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Options and Market Making

Abstract

Options and market making are recurring themes in Mathematical Finance. This thesis

explores both topics with the ultimate goal of developing an options market making

model for exchange-traded vanilla options. We start the derivation of closed-form optimal

controls for an asset-agnostic market making model with multiple assets via an ergodic

limit. We then investigate the intraday dynamics of options and its connection with spot

volatility to gain insights on the high-frequency option price dynamics and on volatility

and Greeks estimation. Finally, we develop a market making model for exchange-traded

vanilla options that encompasses relevant features that we observe empirically. Closed-

form solutions for the options market making model can be obtained via small time-to-

horizon asymptotics. The optimal spreads in the small time-to-horizon regime allow us

to empirically study options spreads and trading activity.
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ippe Bergault. I appreciate the active support of the Imperial academic staff, especially

Prof Johannes Muhle-Karbe, Prof Damiano Brigo, Dr Antoine Jacquier and Dr Eyal

Neuman. I acknowledge the sponsorship from Nomura, and the people that made it pos-

sible, namely Dr Eduardo Epperlein, Dr Marc Jeannin, Dr Jiong Zhou, Dr John Sleath

and Dr Haakon Skaane. The fruitful discussions from the Mathematical Finance com-
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Introduction

Overview

Options and market making are recurring themes in Mathematical Finance. This thesis

explores both topics with the ultimate goal of developing an options market making model

for exchange-traded vanilla options.

Market making is a trading strategy by which an institution provides both buy and sell

quotes, thus providing liquidity to the market. In the context of financial exchanges and

quote-driven markets, the market maker can be designated by the financial exchange or

can perform this strategy independently. The source of profit of the market maker is on

the spread between the quotes posted to the market. The buy and sell trades have no

reason to be balanced, and thus one of the main sources of risk of the market maker is

the market risk of the accumulated inventory.

Many asset classes are traded in financial exchanges, including stocks, ETFs and deriv-

atives on commodities, currency, single stocks, indices and volatility. Market making

strategies will of course differ depending on the idiosyncrasy of each asset class. In this

thesis, we explore the features that make the options asset class unique from the market

making perspective.

Structure of the thesis

The thesis is composed of three chapters. Chapter 1 is devoted to the derivation of

closed-form optimal controls for an asset-agnostic market making model with multiple

assets via an ergodic limit1. Chapter 2 is an empirical study of option dynamics at small

time scales, with special focus on its relationship with spot volatility. Finally, Chapter 3

derives closed-form solutions for the options market making model via a small time-to-

horizon limit and empirically studies options spreads and trading activity under the lens

1Chapter 1 corresponds to Bergault et al. (2021).
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of the market making model.

In summary, Chapter 1 studies an ergodic regime for a general multi-asset market making

model that can be applied for options. Chapter 3 studies the opposite regime in which

the market maker horizon is short. To motivate the modeling assumptions for market

making under the small time-to-horizon regime, Chapter 2 studies the intraday dynamics

of options to find the leading-order drivers, which includes spot volatility.

Summary of Chapter 1

A large proportion of market making models derive from the seminal model of Avellaneda

and Stoikov. The numerical approximation of the value function and the optimal quotes

in these models remains a challenge when the number of assets is large. In this article, we

propose heuristic closed-form approximations for the value functions of many multi-asset

extensions of the Avellaneda-Stoikov model. These approximations or proxies can be

used (i) as heuristic evaluation functions, (ii) as initial value functions in reinforcement

learning algorithms, and/or (iii) directly to design quoting strategies through a greedy

approach. Regarding the latter, our results lead to new and easily interpretable closed-

form approximations for the optimal quotes, both in the finite-horizon case and in the

asymptotic (ergodic) regime.

Summary of Chapter 2

Spot volatility is commonly modelled in option pricing models. Motivated by small time

asymptotics of option prices, we empirically investigate the effect of spot volatility on 1-

second option price changes. We develop a novel approach for spot volatility estimation

which employs option pricing models, which enables the study of spot volatility at fine

granularities but at the cost of introducing model dependency. We identify and quantify

the effect of the estimated spot volatility on option price changes and find that up to

30% of the option price variation can be solely attributed to the estimated spot volatility

changes.

Summary of Chapter 3

We develop a market making model for exchange-traded vanilla options that encompasses

relevant features: (i) stochastic volatility, (ii) driving factors for the implied volatility

surface, (iii) trade activity driven by moneyness, (iv) friction in the underlying market

and (v) end-of-day horizon. The end-of-day horizon motivates the small time-to-horizon
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asymptotics, from which we formally derive compact formulas for optimal quotes. In light

of the model, we perform an empirical analysis. The observed market bid-ask spreads are

remarkably consistent with the optimal spreads provided by the calibrated model. From

the structure of the bid-ask spread in moneyness and time-to-expiry, we are then able to

explain the structure of the trading activity.

A primer in stochastic control theory

For the optimal market making models, we need to consider controlled stochastic pro-

cesses with jumps. We provide a formal introduction to the topic and the reader is

referred to the books by Fleming and Soner (2006) and Øksendal and Sulem (2019) for

rigorous definitions and theorems involved in this primer.

Let (Xx,u
t )t∈[0,T ] be a controlled Markov process of the form

dXx,u
t = b(t,Xx,u

t , ut)dt+ σ(t,Xx,u
t , ut)dWt +

∫
Rn
γ(Xx,u

t− , ut−, z)Ñ(dt, dz), X0 = x,

where u = (ut)t∈[0,T ] denotes the control, b, σ and γ are given functions and Ñ is a

compensated random measure2. Denote by Ly the infinitesimal generator of (Xx,u
t )t∈[0,T ],

where the superscript y denotes that Ly varies on y with ut = y. Then, the Dynkin’s

formula on a given function φ states that

E [φ (Xx,u
t )] = φ(x) + E

[∫ t

0

Lusφ(Xx,u
s )ds

]
.

In practice, Dynkin’s formula allows us to find the infinitesimal generator Ly by applying

Itô’s formula on φ. The process (Xt)t∈[0,T ] is allowed to have jumps, which means that

the generator Ly can also contain a difference operator3.

In this thesis, we are interested in finite-horizon optimisation problems of the form

E

[∫ T

0

f(s,Xx,u
s , us)ds+ g(Xx,u

T )

]
,

where f is called the running profit function and g is called a terminal reward function.

2A compensated random measure suffices for this thesis, however a more general setting on controlled
Markov process with jumps can be found in Chapter 3 in Øksendal and Sulem (2019).

3The explicit generator is provided in Chapter 3 in Øksendal and Sulem (2019).
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For such problems, we define the performance criterion

J(t, x, u) = E

[∫ T−t

0

f(s,Xx,u
s , us)ds+ g(Xx,u

T−t)

]
.

The dynamic programming principle provides the so-called Hamilton-Jacobi Bellman

equation associated to the optimisation of the above performance criterion, which is

sup
y

((∂t + Ly) v(t, x) + f(t, x, y)) = 0,

with terminal condition v(T, x) = g(x), where v is known as the value function.

In this Markov setting, the optimal control u∗ is of the so-called feedback form u∗t =

u∗(t,Xt), which satisfies

u∗(t, x) = arg sup
y

((∂t + Ly) v(t, x) + f(t, x, y)) .

Therefore, the optimal control u∗ can be found by solving the Hamilton-Jacobi Bellman

equation associated with the optimisation criterion. The optimality of u∗t , in the sense

that

v(t,Xx,u∗

t ) = J(t,Xx,u∗

t , u∗t ),

is made rigorous by a Verification Theorem such as Theorem III.8.1 in Fleming and Soner

(2006), which encompasses our setting.
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Chapter 1

Closed-form approximations in

multi-asset market making

1.1 Introduction

Since the publication of Avellaneda and Stoikov (2008), who revisited Ho and Stoll (1981)

(see also Ho and Stoll (1983)), there has been an extensive literature on optimal market

making.1 Guéant et al. (2013) provided a rigorous analysis of the stochastic optimal

control problem introduced by Avellaneda and Stoikov (2008) and proved that, under

inventory constraints, the problem reduces to a system of linear ordinary differential

equations in the case of exponential intensity functions suggested by Avellaneda and

Stoikov (2008). They also studied the asymptotics when the time horizon T tends to

+∞, proposed closed-form approximations, and introduced extensions to include a drift

in the price dynamics and market impact / adverse selection. Cartea and Jaimungal,

along with their various coauthors, contributed substantially to the literature and added

many features to the initial models: alpha signals, ambiguity aversion, etc. (see Cartea

et al. (2017), Cartea et al. (2014), Cartea et al. (2018) – see also their book Cartea

et al. (2015)). They also considered a different objective function: the expected PnL

minus a running penalty to avoid holding a large inventory instead of the Von Neumann-

Morgenstern expected CARA (constant absolute risk aversion) utility of Avellaneda and

Stoikov (2008) and Guéant et al. (2013). Many features have also been added by various

authors: general dynamics for the price in Fodra and Labadie (2013), general intensities

and partial information in Campi and Zabaljauregui (2020), persistence of the order flow

1There is an economic literature on market making, for instance the seminal paper by Grossman and
Miller (1988). The results in this literature are, however, more interesting for understanding the price
formation process than for building market making algorithms.
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in Jusselin (2020), several requested sizes in Bergault and Guéant (2019), client tiering

and access to a liquidity pool in Barzykin et al. (2020), etc.

