fig. 7a. The FA patients have a substantially higher autocorrelation 
FWHM than controls in all jointsʼ dimensions except the shoulder eleva-
tion (Kruskal–Wallis one-way ANOVA), which indicates that patientsʼ 
movements are changing more slowly.
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F14—channel delay cross-correlation
Another feature that has been previously used in the 8-MW analysis 
and could potentially capture the differences between FA patients 
and controls in the 9 HPT is the channel delay cross-correlation. We 
estimated a 31 × 31 channel delay cross-correlation matrix based on 
the cross-correlations between the angular velocities of the upper 
body joints (31 DoF) within a window of 10 s with steps of 100 ms. We 
then calculated the eigen spectrum for each participant and the results 
averaged per participant group are shown in Extended Data Fig. 7b. 
In a similar fashion as the 8 MW, we observe a decreased power in the 
patientsʼ lower eigenvalues and an equivalent increase in power of the 
higher eigenvalues. This reflects an increased complexity in their FA 
patientsʼ upper body movements with respect to Controls.

F15—arm root mean square power spectrum
We additionally extracted the average power from the upper body 
joints during the 9 HPT. This was achieved using the RMS power spec-
trum analysis explained earlier. However, because the task cannot  
be separated in cycles (like the 8 MW), we simply averaged the power 
intensity throughout the whole task. The results shown in Extended 
Data Fig. 7c reveal a substantially reduced power in the FA Patientsʼ 
joints except for the shoulder pronation (Kruskal–Wallis one-way 
ANOVA).

F16—wrist average velocity
We also looked into the average velocity of the participantsʼ wrist 
during the 9 HPT. Using the suit biomechanical model, we calculated 
the 3D position of the wrist in space (only for the hand performing the 
task), we estimated the velocity on each plane (sagittal, frontal and 
transverse) and then estimated the velocity magnitude by applying 
rms operation. The participantsʼ average velocity separated by hand 
dominance is shown in Extended Data Fig. 7d, where FA patients have 
a substantially reduced speed in both hands compared to controls 
(Kruskal–Wallis one-way ANOVA) but they also have a slower speed in 
the ND hand than the D (P < 0.05, paired t test), something that is not 
true for controls as both hands can perform the task with the same 
average speed (P = 0.41, paired t test).

F17—logistic fit on joints  angular velocity
An additional feature we extracted that can successfully capture the 
differences between the FA patients and controls is the variability of 
jointsʼ angular velocities during the 9 HPT. We first compared the dis-
tributions of the joint velocities between FA patients and controls. We 
observed that the controls consistently have a much wider distribution 
across joints (see Extended Data Fig. 8a for an example), meaning they 
were applying much faster movements. To examine these differences 
in a more principled manner, we fitted multiple parametric probability 
distributions (Extended Data Fig. 8b) on the velocitiesʼ probability 
density function of each joint and examined the parameters of the 
distribution that best fits the data that is, the one that minimizes the 
Akaike Information Criterion. From our analysis, we have consistently 
found that the participantsʼ joint velocities are best described by a 
logistic probability distribution. So, we fitted a logistic distribution 
on all jointsʼ velocities and compared the scale parameter (σ) of the 
logistic distribution between FA patients and controls. The FA patients 
exhibit a substantially lower σ than the controls (Extended Data Fig. 8c) 
for most joints indicating that they apply a smaller range of velocities 
during the 9 HPT.

F18—head-spine movement
Finally, as performed with the 8-MW analysis, we have explored the 
head movements as an indication of how well subjects can balance 
their body. Comparing the area generated by the FA patientsʼ heads 
during the 9 HPT, we have found that it is substantially increased when 
compared to the controls (P < 0.001, Kruskal–Wallis one-way ANOVA).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in the study are not publicly available due to them  
containing information that could compromise research partici-
pant privacy/consent. Anonymized data for academic purposes  
can be made available upon request via email to the corresponding 
author.

Code availability
The machine learning code that supports the findings of this study 
is available for academic purposes at https://doi.org/10.6084/
m9.figshare.20440449
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Extended Data Fig. 1 | Suit features from the 8 MW task. a. The density plot 
generated using the 3D location of joints from a typical FA patient. The space is 
segmented in blocks of size 2 × 2 × 2 cm. Note that the color bar is in log10 scale. 
b. The workspace volume calculated using the density plot is significantly higher 
for FA Patients than Controls suggesting a more irregular movement with more 
compensatory mechanisms in place. Data are presented as mean ± standard 
deviation (n = 62 patient measurements and n = 18 control measurements) and  
∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way 
ANOVA. For the exact p-values of the ANOVA tests, see Supplementary Table 2.  
c. The FA Patients’ entropy showing a significant increase with respect to 
Controls thus suggesting a more disordered and less predictable walking pattern. 
Data are presented as mean ± standard deviation (n = 62 patient measurements 
and n = 18 control measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and 
∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the exact p-values of the 