In spite of the focus of initial papers on stock markets,2 the models derived from that of

Avellaneda and Stoikov (2008) have been more useful to build market making algorithms

in quote-driven markets: corporate bond markets based on requests for quotes, FX mar-

kets based on requests for quotes and requests for stream, etc. For stock markets or, more

generally, order-driven markets with relatively low bid-ask spread to tick size ratio, many

models have been proposed that depart from the original framework of Avellaneda and

Stoikov (2008) in that the limit order book is modeled. Instances of papers proposing

this type of models include those of Guilbaud and Pham (2013), Guilbaud and Pham

(2015), that of Kühn and Muhle-Karbe (2015), that of Fodra and Pham (2015) or the

more recent papers by Lu and Abergel (2018) and Baradel et al. (2018).

Most of the literature on optimal market making deals with single-asset models. How-

ever, because market making algorithms are typically built for entire portfolios, single-

asset models are not sufficient to build operable algorithms, except under the unrealistic

assumption that asset prices are uncorrelated. Multi-asset extensions of the Avellaneda-

Stoikov model have been proposed. A paper by Gueant and Lehalle (2015) touches upon

this extension and a complete analysis for the various objective functions present in the

literature can be found in Guéant (2017) (see also the book Guéant (2016)) or in Bergault

and Guéant (2019) in which multiple trade sizes are also considered.

Although their mathematical characterization has been known for years, computing the

value function and the optimal quotes is complicated in the multi-asset case whenever the

prices of the assets are correlated. The grid methods that are classically used to tackle

the single-asset case suffer indeed from the curse of dimensionality and do not scale up to

many practical multi-asset cases. Bergault and Guéant (2019) proposed a factor method

to reduce the dimensionality of the problem. Guéant and Manziuk (2019) proposed a

numerical method based on reinforcement learning techniques (an actor-critic approach).

In spite of these recent advances, the computational cost of most numerical schemes will

still be prohibitive for practical use for some asset classes.

Instead of computing a numerical approximation of the value function (from which one

traditionally deduces a numerical approximation of the optimal quotes), we propose in

this chapter a method for building a closed-form proxy for the value function. The idea

behind the approach is that the value function associated with many market making

problems is the solution of a Hamilton-Jacobi equation that can be “approximated” by

another Hamilton-Jacobi equation for which the solution can be computed in closed-form.

2There was also from the very beginning a focus on options markets – see for instance Stoikov and
Sağlam (2009) (cf. Baldacci et al. (2021) and El Aoud and Abergel (2015) for more recent papers).
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Of course, such closed-form formula does not define a solution to the initial Hamilton-

Jacobi equation, but it has similar properties and should capture most of the relevant

financial effects.

Having a proxy of a value function is known to be useful in the community of reinforce-

ment learning (see Sutton and Barto (2018) and Szepesvári (2010) for references to the

reinforcement learning terminology). An important use of a closed-form proxy of a value

function is as a heuristic evaluation function. Heuristic evaluation functions are mainly

used in game-playing computer programs to evaluate the probability to win the game

given the current state – usually the current board in board games – but they can be

used as terminal values in many Monte-Carlo-based reinforcement learning techniques.

Also, such a proxy can be used as a starting point for many iterative algorithms based on

value functions: value iteration algorithm, actor-critic approaches, etc. The last applica-

tion we highlight – which was also our initial motivation – is that one can build from a

proxy of a value function a quoting strategy by using what is called in the reinforcement

literature the greedy strategy associated with that proxy (i.e. the strategy that makes

the locally optimal choice if at each time step the value function associated with the tail

problem is replaced by its proxy in the dynamic programming equation). Having such a

strategy in closed-form has numerous advantages. First, it can be used directly by market

practitioners as a quoting strategy. Second, it can be used as a starting point in iterative

algorithms based on policy functions: policy iteration algorithm, actor-critic approaches,

etc. Third, it has the advantage of being easily interpretable and gives insights on the

true optimal strategy such as the identification of the leading factors and the sensitivity

to changes in model parameters.3

The method we propose is first applied to the multi-asset market making models of

Guéant (2017). Then we generalize the framework in several directions to cover many

important practical cases: (i) drift in prices, (ii) client tiering, (iii) several request sizes

for each asset and each tier, and (iv) fixed transaction costs for each asset and each tier.

The drift in prices models the views of the market maker. Client tiering is a common

practice in OTC markets, justified by the large spectrum of needs and behaviors in the

set of clients to be served. The introduction of several request sizes for each asset and

each tier reflects the reality that request sizes are not in control of the market makers,

but rather of their clients. The fixed transaction costs can model extra costs associated

with the market making business, for instance related to trading platforms.

We end this introduction by outlining this chapter. In Section 1.2 we recall the multi-asset

extensions of the Avellaneda-Stoikov model proposed in Guéant (2017), present the sys-

3For market making, the influence of the parameters has already been studied in Guéant et al. (2013)
(one-asset case) and Guéant (2017) (multi-asset case).
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tem of ordinary differential equations (the Hamilton-Jacobi equation) characterizing the

value function, and state the main results regarding the optimal quotes. In Section 1.3,

we present our approach and compute a closed-form proxy for the value function. We

deduce from that proxy an approximation of the optimal quotes in closed-form. In Sec-

tion 1.4, we use a perturbation approach to propose a correction term that can easily be

computed thanks to Monte-Carlo simulations. In Section 1.5, we extend our results to a

more general multi-asset market making model with drift in prices, client tiering, several

requested sizes for each asset and each tier, and fixed transaction costs for each asset and

each tier. Numerical examples are presented in Section 1.6. They illustrate the quality

of our closed-form approximations.

1.2 The multi-asset market making model

1.2.1 Model setup

We fix a probability space (Ω,F ,P) equipped with a filtration (Ft)t∈R+ satisfying the

usual conditions. In what follows, we assume that all stochastic processes are defined on

(Ω,F , (Ft)t∈R+ ,P). In all this chapter, R+ denotes the set of nonnegative real numbers,

and R∗+ denotes the set of positive real numbers.

For i ∈ {1, . . . , d}, the reference price of asset i is modeled by a process (Sit)t∈R+ with

dynamics

dSit = σidW i
t , Si0 given,

where (W 1
t , . . . ,W

d
t )t∈R+ is a d-dimensional Brownian motion with correlation matrix

(ρi,j)16i,j6d adapted to the filtration (Ft)t∈R+ – hereafter we denote by Σ = (ρi,jσiσj)16i,j6d

the variance-covariance matrix associated with the process (St)t∈R+ = (S1
t , . . . , S

d
t )t∈R+ .

The market maker chooses at each point in time the price at which she is ready to buy/sell

each asset: for i ∈ {1, . . . , d}, we let her bid and ask quotes for asset i be modeled by

two stochastic processes, respectively denoted by (Si,bt )t∈R+ and (Si,at )t∈R+ .

For i ∈ {1, . . . , d}, we denote by (N i,b
t )t∈R+ and (N i,a

t )t∈R+ the two point processes mod-

eling the number of transactions at the bid and at the ask, respectively, for asset i. We

assume in this section that the transaction size for asset i is constant and denoted by zi.

The inventory process of the market maker for asset i, denoted by (qit)t∈R+ , has therefore

the dynamics

dqit = zidN i,b
t − zidN

i,a
t , qi0 given,

and we denote by (qt)t∈R+ the (column) vector process
(
q1
t , . . . , q

d
t

)ᵀ
t∈R+

.
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For each i ∈ {1, . . . , d}, we denote by (λi,bt )t∈R+ and (λi,at )t∈R+ the intensity processes of

(N i,b
t )t∈R+ and (N i,a

t )t∈R+ , respectively. We assume that the market maker stops propos-

ing a bid (respectively ask) price for asset i when her position in asset i following the

transaction would exceed a given threshold Qi (respectively −Qi).4

Formally, we assume that the intensities verify

λi,bt = Λi,b(δi,bt )1{qit−+zi≤Qi} and λi,at = Λi,a(δi,at )1{qit−−zi≥−Qi},

where the processes (δi,bt )t∈R+ and (δi,at )t∈R+ are defined by5

δi,bt = Sit − S
i,b
t and δi,at = Si,at − Sit , ∀t ∈ R+.

Moreover, we assume that the functions Λi,b and Λi,a satisfy the following properties:

• Λi,b and Λi,a are twice continuously differentiable,

• Λi,b and Λi,a are decreasing, with ∀δ ∈ R, Λi,b′(δ) < 0 and Λi,a′(δ) < 0,

• limδ→+∞ Λi,b(δ) = limδ→+∞ Λi,a(δ) = 0,

• supδ
Λi,b(δ)Λi,b

′′
(δ)

(Λi,b′(δ))
2 < 2 and supδ

Λi,a(δ)Λi,a
′′

(δ)

(Λi,a′(δ))
2 < 2.

Finally, the process (Xt)t∈R+ modelling the amount of cash on the market maker’s cash

account has the following dynamics:

dXt =
d∑
i=1

Si,at zidN i,a
t − S

i,b
t z

idN i,b
t

=
d∑
i=1

(Sit + δi,at )zidN i,a
t − (Sit − δ

i,b
t )zidN i,b

t

=
d∑
i=1

(
δi,bt z

idN i,b
t + δi,at z

idN i,a
t

)
−

d∑
i=1

Sitdq
i
t.

4Qi is assumed to be a multiple of zi. It corresponds to the inventory risk limit of the market maker
for asset i.

5It is often assumed in the literature that the point processes are independent of the Brownian motions.
In that case, the quote processes (δi,bt )t∈R+

and (δi,at )t∈R+
have to be independent of prices. In fact, the

optimal control problem can be written in a weak form to show that this assumption is not necessary –
see 1.7 for more details on the construction of the processes in that case.
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1.2.2 The optimization problems

We can consider two different optimization problems for the market maker. Following

the initial model proposed by Avellaneda and Stoikov in Avellaneda and Stoikov (2008),

we can assume that she maximizes the expected value of a CARA utility function (with

risk aversion parameter γ > 0) applied to the mark-to-market value of her portfolio at

a given time T . This mark-to-market value is the sum of the amount XT on the cash

account and the mark-to-market value
d∑
i=1

qiTS
i
T of the assets remaining in the portfolio

at date T .6 More precisely, her optimization problem writes

sup
(δ1,b
t )t,...,(δ

d,b
t )t∈A

(δ1,a
t )t,...,(δ

d,a
t )t∈A

E

[
− exp

(
−γ

(
XT +

d∑
i=1

qiTS
i
T

))]
,

where A is the set of predictable processes bounded from below. We call Model A our

model with this first objective function.

Alternatively, as proposed by Cartea et al. in Cartea et al. (2014), we can consider a

risk-adjusted expectation for the objective function of the market maker. In that case,

the optimization problem writes

sup
(δ1,b
t )t,...,(δ

d,b
t )t∈A

(δ1,a
t )t,...,(δ

d,a
t )t∈A

E

[
XT +

d∑
i=1

qiTS
i
T −

1

2
γ

∫ T

0

qᵀt Σqtdt

]
.

We call Model B our model with this second objective function.

6In the literature there is sometimes a penalty function applied to the inventory at terminal time T
to “force” liquidation. Here, as we shall focus on the asymptotic regime of the optimal quotes, there is
no point considering such a penalty. However, it is noteworthy that most of our non-asymptotic results
could be generalized to the case of a quadratic terminal penalty.
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1.2.3 The Hamilton-Jacobi-Bellman and Hamilton-Jacobi equa-

tions

Let {ei}di=1 be the canonical basis of Rd. The Hamilton-Jacobi-Bellman equation associ-

ated with Model A is

0 = ∂tu(t, x, q, S) +
1

2

d∑
i,j=1

ρi,jσiσj∂2
SiSju(t, x, q, S)

+
d∑
i=1

1{qi+zi≤Qi} sup
δi,b

Λi,b(δi,b)
(
u(t, x− ziSi + ziδi,b, q + ziei, S)− u(t, x, q, S)

)
+

d∑
i=1

1{qi−zi≥−Qi} sup
δi,a

Λi,a(δi,a)
(
u(t, x+ ziSi + ziδi,a, q − ziei, S)− u(t, x, q, S)

)
,

(1.1)

for all (t, x, q, S) ∈ [0, T )× R×
∏d

i=1 (ziZ ∩ [−Qi, Qi])× Rd,7 with terminal condition

u(T, x, q, S) = − exp

(
−γ

(
x+

d∑
i=1

qiSi

))
∀(x, q, S) ∈ R×

d∏
i=1

(
ziZ ∩ [−Qi, Qi]

)
×Rd.

The Hamilton-Jacobi-Bellman equation associated with Model B is

0 =∂tv(t, x, q, S)− 1

2
γqᵀΣq +

1

2

d∑
i,j=1

ρi,jσiσj∂2
SiSjv(t, x, q, S)

+
d∑
i=1

1{qi+zi≤Qi} sup
δi,b

Λi,b(δi,b)
(
v(t, x− ziSi + ziδi,b, q + ziei, S)− v(t, x, q, S)

)
+

d∑
i=1

1{qi−zi≥−Qi} sup
δi,a

Λi,a(δi,a)
(
v(t, x+ ziSi + ziδi,a, q − ziei, S)− v(t, x, q, S)

)
,

(1.2)

for all (t, x, q, S) ∈ [0, T )× R×
∏d

i=1 (ziZ ∩ [−Qi, Qi])× Rd with terminal condition

v(T, x, q, S) = x+
d∑
i=1

qiSi ∀(x, q, S) ∈ R×
d∏
i=1

(
ziZ ∩ [−Qi, Qi]

)
× Rd.

7Given a positive number z ∈ R∗+, zZ denotes the set of multiples of z, i.e. zZ =
{. . . ,−2z,−z, 0, z, 2z, . . .}.
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For each i ∈ {1, . . . , d} and ξ ≥ 0, let us define two Hamiltonian functions8 H i,b
ξ and H i,a

ξ

by

H i,b
ξ (p) =


sup
δ

Λi,b(δ)
ξzi

(1− exp(−ξzi(δ − p))) if ξ > 0,

sup
δ

Λi,b(δ)(δ − p) if ξ = 0,
(1.3)

and

H i,a
ξ (p) =


sup
δ

Λi,a(δ)
ξzi

(1− exp(−ξzi(δ − p))) if ξ > 0,

sup
δ

Λi,a(δ)(δ − p) if ξ = 0.
(1.4)

Using the ansatz introduced in Guéant (2017) for the two functions u : [0, T ] × R ×∏d
i=1 (ziZ ∩ [−Qi, Qi])×Rd → R and v : [0, T ]×R×

∏d
i=1 (ziZ ∩ [−Qi, Qi])×Rd → R, i.e.

u(t, x, q, S) = − exp

(
−γ

(
x+

d∑
i=1

qiSi + θ(t, q)

))

and v(t, x, q, S) = x+
d∑
i=1

qiSi + θ(t, q),

we see that solving the Hamilton-Jacobi-Bellman equations (1.1) and (1.2) boils down

to finding the solution θ : [0, T ]×
∏d

i=1 (ziZ ∩ [−Qi, Qi])→ R of the following Hamilton-

Jacobi equation with ξ = γ in the case of Model A and ξ = 0 in the case of Model

B:

0 = ∂tθ(t, q)−
1

2
γqᵀΣq (1.5)

+
d∑
i=1

1{qi+zi≤Qi}z
iH i,b

ξ

(
θ(t, q)− θ(t, q + ziei)

zi

)

+
d∑
i=1

1{qi−zi≥−Qi}z
iH i,a

ξ

(
θ(t, q)− θ(t, q − ziei)

zi

)
.

In both cases, the terminal condition simply boils down to

θ(T, q) = 0. (1.6)

8It is noteworthy that our definition of Hi,b
ξ and Hi,a

ξ differs from that of Guéant (2017) (by a factor

zi). The alternative definition we use in this chapter is also that of Bergault and Guéant (2019) for
ξ = 0.
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1.2.4 Existing theoretical results

From (Guéant, 2017, Theorem 5.1), for a given ξ ≥ 0, there exists a unique θ : [0, T ] ×∏d
i=1 (ziZ ∩ [−Qi, Qi]) → R, C1 in time, solution of Eq. (1.5) with terminal condition

(1.6). Moreover (see (Guéant, 2017, Theorems 5.2 and 5.3)), a classical verification

argument enables to go from θ to optimal controls for both Model A and Model B. The

optimal quotes as functions of θ are recalled in the following theorems (for details, see

Guéant (2017)).

In the case of Model A, the result is the following:

Theorem 1. Let us consider the solution θ of Eq. (1.5) with terminal condition (1.6) for

ξ = γ.

Then, for i ∈ {1, . . . , d}, the optimal bid and ask quotes Si,bt = Sit−δ
i,b∗
t and Si,at = Sit+δ

i,a∗
t

in Model A are characterized by

δi,b∗t = δ̃i,b∗γ

(
θ(t, qt−)− θ(t, qt− + ziei)

zi

)
for qt− + ziei ∈

d∏
j=1

(
zjZ ∩ [−Qj, Qj]

)
,

δi,a∗t = δ̃i,a∗γ

(
θ(t, qt−)− θ(t, qt− − ziei)

zi

)
for qt− − ziei ∈

d∏
j=1

(
zjZ ∩ [−Qj, Qj]

)
,

(1.7)

where the functions δ̃i,b∗γ (·) and δ̃i,a∗γ (·) are defined by

δ̃i,b∗γ (p) = Λi,b−1
(
γziH i,b

γ (p)−H i,b
γ

′
(p)
)
,

δ̃i,a∗γ (p) = Λi,a−1
(
γziH i,a

γ (p)−H i,a
γ

′
(p)
)
,

where for all i ∈ {1, . . . , d}, H i,b
γ
′

and H i,a
γ
′

denote the first derivative of H i,b
γ and H i,a

γ ,

respectively.

For Model B, the result is the following:

Theorem 2. Let us consider the solution θ of Eq. (1.5) with terminal condition (1.6) for

ξ = 0.

Then, for i ∈ {1, . . . , d}, the optimal bid and ask quotes Si,bt = Sit−δ
i,b∗
t and Si,at = Sit+δ

i,a∗
t

13



in Model B are characterized by

δi,b∗t = δ̃i,b∗0

(
θ(t, qt−)− θ(t, qt− + ziei)

zi

)
for qt− + ziei ∈

d∏
j=1

(
zjZ ∩ [−Qj, Qj]

)
,

δi,a∗t = δ̃i,a∗0

(
θ(t, qt−)− θ(t, qt− − ziei)

zi

)
for qt− − ziei ∈

d∏
j=1

(
zjZ ∩ [−Qj, Qj]

)
,

(1.8)

where the functions δ̃i,b∗0 (·) and δ̃i,a∗0 (·) are defined by

δ̃i,b∗0 (p) = Λi,b−1
(
−H i,b

0

′
(p)
)

and δ̃i,a∗0 (p) = Λi,a−1
(
−H i,a

0

′
(p)
)

where for all i ∈ {1, . . . , d}, H i,b
0

′
and H i,a

0

′
denote the first derivative of H i,b

0 and H i,a
0 ,

respectively.