ANOVA tests, see Supplementary Table 2. d. The autocorrelation of a typical FA 
patient performing the 8 MW task calculated from the suits’ 51 DoF for up to a 
lag of 3 walk cycles. e. The variability explained when applying a PCA analysis on 
the autocorrelation signals showing that the first three Principal Components 
(PCs) can explain more than 80% of the variability in data. f. The first three 
PCs of the autocorrelation signal for FA Patients (solid lines) and Controls 
(dashed lines). Data are presented as mean ± standard deviation (n = 62 patient 
measurements and n = 18 control measurements) g. A comparison of the value of 
the autocorrelation PCs after the 1st walk cycle, showing a significant difference 
between FA Patients and Controls (Kruskal-Wallis one-way ANOVA). Data are 
presented as mean ± standard deviation (n = 62 patient measurements and 
n = 18 control measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is 
p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the exact p-values of the ANOVA 
tests, see Supplementary Table 2.
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Extended Data Fig. 2 | Suit features from the 8 MW task. a. The channel delay 
cross-correlation matrix for a typical FA patient. It is a 51 x 51 block matrix where 
the blocks along diagonal contain the joint angular velocity within- channel 
correlations and off-diagonal blocks contain the correlations across different 
joints. Within each block, the correlations are calculated for 10 different lags 
(linearly spaced from zero up to the subject’s average walk cycle). b. The average 
eigen spectrum for FA Patients and Controls showing a decreased power in the 
patients’ lower eigenvalues that reflects the increased dynamical complexity in 
their walk. The dotted lines represent the mean and the shade along the dotted 
line represents the standard deviation. c. The averaged peak velocity of subjects’ 
extremities during the 8 MW task showing a statistical difference between FA 
Patients and Controls on the D & ND ankles and on the ND wrist (Kruskal-Wallis 
one-way ANOVA). Data are presented as mean ± standard deviation (n = 62 patient 

measurements and n = 18 control measurements) and ∗ represents p ≤ 0.05, 
∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the 
exact p-values of the ANOVA tests, see Supplementary Table 2. d. The variability 
explained by combining a different number of PCs based on a PCA analysis of the 
subjects’ angular velocities. The blue and red lines represent the mean results 
obtained for the FA Patients and Controls respectively while the shade along the 
lines represents the standard deviation. e. Our human movement complexity 
metric applied to all subjects showing a statistically higher walk complexity in the 
FA Patients than Controls (Kruskal-Wallis one-way ANOVA). Data are presented 
as mean ± standard deviation (n = 62 patient measurements and n = 18 control 
measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for 
Kruskal-Wallis one-way ANOVA. For the exact p-values of the ANOVA tests, see 
Supplementary Table 2.
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Extended Data Fig. 3 | Power spectrum of the joint velocities. a. The angular 
velocity from the knee joint of a typical FA patient performing the 8 MW task. 
b. The Short-Time Fourier Transform (STFT) of the joint velocities on a 200 ms 
window with 100 ms overlap. c. The RMS of the power spectrum coefficients 
on each window which summarizes the information of the power spectrum. 
d. A comparison between the average energy per walk cycle of FA Patients and 

Controls per individual joint, showing a statistically higher energy on the  
D hip & knee flexion and the ND knee flexion of Controls (Kruskal-Wallis one-
way ANOVA). Data are presented as mean ± standard deviation (n = 62 patient 
measurements and n = 18 control measurements) and ∗ represents p ≤ 0.05,  
∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the exact 
p-values of the ANOVA tests, see Supplementary Table 2.
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Extended Data Fig. 4 | Correlation coefficients of the joint velocities. The 
Pearson’s product-moment correlation coefficients (ρ) between different 
lower- body joints separated by leg dominance with most showing a statistical 
difference between FA Patients and Controls (Kruskal-Wallis one-way ANOVA). 

Data are presented as mean ± standard deviation (n = 62 patient measurements 
and n = 18 control measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and 
∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the exact p-values of the 
ANOVA tests, see Supplementary Table 2.
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Extended Data Fig. 5 | Head-spine movement. a. The head movement trajectory 
from a typical FA patient (red line) with respect to a fixed hip during the 8 MW 
task. b. The FA Patients’ head movements exhibit a statistically higher area than 
the Controls. Data are presented as mean ± standard deviation (n = 62 patient 
measurements and n = 18 control measurements) and ∗ represents p ≤ 0.05,  
∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the exact 
p-values of the ANOVA tests, see Supplementary Table 2. c-d. Observing the head 