In the following two sections, we propose new methods to find approximations of the

solution to the system of ordinary differential equations (ODEs) (1.5) with terminal con-

dition (1.6). Eqs. (1.7) and (1.8) can then serve to go from approximations of θ (hereafter

called – slightly abusively – the value function) to approximations of the optimal quotes.

The resulting quotes correspond to what the reinforcement learning community calls the

greedy quoting strategy associated with the proxy of the value function.9

1.3 A quadratic approximation of the value function

and its applications

1.3.1 Introduction

In the field of (stochastic) optimal control, finding value functions and optimal controls

in closed-form is the exception rather than the rule. One important exception goes

with the class of Linear-Quadratic (LQ) and Linear-Quadratic-Gaussian (LQG) problems.

Of course, the above market making problem does not belong to this class of control

problems, for instance because the control of point processes is nonlinear by nature.

Nevertheless, we see that price risk appears in both Model A and Model B through

the quadratic term 1
2
γqᵀΣq in the Hamilton-Jacobi equation (1.5). The main idea of

this chapter consists in replacing the Hamiltonian functions associated with our market

making problem by quadratic functions that approximate them. The interest of quadratic

9The true optimal quotes correspond to the greedy strategy with respect to the value function u (in
Model A) or v (in Model B) deduced from the true θ.
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Hamiltonian functions lies in that the resulting Hamilton-Jacobi equations can be solved

in closed-form using the same tools as for LQ/LQG problems, i.e. Riccati equations.

At first sight, approximating the Hamiltonian functions involved in Eq. (1.5) by quadratic

functions seems inappropriate. For all i ∈ {1, . . . , d}, the functions H i,b
ξ and H i,a

ξ are

indeed positive and decreasing and approximating them with U-shaped functions can

only be valid locally. However, one has to bear in mind that our goal is to approximate

the solution of the Hamilton-Jacobi equations and not the Hamiltonian functions. This

remark is particularly important because the Hamiltonian terms involved in the Hamilton-

Jacobi equations are (up to the indicator functions that we shall discard in what follows

by considering the limit case where ∀i ∈ {1, . . . , d}, Qi = +∞) of the form

H i,b
ξ

(
θ(t, q)− θ(t, q + ziei)

zi

)
+H i,a

ξ

(
θ(t, q)− θ(t, q − ziei)

zi

)
,

Assuming that θ(t,q)−θ(t,q+ziei)
zi

' − θ(t,q)−θ(t,q−ziei)
zi

, we clearly see that, with respect to asset

i, the function we need to approximate is p 7→ H i,b
ξ (p) + H i,a

ξ (−p) rather than H i,b
ξ and

H i,a
ξ themselves, and it is natural to approximate the former function with a U-shaped

one!

Let us formally replace for all i ∈ {1, . . . , d} the Hamiltonian functions H i,b
ξ and H i,a

ξ by

the quadratic functions10

Ȟ i,b : p 7→ αi,b0 + αi,b1 p+
1

2
αi,b2 p

2 and Ȟ i,a : p 7→ αi,a0 + αi,a1 p+
1

2
αi,a2 p2.

Remark 1. A natural choice for the functions (Ȟ i,b)i∈{1,...,d} and (Ȟ i,a)i∈{1,...,d} derives

from Taylor expansions around p = 0. In that case,

∀i ∈ {1, . . . , d},∀j ∈ {0, 1, 2}, αi,bj = H i,b
ξ

(j)
(0) and αi,aj = H i,a

ξ

(j)
(0).

We denote by θ̌ the approximation of θ associated with the functions (Ȟ i,b)i∈{1,...,d} and

10We omit the subscript ξ in the definition of Ȟi,b and Ȟi,a. In particular, although the subscript ξ is
not written, the coefficients αi,b0 , αi,b1 , αi,b2 , αi,a0 , αi,a1 , and αi,a2 do depend on ξ.
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(Ȟ i,a)i∈{1,...,d}, i.e. if we consider the limit case where ∀i ∈ {1, . . . , d}, Qi = +∞, θ̌ verifies

0 = ∂tθ̌(t, q)−
1

2
γqᵀΣq +

d∑
i=1

zi
(
αi,b0 + αi,a0

)
+

d∑
i=1

(
αi,b1

(
θ̌(t, q)− θ̌(t, q + ziei)

)
+ αi,a1

(
θ̌(t, q)− θ̌(t, q − ziei)

))
+

1

2

d∑
i=1

1

zi

(
αi,b2

(
θ̌(t, q)− θ̌(t, q + ziei)

)2
+ αi,a2

(
θ̌(t, q)− θ̌(t, q − ziei)

)2
)

(1.9)

and of course we consider the terminal condition

θ̌(T, q) = 0. (1.10)

1.3.2 An approximation of the value function in closed-form

Eq. (1.9) with terminal condition (1.10) can be solved in closed-form. To prove this

point, we start with the following proposition:

Proposition 1. Let us introduce for i ∈ {1, . . . , d}, j ∈ {0, 1, 2}, k ∈ N,

∆i,b
j,k = αi,bj (zi)k and ∆i,a

j,k = αi,aj (zi)k,

V b
j,k =

(
∆1,b
j,k, . . . ,∆

d,b
j,k

)ᵀ
and V a

j,k =
(

∆1,a
j,k , . . . ,∆

d,a
j,k

)ᵀ
,

Db
j,k = diag(∆1,b

j,k, . . . ,∆
d,b
j,k) and Da

j,k = diag(∆1,a
j,k , . . . ,∆

d,a
j,k ).

Let us consider three differentiable functions A : [0, T ] → S+
d , B : [0, T ] → Rd, and

C : [0, T ]→ R solutions of the system of ordinary differential equations11



A′(t) = 2A(t)
(
Db

2,1 +Da
2,1

)
A(t)− 1

2
γΣ

B′(t) = 2A(t)
(
V b

1,1 − V a
1,1

)
+ 2A(t)

(
Db

2,2 −Da
2,2

)
D(A(t)) + 2A(t)

(
Db

2,1 +Da
2,1

)
B(t)

C ′(t) = Tr
(
Db

0,1 +Da
0,1

)
+ Tr

((
Db

1,2 +Da
1,2

)
A(t)

)
+
(
V b

1,1 − V a
1,1

)ᵀ
B(t)

+1
2
D(A(t))ᵀ

(
Db

2,3 +Da
2,3

)
D(A(t)) + 1

2
B(t)ᵀ

(
Db

2,1 +Da
2,1

)
B(t)

+B(t)ᵀ
(
Db

2,2 −Da
2,2

)
D(A(t)),

(1.11)

11S+
d (resp. S+

d +) stands throughout this chapter the set of positive semi-definite (resp. definite)
symmetric d-by-d matrices.
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with terminal conditions

A(T ) = 0, B(T ) = 0, and C(T ) = 0, (1.12)

where D is the linear operator mapping a matrix onto the vector of its diagonal coeffi-

cients.

Then θ̌ : (t, q) ∈ [0, T ] ×
∏d

i=1 z
iZ 7→ −qᵀA(t)q − qᵀB(t) − C(t) is solution of Eq. (1.9)

with terminal condition (1.10).

Proof. We have

∂tθ̌(t, q)−
1

2
γqᵀΣq +

d∑
i=1

zi
(
αi,b0 + αi,a0

)
+

d∑
i=1

(
αi,b1

(
θ̌(t, q)− θ̌(t, q + ziei)

)
+ αi,a1

(
θ̌(t, q)− θ̌(t, q − ziei)

))
+

1

2

d∑
i=1

1

zi

(
αi,b2

(
θ̌(t, q)− θ̌(t, q + ziei)

)2
+ αi,a2

(
θ̌(t, q)− θ̌(t, q − ziei)

)2
)

= −qᵀA′(t)q − qᵀB′(t)− C ′(t)− 1

2
γqᵀΣq +

d∑
i=1

zi(αi,b0 + αi,a0 )

+
d∑
i=1

αi,b1

(
2ziqᵀA(t)ei + (zi)2ei

ᵀ
A(t)ei + ziei

ᵀ
B(t)

)
+

d∑
i=1

αi,a1

(
−2ziqᵀA(t)ei + (zi)2ei

ᵀ
A(t)ei − zieiᵀB(t)

)
+

1

2

d∑
i=1

1

zi
αi,b2

(
2ziqᵀA(t)ei + (zi)2ei

ᵀ
A(t)ei + ziei

ᵀ
B(t)

)2

+
1

2

d∑
i=1

1

zi
αi,a2

(
−2ziqᵀA(t)ei + (zi)2ei

ᵀ
A(t)ei − zieiᵀB(t)

)2

= −qᵀA′(t)q − qᵀB′(t)− C ′(t)− 1

2
γqᵀΣq + Tr

(
Db

0,1 +Da
0,1

)
+2qᵀA(t)

(
V b

1,1 − V a
1,1

)
+ Tr

((
Db

1,2 +Da
1,2

)
A(t)

)
+
(
V b

1,1 − V a
1,1

)ᵀ
B(t)

+2qᵀA(t)
(
Db

2,1 +Da
2,1

)
A(t)q +

1

2
D(A(t))ᵀ

(
Db

2,3 +Da
2,3

)
D(A(t))

+
1

2
B(t)ᵀ

(
Db

2,1 +Da
2,1

)
B(t) + 2qᵀA(t)

(
Db

2,2 −Da
2,2

)
D(A(t))

+2qᵀA(t)
(
Db

2,1 +Da
2,1

)
B(t) +B(t)ᵀ

(
Db

2,2 −Da
2,2

)
D(A(t))

= 0,

where the last equality comes from the definitions of (A,B,C) and the identification of
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the terms of degree 0, 1, and 2 in q.

As the terminal conditions are satisfied, the result is proved.

Proposition 2. Assume αi,b2 + αi,a2 > 0 for all i ∈ {1, . . . , d}12. The system of ODEs

(1.11) with terminal conditions (1.12) admits the unique solution

A(t) =
1

2
D
− 1

2
+ Â

(
eÂ(T−t) − e−Â(T−t)

)(
eÂ(T−t) + e−Â(T−t)

)−1

D
− 1

2
+ , (1.13)

B(t) = −2e−2
∫ T
t A(u)D+ du

∫ T

t

e2
∫ T
s A(u)D+ duA(s) (V− +D−D(A(s))) ds, (1.14)

C(t) = −Tr
(
Db

0,1 +Da
0,1

)
(T − t)− Tr

((
Db

1,2 +Da
1,2

) ∫ T

t

A(s)ds

)
− V ᵀ

−

∫ T

t

B(s)ds

− 1

2

∫ T

t

D(A(s))ᵀ
(
Db

2,3 +Da
2,3

)
D(A(s))ds− 1

2

∫ T

t

B(s)ᵀD+B(s)ds

−
∫ T

t

B(s)ᵀD−D(A(s))ds. (1.15)

where

D+ = Db
2,1 +Da

2,1, D− = Db
2,2 −Da

2,2, V− = V b
1,1 − V a

1,1, and Â =
√
γ
(
D

1
2
+ΣD

1
2
+

) 1
2

.

Proof. The system of ODEs (1.11) being triangular – though not linear – we tackle the

equations one by one, in order.

Solution for A First, we observe that D+ = diag((α1,b
2 +α1,a

2 )z1, . . . , (αd,b2 +αd,a2 )zd) is

a positive diagonal matrix. Therefore D
1
2
+ is well defined. Then, since D

1
2
+ΣD

1
2
+ ∈ S+

d , Â

is well defined and in S+
d .

Now, by introducing the change of variables

a(t) = 2D
1
2
+A(t)D

1
2
+,

the terminal value problem for A in (1.11) becomes a′(t) = a(t)2 − Â2

a(T ) = 0.
(1.16)

12This condition is line with our intuition that p 7→ Hi,b
ξ (p) + Hi,a

ξ (−p) should be U-shaped, see
Section 1.3.
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To solve (1.16) let us introduce the function z defined by

z(t) = eÂ(T−t) + e−Â(T−t),

that is a C2([0, T ], S++
d ) function verifying z′′(t) = Â2z(t) and z′(T ) = 0.

We have

d

dt

(
−z′(t)z(t)−1

)
= −z′′(t)z(t)−1 + z′(t)z(t)−1z′(t)z(t)−1 =

(
z′(t)z(t)−1

)2 − Â2

and −z′(T )z(T )−1 = 0. Therefore, by Cauchy-Lipschitz theorem, we have a = −z′z−1.

Wrapping up, we obtain

A(t) =
1

2
D
− 1

2
+ a(t)D

− 1
2

+

= −1

2
D
− 1

2
+ z′(t)z(t)−1D

− 1
2

+

=
1

2
D
− 1

2
+ Â

(
eÂ(T−t) − e−Â(T−t)

)(
eÂ(T−t) + e−Â(T−t)

)−1

D
− 1

2
+ .

Solution for B Let us notice that, by definition of the exponential of a matrix, for all

s, t ∈ [0, T ], the matrices

Â,
(
eÂ(T−s) − e−Â(T−s)

)
,
(
eÂ(T−s) + e−Â(T−s)

)−1

,

(
eÂ(T−t) − e−Â(T−t)

)
, and

(
eÂ(T−t) + e−Â(T−t)

)−1

commute. Therefore

A(s)D+A(t)D+

=
1

4
D
− 1

2
+ Â

(
eÂ(T−s) − e−Â(T−s)

)(
eÂ(T−s) + e−Â(T−s)

)−1

×Â
(
eÂ(T−t) − e−Â(T−t)

)(
eÂ(T−t) + e−Â(T−t)

)−1

D
1
2
+

=
1

4
D
− 1

2
+ Â

(
eÂ(T−t) − e−Â(T−t)

)(
eÂ(T−t) + e−Â(T−t)

)−1

×Â
(
eÂ(T−s) − e−Â(T−s)

)(
eÂ(T−s) + e−Â(T−s)

)−1

D
1
2
+

= A(t)D+A(s)D+.

Therefore, we can apply the method of Variation of Parameters to the linear ODE char-
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acterizing B to obtain

B(t) = −2e−2
∫ T
t A(u)D+ du

∫ T

t

e2
∫ T
s A(u)D+ duA(s) (V− +D−D(A(s))) ds.

Solution for C We simply integrate the ODE characterizing C to obtain (1.15).

From Eqs. (1.13), (1.14), and (1.15), we can deduce the asymptotic behaviour of (A,B,C)

when T goes to infinity.

Proposition 3. Let (A,B,C) be the solution of the system of ODEs (1.11) with terminal

conditions (1.12).

Then,

A(0)
T→+∞−→ 1

2

√
γΓ,

B(0)
T→+∞−→ −D−

1
2

+ ÂÂ+D
− 1

2
+

(
V− +

1

2

√
γD−D(Γ)

)
,

C(0)

T

T→+∞−→ −Tr
(
Db

0,1 +Da
0,1

)
− 1

2

√
γTr

((
Db

1,2 +Da
1,2

)
Γ
)

+ V ᵀ
−D

− 1
2

+ ÂÂ+D
− 1

2
+

(
V− +

1

2

√
γD−D(Γ)

)
− 1

8
γD(Γ)ᵀ

(
Db

2,3+Da
2,3

)
D(Γ)

− 1

2

(
V−+

1

2

√
γD−D(Γ)

)ᵀ

D
− 1

2
+ ÂÂ+D

− 1
2

+

(
V−+

1

2

√
γD−D(Γ)

)
+

1

2

√
γ

(
V− +

1

2

√
γD−D(Γ)

)ᵀ

D
− 1

2
+ ÂÂ+D

− 1
2

+ D−D(Γ),

where Γ = D
− 1

2
+

(
D

1
2
+ΣD

1
2
+

) 1
2

D
− 1

2
+ and Â+ is the Moore-Penrose generalized inverse of Â.

Proof. This proof is divided into three parts corresponding to the derivation of the asymp-

totic expression for A, B, and C, respectively.

Asymptotics for A Let us recall first that Â =
√
γ
(
D

1
2
+ΣD

1
2
+

) 1
2 ∈ S+

d . Therefore,

there exists an orthogonal matrix P and there exists a diagonal matrix with nonnegative

entries diag(λ1, . . . , λd) such that Â = Pdiag(λ1, . . . , λd)P
ᵀ. From Eq. (1.13) we have

A(0) =
1

2
D
− 1

2
+ Pdiag (λ1 tanh(λ1T ), . . . , λd tanh(λdT ))P ᵀD

− 1
2

+ .
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As λ tanh(λT )
T→+∞−→

0, if λ = 0

λ, if λ > 0
, we clearly have

A(0)
T→+∞−→ 1

2
D
− 1

2
+ Pdiag(λ1, . . . , λd)P

ᵀD
− 1

2
+ =

1

2
D
− 1

2
+ ÂD

− 1
2

+ =
1

2

√
γΓ.

Asymptotics for B From Eq. (1.14), we have

B(0) = −2e−2
∫ T
0 A(u)D+ du

∫ T

0

e2
∫ T
s A(u)D+ duA(s) (V− +D−D(A(s))) ds

= −2e−2
∫ T
0 Ã(u)D+ du

∫ T

0

e2
∫ s
0 Ã(u)D+ duÃ(s)

(
V− +D−D(Ã(s))

)
ds

where Ã : t 7→ 1
2
D
− 1

2
+ Â

(
eÂt − e−Ât

)(
eÂt + e−Ât

)−1

D
− 1

2
+ .

Using the spectral decomposition of Â introduced in the above paragraph, we see that

2Ã(u)D+ = D
− 1

2
+ Pdiag (λ1 tanh(λ1u), . . . , λd tanh(λdu))P ᵀD

1
2
+

and therefore, after integration,

e2
∫ T
0 Ã(u)D+ du = D

− 1
2

+ Pdiag (cosh(λ1T ), . . . , cosh(λdT ))P ᵀD
1
2
+

and

e2
∫ s
0 Ã(u)D+ duÃ(s) =

1

2
D
− 1

2
+ Pdiag (λ1 sinh(λ1s), . . . , λd sinh(λds))P

ᵀD
− 1

2
+

Wrapping up, we get that B(0) is equal to

−
∫ T

0

D
− 1

2
+ Pdiag

(
λ1

sinh(λ1s)

cosh(λ1T )
, . . . , λd

sinh(λds)

cosh(λdT )

)
P ᵀD

− 1
2

+

(
V− +D−D(Ã(s))

)
ds

= −
∫ T

0

D
− 1

2
+ Pdiag

(
λ1

sinh(λ1s)

cosh(λ1T )
, . . . , λd

sinh(λds)

cosh(λdT )

)
P ᵀD

− 1
2

+

(
V− +

1

2

√
γD−D(Γ)

)
ds

+

∫ T

0

D
− 1

2
+ Pdiag

(
λ1

sinh(λ1s)

cosh(λ1T )
, . . . , λd

sinh(λds)

cosh(λdT )

)
P ᵀD

− 1
2

+

(
1

2

√
γD−D(Γ)−D−D(Ã(s))

)
ds

= D
− 1

2
+ Pdiag

(
1− 1

cosh(λ1T )
, . . . , 1− 1

cosh(λdT )

)
P ᵀD

− 1
2

+

(
V− +

1

2

√
γD−D(Γ)

)
+ J(T ),

where

J(T ) =

∫ T

0

D
− 1

2
+ Pdiag

(
λ1

sinh(λ1s)

cosh(λ1T )
, . . . , λd

sinh(λds)

cosh(λdT )

)
P ᵀD

− 1
2

+

(
1

2

√
γD−D(Γ)−D−D(Ã(s))

)
ds.