movements on the frontal and sideways plane independently shows that there is 
a statistical difference between FA Patients and Controls only when the variability 
of sideways movements is considered. Data are presented as mean ± standard 
deviation (n = 62 patient measurements and n = 18 control measurements) and  
∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way 
ANOVA. For the exact p-values of the ANOVA tests, see Supplementary Table 2.
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Extended Data Fig. 6 | Suit features from the 9HPT task. a. The average joint 
velocity of FA Patients and Controls during the 9HPT. The patients exhibit 
significantly slower velocities in all joints. Data are presented as mean ± standard 
deviation (n = 66 patient measurements and n = 18 control measurements) 
and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis 
one-way ANOVA. For the exact p-values of the ANOVA tests, see Supplementary 
Table 3. b. A PCA analysis of the angular velocities of the upper body showing the 
variability explained by having a different number of PCs. FA Patients require 
slightly more PCs to explain the variability in their movements than the Controls. 
Data are presented as mean ± standard deviation (n = 66 patient measurements 
and n = 18 control measurements). c. Our complexity metric showing an 
increased complexity in the FA Patients during the 9HPT. Data are presented 
as mean ± standard deviation (n = 66 patient measurements and n = 18 control 
measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 
for Kruskal-Wallis one-way ANOVA. For the exact p-values of the ANOVA tests, 
see Supplementary Table 3. d. A density plot generated using the kinematics 
of a typical FA patient during the 9HPT. The space was separated in 2x2x2cm 

blocks and the color of each block represents the time any joint (blue circles) 
spent in that area. Note that the color bar is on log10 scale. e. The workspace 
volume generated from the subjects’ density plot comparing the performance 
of FA Patients and Controls when performing the task with either hand. The 
plot shows a statistical difference between the two hands of FA Patients as well 
as a significant difference between the workspace volume generated by the FA 
Patients’ and Controls’ dominant hand. Data are presented as mean ± standard 
deviation (n = 66 patient measurements and n = 18 control measurements) and  
∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way 
ANOVA. For the exact p-values of the ANOVA tests, see Supplementary Table 3. 
f. The entropy of subjects’ density plots as a measure of their disorder showing 
that FA Patients have a lot more disorder than Controls across both hands. Data 
are presented as mean ± standard deviation (n = 66 patient measurements and 
n = 18 control measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is 
p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the exact p-values of the ANOVA 
tests, see Supplementary Table 3.
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Extended Data Fig. 7 | Suit features from the 9HPT task. The autocorrelation 
full-width at half-maximum (FWHM) of the subjects upper body joints showing 
a significantly slower drop for the FA Patients than the Controls in most joints’ 
dimensions. Data are presented as mean ± standard deviation (n = 66 patient 
measurements and n = 18 control measurements) and ∗ represents p ≤ 0.05,  
∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA. For the 
exact p-values of the ANOVA tests, see Supplementary Table 3. b. The averaged 
eigen spectrum based on the subjects’ channel delay cross-correlation matrices, 
showing that FA Patients have a decreased power in the left end and increased 
power in the right end. This implies that they have an increased complexity 
in their movements with respect to the Controls. Data are presented as 
mean ± standard deviation (n = 66 patient measurements and n = 18 control 

measurements. c. A comparison on the average power of the upper body joints 
between FA Patients and Controls, showing a statistically lower energy in all FA 
Patient joints except the elbow pronation. Data are presented as mean ± standard 
deviation (n = 66 patient measurements and n = 18 control measurements) and  
∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way 
ANOVA. For the exact p-values of the ANOVA tests, see Supplementary Table 3. 
d. The subjects’ average wrist speed during the 9HPT task showing a statistical 
difference between FA Patients and Controls but also a difference between the 
D and ND hand of FA Patients. Data are presented as mean ± standard deviation 
(n = 66 patient measurements and n = 18 control measurements) and ∗ represents 
p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for Kruskal-Wallis one-way ANOVA.  
For the exact p-values of the ANOVA tests, see Supplementary Table 3.
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Extended Data Fig. 8 | Logistic fit on joints' angular velocities. a. A comparison 
between the probability density functions (PDF) of angular velocities for a 
typical joint (elbow flexion) showing a much wider spread in Controls than the FA 
Patients. This effect has been consistently observed across all upper body joints. 
The lines represent the mean and the shaded area around the lines represents 
the standard deviation in each population group. b. We fitted various parametric 
probability distributions on the joints’ angular velocities, and we found that a 
logistic distribution can provide the best fit in the data. c. A comparison between 

the variability (σ) of the logistic fit between the FA Patients and Controls after 
applying it on all upper body joints independently. The results reveal a much 
larger σ in some of the Controls’ joints meaning that they used a much wider 
range of velocities during the 9HPT than the FA Patients. Data are presented 
as mean ± standard deviation (n = 66 patient measurements and n = 18 control 
measurements) and ∗ represents p ≤ 0.05, ∗∗ is p ≤ 0.01 and ∗∗∗ is p ≤ 0.001 for 
Kruskal-Wallis one-way ANOVA. For the exact p-values of the ANOVA tests, see 
Supplementary Table 3.
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Extended Data Fig. 9 | Test-retest correlation of suit features. The 8 MW and 9HPT tasks were repeated twice as part of the SCAFI assessment and the suit features 
were calculated for each repeat of the tasks and the test-retest correlation for the suit features from the 8 MW task (a) and the 9HP task (b) was calculated between both 
the repeats for all visits of 9 FA patients and 9 controls.
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