Let us prove that J(T )
T→+∞−→ 0. For that purpose, let us consider ε > 0 and let us notice
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that there exists τ > 0 such that ∀s > τ, ‖1
2

√
γD−1

+ D−D(Γ) − D−1
+ D−D(Ã(s))‖ ≤ ε,

where the norm used is the Euclidian norm on Rd. Let us also denote by M the quantity

sups≥0 ‖1
2

√
γD−D(Γ)−D−D(Ã(s))‖.

Using the operator norm (still denoted by ‖ · ‖) associated with the Euclidian norm on

Rd and its well-known link with the spectral radius, we see that for T > τ ,

‖J(T )‖

≤
∫ T

0

∥∥∥∥D− 1
2

+ Pdiag

(
λ1

sinh(λ1s)

cosh(λ1T )
, . . . , λd

sinh(λds)

cosh(λdT )

)
P ᵀD

1
2
+

∥∥∥∥∥∥∥∥D−1
+

1

2

√
γD−D(Γ)−D−1

+ D−D(Ã(s))

∥∥∥∥ ds
≤
∫ T

0

(
max
i
λi

sinh(λis)

cosh(λiT )

)∥∥∥∥1

2

√
γD−1

+ D−D(Γ)−D−1
+ D−D(Ã(s))

∥∥∥∥ ds
≤M

∫ τ

0

max
i
λi

sinh(λis)

cosh(λiT )
ds+ ε

∫ T

τ

max
i
λi

sinh(λis)

cosh(λiT )
ds.

By defining λ = max{λ1, . . . , λd} and λ = min{λi|∀i ∈ {1, . . . , d}, λi > 0}, we have

max
i∈{1,...,d}

λi
sinh(λis)

cosh(λiT )
≤ max

i∈{1,...,d}
λi
eλis

eλiT
= max

i∈{1,...,d},λi>0
λie
−λi(T−s) ≤ λe−λ(T−s).

Therefore,

lim sup
T→∞

‖J(T )‖

≤ M lim sup
T→∞

λ
(
e−λ(T−τ) − e−λT

)
+ ε lim sup

T→∞
λ
(
1− e−λ(T−τ)

)
≤ ε

which allows to conclude that J(T )
T→+∞−→ 0.

Now, as Pdiag
(

1− 1
cosh(λ1T )

, . . . , 1− 1
cosh(λdT )

)
P ᵀ converges toward the orthogonal pro-

jector on Im(Â), which is also given by ÂÂ+, we conclude that

B(0)
T→+∞−→ −D−

1
2

+ ÂÂ+D
− 1

2
+

(
V− +

1

2

√
γD−D(Γ)

)
.

Asymptotics for C The asymptotic behavior of C is a straightforward consequence

of that of A and B.
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1.3.3 From value functions to heuristics and quotes

Motivation for closed-form approximations

An approximation in closed-form of the value function can be motivated by its numerous

applications. In the following, we highlight three of them.

First, it can serve as a heuristic evaluation function in reinforcement learning algorithms.

Indeed, in problems where the time horizon is too far away to consider full exploration in

time, it is often useful, when using Monte-Carlo-based reinforcement learning techniques,

to proxy the value of states in a tractable way – analogous to algorithms such as Deep

Blue. The above closed-form approximations can be used for that purpose. Moreover,

because the value of C(t) is irrelevant for comparing two states (it vanishes when com-

puting the difference in the value function between two points), it is sometimes possible,

especially when T is large, to consider the asymptotic expression

−1

2

√
γqᵀΓq + qᵀD

− 1
2

+ ÂÂ+D
− 1

2
+

(
V− +

1

2

√
γD−D(Γ)

)
instead of θ̌(t, q).

Second, a closed-form approximation of the value function can be used as a starting point

in iterative methods designed to compute the value function (value iteration algorithm,

actor-critic algorithms, etc.). Unlike for the above use, the value of C(t) matters in that

case.

A third important application, and the one that initially motivated this chapter, is for

computing policies (quotes, in our case). Indeed, a policy can be deduced from an ap-

proximation of the value function by computing the greedy strategy associated with that

approximation. In our market making problem, the quotes obtained in this way are not

only easy to compute, but also have the advantage of being easily interpretable.

Quotes: the general case

The greedy quoting strategy associated with our closed-form proxy of the value function

leads to the following quotes for all i ∈ {1, . . . , d}:
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δ̌i,bt = δ̃i,b∗ξ

(
θ̌(t, qt−)− θ̌(t, qt− + ziei)

zi

)
= δ̃i,b∗ξ

(
2qᵀt−A(t)ei + ziei

ᵀ
A(t)ei + ei

ᵀ
B(t)

)
,

δ̌i,at = δ̃i,a∗ξ

(
θ̌(t, qt−)− θ̌(t, qt− − ziei)

zi

)
= δ̃i,a∗ξ

(
−2qᵀt−A(t)ei + ziei

ᵀ
A(t)ei − eiᵀB(t)

)
,

where δ̃i,b∗ξ and δ̃i,a∗ξ are given in Theorems 1 and 2 for ξ = γ and ξ = 0 respectively

(depending on whether one considers Model A or Model B).

The asymptotic regime exhibited in the above paragraphs can then serve to obtain the

following simple closed-form approximations:

δ̆i,bt = δ̃i,b∗ξ

(
√
γqᵀt−Γei +

1

2

√
γziei

ᵀ
Γei − eiᵀD−

1
2

+ ÂÂ+D
− 1

2
+

(
V− +

1

2

√
γD−D(Γ)

))
,

(1.17)

δ̆i,at = δ̃i,a∗ξ

(
−√γqᵀt−Γei +

1

2

√
γziei

ᵀ
Γei + ei

ᵀ
D
− 1

2
+ ÂÂ+D

− 1
2

+

(
V− +

1

2

√
γD−D(Γ)

))
.

(1.18)

It is interesting to notice here that the closed-form approximation of the optimal bid and

ask quotes for asset i depend on the current value of the inventory through the term

qᵀt−Γei. Since Γ ∈ S+
d and the functions δ̃i,b∗ξ and δ̃i,a∗ξ are monotone, we have that, all else

equal, the quotes for asset i depend monotonically on the inventory in asset i (the bid

and ask prices decrease (resp. increase) when the inventory is positive (resp. negative)).

The dependence on the inventory in other assets is more subtle as it is linked to the

matrix Γ = D
− 1

2
+ (D

1
2
+ΣD

1
2
+)

1
2D
− 1

2
+ which models the complex interplay between price risk

(via Σ) and liquidity (via D+). Recall that D+ depends on the trade size and α2, which in

turn can be viewed as H ′′(0) (see Section 1.3) that is an expression involving the trading

intensity function, as shown in Lemma 3.1 in Guéant (2017) for a particular case of our

model. Also, as already noted in Guéant et al. (2013) the influence of the risk aversion

parameter γ is ambiguous and depends on the value of inventories.

In the case of symmetric intensities, i.e. when Λi,b = Λi,a for all i ∈ {1, . . . , d}, the

Hamiltonian functions H i,b
ξ and H i,a

ξ given in Eqs. (1.3) and (1.4) are identical and thus

it is natural to set Ȟ i,b = Ȟ i,a for all i ∈ {1, . . . , d}. In that case, (1.17) and (1.18)
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simplify into

δ̆i,bt = δ̃i,b∗ξ

(
√
γqᵀt−Γei +

1

2

√
γziei

ᵀ
Γei
)
, (1.19)

δ̆i,at = δ̃i,a∗ξ

(
−√γqᵀt−Γei +

1

2

√
γziei

ᵀ
Γei
)
. (1.20)

All these approximations of the optimal quotes can be used directly or as starting points

in iterative methods designed to compute the optimal quotes (policy iteration algorithm,

actor-critic algorithms, etc.).

Quotes: the case of symmetric exponential intensities

Exponential intensity functions play an important role in the optimal market making

literature and more generally in the algorithmic trading literature. This shape of in-

tensity functions, initially proposed by Avellaneda and Stoikov (2008), leads indeed to

simplification because of the form of the associated Hamiltonian functions.

If we assume that the intensity functions are given, for all i ∈ {1, . . . , d}, by

Λi,b(δ) = Λi,a(δ) = Aie−k
iδ, Ai, ki > 0,

then (see Guéant (2017)) the Hamiltonian functions are given, for all i ∈ {1, . . . , d}, by

H i,b
ξ (p) = H i,a

ξ (p) =
Ai

ki
Ci
ξ exp(−kip),

where

Ci
ξ =


(

1 + ξzi

ki

)−(1+ ki

ξzi

)
if ξ > 0

e−1 if ξ = 0,

and the functions δ̃i,b∗ξ and δ̃i,a∗ξ are given, for all i ∈ {1, . . . , d}, by

δ̃i,b∗ξ (p) = δ̃i,a∗ξ (p) =

p+ 1
ξzi

log
(

1 + ξzi

ki

)
if ξ > 0

p+ 1
ki

if ξ = 0.

Therefore, if we consider the quadratic approximation of the Hamiltonian functions based

on their Taylor expansion around p = 0 (see Remark 1), then (1.19) and (1.20) become
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δ̆i,bt =


√
γ
(
qᵀt−Γei + 1

2
ziei

ᵀ
Γei
)

+ 1
γzi

log
(

1 + γzi

ki

)
in Model A,

√
γ
(
qᵀt−Γei + 1

2
ziei

ᵀ
Γei
)

+ 1
ki

in Model B.

δ̆i,at =

−
√
γ
(
qᵀt−Γei − 1

2
ziei

ᵀ
Γei
)

+ 1
γzi

log
(

1 + γzi

ki

)
in Model A,

−√γ
(
qᵀt−Γei − 1

2
ziei

ᵀ
Γei
)

+ 1
ki

in Model B.

where Γ = D
− 1

2
+ (D

1
2
+ΣD

1
2
+)

1
2D
− 1

2
+ and D+ = diag(2A1C1

ξ k
1z1, . . . , 2AdCd

ξ k
dzd).

It is noteworthy that these approximations of the optimal quotes are affine in the current

inventory. In particular, in the case of Model A, when the number of assets is reduced

to one (with unitary transaction size), they coincide with the affine closed-form approx-

imations obtained in the paper by Guéant et al. (2013). Their approximations, however,

are obtained in a fundamentally different manner, by using spectral arguments and a

continuous approximation of the initial discrete problem.

Another useful point of view on the above quoting strategy is by observing the resulting

approximations of the optimal (half) bid-ask spread and skew. The approximations of

the optimal (half) bid-ask spread and skew for asset i are respectively given by

δ̆i,at + δ̆i,bt
2

=


1
2

√
γziei

ᵀ
Γei + 1

γzi
log
(

1 + γzi

ki

)
in Model A,

1
2

√
γziei

ᵀ
Γei + 1

ki
in Model B,

and

δ̆i,at − δ̆
i,b
t

2
= −√γqᵀt−Γei in both Model A and Model B.

These approximations give us a constant bid-ask spread and a skew linear in the inventory.

This translates well the intuition that the skew has the role of inventory risk management,

whereas the spread balances the trade-off between frequency of transactions and profit

per round-trip trade (the term 1
γzi

log
(

1 + γzi

ki

)
in Model A, which reduces to 1

ki
in the

case of Model B13), plus an additional risk aversion buffer (the term 1
2

√
γziei

ᵀ
Γei).

On the parameter sensitivity analysis, beyond the above remarks, the reader is referred

to Guéant et al. (2013) for a comprehensive analysis in the single-asset case. The com-

plex interplay between price risk and liquidity expressed through Γ, as mentioned in

Section 1.3.3, makes the sensitivity analysis less obvious in the multi-asset case.

13It is noteworthy that in the case of Model B the bid-ask spread is a nondecreasing function of the
risk aversion parameter γ.
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1.4 Beyond the quadratic approximation: towards a

correction term

In Section 1.3, we approximated the Hamiltonian functions by quadratic functions in

order to “approximate” the Hamilton-Jacobi equation characterizing the value function

and then approximate the value function itself. To go further, we can consider a per-

turbative approach around our quadratic approximation. This means that we regard

the real Hamiltonian functions as small perturbations of the quadratic functions used

to approximate them and consider then a first order approximation (the zero-th order

approximation being then that obtained in Section 1.3).

Formally, writing

H i,b
ξ (p) = Ȟ i,b(p)+εhi,b(p), H i,a

ξ (p) = Ȟ i,a(p)+εhi,a(p), and θ(t, q) = θ̌(t, q)+εη(t, q),

and plugging these expressions in Eq. (1.5) in the limit case where Qi = +∞ for all
i ∈ {1, . . . , d}, we obtain

0 = ∂tθ(t, q)−
1

2
γqᵀΣq +

d∑
i=1

ziHi,b
ξ

(
θ(t, q)− θ(t, q + ziei)

zi

)
+

d∑
i=1

ziHi,a
ξ

(
θ(t, q)− θ(t, q − ziei)

zi

)

= ∂tθ̌(t, q)−
1

2
γqᵀΣq +

d∑
i=1

ziȞi,b

(
θ̌(t, q)− θ̌(t, q + ziei)

zi

)
+

d∑
i=1

ziȞi,a

(
θ̌(t, q)− θ̌(t, q − ziei)

zi

)

+ ε

(
∂tη(t, q) +

d∑
i=1

zihi,b
(
θ̌(t, q)− θ̌(t, q + ziei)

zi

)
+

d∑
i=1

zihi,a
(
θ̌(t, q)− θ̌(t, q − ziei)

zi

)

+

d∑
i=1

Ȟi,b′
(
θ̌(t, q)− θ̌(t, q + ziei)

zi

)(
η(t, q)− η(t, q + ziei)

)
+

d∑
i=1

Ȟi,a′
(
θ̌(t, q)− θ̌(t, q − ziei)

zi

)(
η(t, q)− η(t, q − ziei)

))
+ o(ε)

= ε

(
∂tη(t, q) +

d∑
i=1

zihi,b
(
θ̌(t, q)− θ̌(t, q + ziei)

zi

)
+

d∑
i=1

zihi,a
(
θ̌(t, q)− θ̌(t, q − ziei)

zi

)

+

d∑
i=1

(
−Ȟi,b′

(
θ̌(t, q)− θ̌(t, q + ziei)

zi

))(
η(t, q + ziei)− η(t, q)

)
+

d∑
i=1

(
−Ȟi,a′

(
θ̌(t, q)− θ̌(t, q − ziei)

zi

))(
η(t, q − ziei)− η(t, q)

))
+ o(ε).
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Therefore,

0 = ∂tη(t, q) +
d∑
i=1

zihi,b
(
θ̌(t, q)− θ̌(t, q + ziei)

zi

)
+

d∑
i=1

zihi,a
(
θ̌(t, q)− θ̌(t, q − ziei)

zi

)

+
d∑
i=1

(
−Ȟ i,b′

(
θ̌(t, q)− θ̌(t, q + ziei)

zi

))(
η(t, q + ziei)− η(t, q)

)
+

d∑
i=1

(
−Ȟ i,a′

(
θ̌(t, q)− θ̌(t, q − ziei)

zi

))(
η(t, q − ziei)− η(t, q)

)
,

and we have the terminal condition η(T, q) = 0.

By Feynman-Kac representation theorem, we have

η(t, q)=EP̌

[∫ T

t

(
d∑
i=1

zihi,b
(
θ̌(s, qt,qs−)− θ̌(s, qt,qs− + ziei)

zi

)

+
d∑
i=1

zihi,a
(
θ̌(s, qt,qs−)− θ̌(s, qt,qs− − ziei)

zi

))
ds

]
,

where under P̌ the process (qt,qs )s∈[t,T ] satisfies

dqt,qs =
d∑
i=1

zi(dŇ i,b
s − dŇ i,a

s )ei and qt,qt = q,

with, for each i ∈ {1, . . . , d}, Ň i,b and Ň i,a constructed like N i,b and N i,a but with

respective intensities given at time s by

−Ȟ i,b′
(
θ̌(s, qt,qs−)− θ̌(s, qt,qs− + ziei)

zi

)
and − Ȟ i,a′

(
θ̌(s, qt,qs−)− θ̌(s, qt,qs− − ziei)

zi

)
.

In practice, it means that we can approximate θ(t, q) by θ̌(t, q) plus a correction term

that takes the form of an expectation:

θ(t, q) ' θ̌(t, q) + EP̌

[∫ T

t

(
d∑
i=1

zi
(
H i,b
ξ − Ȟ

i,b
)( θ̌(s, qt,qs−)− θ̌(s, qt,qs− + ziei)

zi

)

+
d∑
i=1

zi
(
H i,a
ξ − Ȟ

i,a
)( θ̌(s, qt,qs−)− θ̌(s, qt,qs− − ziei)

zi

))
ds

]
.

Of course this new approximation is not a closed-form one. However, the correction term

can be computed using a Monte-Carlo simulation for a specific (t, q). In particular, it

28



means that upon receiving a request for quote from a client and if time permits (which

depends on asset class and market conditions), a market maker can perform a Monte-

Carlo simulation to obtain an approximation of the value function at the relevant points

to compute a quote that might account more accurately for the liquidity of the requested

asset than a quote computed using the closed-forms of Section 1.3.3.

1.5 A multi-asset market making model with addi-

tional features

1.5.1 A more general model

In Section 1.2.1 we presented a multi-asset extension to the classical single-asset market

making model of Avellaneda and Stoikov. This extension can itself be extended to en-

compass important features of OTC markets. In this section we extend our results to a

more general multi-asset market making model with drift in prices to model the views of

the market maker, client tiering, distributed requested sizes for each asset and each tier,

and fixed transaction costs for each asset and each tier.

In terms of modeling, the addition of drifts to the price processes is straightforward.

Formally, we assume that for each i ∈ {1, . . . , d}, the dynamics of the price process

(Sit)t∈R+ of asset i is now given by

dSit = µidt+ σidW i
t ,

where σi and (W i
t )t∈R+ are defined as in Section 1.2.1 and where µi is a real constant. In

what follows, we denote by µ the vector µ =
(
µ1, . . . , µd

)ᵀ
.

In OTC markets, market makers often divide their clients into groups, called tiers, for

instance because they do not have the same commercial relationship with all clients or

because the propensity to transact given a quote differs across clients. In particular, they

can answer/stream different quotes to clients from different tiers.14 Let us denote here

by N ∈ N∗ the number of such tiers.

In addition to introducing tiers, we can drop the assumption of constant request size per

asset and consider instead that, for each asset and each tier, the size of the requests at

the bid and at the ask are distributed according to known distributions.

14There can also be tiers to proxy the existence of trading platforms with different clients and/or
different costs.
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Mathematically, the bid and ask quotes that the market maker propose are then modeled

by the maps

Si,n,b : (ω, t, z) ∈ Ω× [0, T ]× R∗+ 7→ Si,n,bt (ω, z) ∈ R and

Si,n,a : (ω, t, z) ∈ Ω× [0, T ]× R∗+ 7→ Si,n,at (ω, z) ∈ R,

where i ∈ {1, . . . , d} is the index of the asset, n ∈ {1, . . . , N} is the index of the tier, and

z ∈ R∗+ is the size of the request (in number of assets). In the same vein as in Section

1.2.1, we introduce15

δi,n,bt (z) = Sit − S
i,n,b
t (z) and δi,n,at (z) = Si,n,at (z)− Sit ,

and the maps (δi,n,bt (.))t∈R+ and (δi,n,at (.))t∈R+ are assumed to be F-predictable and bounded

from below by a given constant −δ∞ < 0.16

With these new features in mind, we introduce for each asset i ∈ {1, . . . , d} and for each

tier n ∈ {1, . . . , N} the processes (N i,n,b
t )t∈R+ and (N i,n,a

t )t∈R+ modeling the number of

transactions in asset i with clients from tier n at the bid and at the ask, respectively.

They are R∗+-marked point processes, with respective intensity kernels (λi,n,bt (dz))t∈R∗+ and

(λi,n,at (dz))t∈R∗+ given by

λi,n,bt (dz) = Λi,n,b(δi,n,bt (z))1{qit−+z≤Qi}ν
i,n,b(dz) and

λi,n,at (dz) = Λi,n,a(δi,n,at (z))1{qit−−z≥−Qi}ν
i,n,a(dz),

where νi,n,b and νi,n,a are the two probability measures representing the distribution of

the requested sizes at the bid and at the ask respectively, for asset i and tier n, and where

Λi,n,b and Λi,n,a satisfy the same assumptions as those satisfied by the intensity functions

of Section 1.2.1.

For asset i ∈ {1, . . . , d}, the resulting inventory (qit)t∈R+ has dynamics

dqit =
N∑
n=1

∫
R∗+

zN i,n,b(dt, dz)−
N∑
n=1

∫
R∗+

zN i,n,a(dt, dz),

where for each tier n ∈ {1, . . . , N}, N i,n,b(dt, dz) and N i,n,a(dt, dz) are the random meas-

ures associated with the processes (N i,n,b
t )t∈R+ and (N i,n,a

t )t∈R+ , respectively.

Finally, we consider the addition of fixed transaction costs.17 For that purpose, we

15ω is omitted in what follows.
16This additional constraint of a fixed lower bound is just a technical one to be able to state theorems

in the general case where request sizes are distributed (see Bergault and Guéant (2019)).
17Proportional transaction costs can be considered in the initial model through shifts in the intensity
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introduce for each asset i ∈ {1, . . . , d} and for each tier n ∈ {1, . . . , N} two real numbers

ci,n,b and ci,n,a modelling the fixed cost of a transaction in asset i with a client from tier

n, at the bid and at the ask, respectively.

The resulting cash process (Xt)t∈R+ has, consequently, the following dynamics:

dXt =
d∑
i=1

N∑
n=1

∫
R∗+

[(
δi,n,bt (z)z − ci,n,b

)
N i,n,b(dt, dz)

+
(
δi,n,at (z)z − ci,n,a

)
N i,n,a(dt, dz)

]
−

d∑
i=1

Sitdq
i
t.

1.5.2 The Hamilton-Jacobi equation

In this new setting, one can again show that the two optimization problems introduced

in Section 1.2.1 boil down to the resolution of a Hamilton-Jacobi equation of the form

0 = ∂tθ(t, q) + µᵀq − γ

2
qᵀΣq (1.21)

+
d∑
i=1

N∑
n=1

∫
R∗+

1{qi+z≤Qi}zH
i,n,b
ξ

(
z,
θ(t, q)− θ(t, q + zei) + ci,n,b

z

)
νi,n,b(dz)

+
d∑
i=1

N∑
n=1

∫
R∗+

1{qi−z≥−Qi}zH
i,n,a
ξ

(
z,
θ(t, q)− θ(t, q − zei) + ci,n,a

z

)
νi,n,a(dz),

with terminal condition

θ(T, q) = 0, (1.22)

where ξ = γ in the case of Model A and ξ = 0 in the case of Model B, and where the

functions H i,n,b
ξ and H i,n,a

ξ are defined by

H i,n,b
ξ (z, p) :=


sup

δ>−δ∞

Λi,n,b(δ)
ξz

(1− exp(−ξz(δ − p))) if ξ > 0,

sup
δ>−δ∞

Λi,n,b(δ)(δ − p) if ξ = 0

and

H i,n,a
ξ (z, p) :=


sup

δ>−δ∞

Λi,n,a(δ)
ξz

(1− exp(−ξz(δ − p))) if ξ > 0,

sup
δ>−δ∞

Λi,n,a(δ)(δ − p) if ξ = 0.

functions.
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Remark 2. When ξ = 0, the dependence in z of the Hamiltonian functions vanishes.

Nevertheless, we keep the variable z for the sake of consistency.

Following a method similar to that developed in Bergault and Guéant (2019), we can show

that, for a given ξ ≥ 0, there exists a unique bounded function θ : [0, T ]×
∏d

i=1[−Qi, Qi]→
R, C1 in time, solution of Eq. (1.21) with terminal condition (1.22).

Moreover, under the (mild) assumption that the measures νi,n,b and νi,n,a have moments

of order 2, a classical verification argument enables to go from θ to optimal controls for

both Model A and Model B. The optimal quotes as functions of θ are given by the two

theorems that follow.

In the case of Model A, the result is the following:

Theorem 3. Let us consider the solution θ of Eq. (1.21) with terminal condition (1.22),

for ξ = γ.

Then, for i ∈ {1, . . . , d} and n ∈ {1, . . . , N}, the optimal bid and ask quotes as functions

of the trade size z, Si,n,bt (z) = Sit − δ
i,n,b∗
t (z) and Si,n,at (z) = Sit + δi,n,a∗t (z) in Model A are

characterized by

δi,n,b∗t (z) = δ̃i,n,b∗γ

(
z,
θ(t, qt−)− θ(t, qt− + zei) + ci,n,b

z

)
for qt− + zei ∈

d∏
j=1

[−Qj, Qj],

δi,n,a∗t (z) = δ̃i,n,a∗γ

(
z,
θ(t, qt−)− θ(t, qt− − zei) + ci,n,a

z

)
for qt− − zei ∈

d∏
j=1

[−Qj, Qj],

where the functions δ̃i,n,b∗γ (·, ·) and δ̃i,n,a∗γ (·, ·) are defined by

δ̃i,n,b∗γ (z, p) = Λi,n,b−1 (
γzH i,n,b

γ (z, p)− ∂pH i,n,b
γ (z, p)

)
∨ (−δ∞),

δ̃i,n,a∗γ (z, p) = Λi,n,a−1 (
γzH i,n,a

γ (z, p)− ∂pH i,n,a
γ (z, p)

)
∨ (−δ∞).

For Model B, the result is the following:

Theorem 4. Let us consider the solution θ of Eq. (1.21) with terminal condition (1.22),

for ξ = 0.

Then, for i ∈ {1, . . . , d} and n ∈ {1, . . . , N}, the optimal bid and ask quotes as functions

of the trade size z, Si,n,bt (z) = Sit − δ
i,n,b∗
t (z) and Si,n,at (z) = Sit + δi,n,a∗t (z) in Model B are
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characterized by

δi,n,b∗t (z) = δ̃i,n,b∗0

(
z,
θ(t, qt−)− θ(t, qt− + zei) + ci,n,b

z

)
for qt− + zei ∈

d∏
j=1

[−Qj, Qj],

δi,n,a∗t (z) = δ̃i,n,a∗0

(
z,
θ(t, qt−)− θ(t, qt− − zei) + ci,n,a

z

)
for qt− − zei ∈

d∏
j=1

[−Qj, Qj],

where the functions δ̃i,n,b∗0 (·, ·) and δ̃i,n,a∗0 (·, ·) are defined by

δ̃i,n,b∗0 (z, p) = Λi,n,b−1
(
−∂pH i,n,b

0 (z, p)
)
∨ (−δ∞) and

δ̃i,n,a∗0 (z, p) = Λi,n,a−1 (−∂pH i,n,a
0 (z, p)

)
∨ (−δ∞).

1.5.3 Quadratic approximation

As before, let us replace for all i ∈ {1, . . . , d} and n ∈ {1, . . . , N}, the Hamiltonian

functions H i,n,b
ξ and H i,n,a

ξ by the functions

Ȟ i,n,b : (z, p) 7→ αi,n,b0 (z) + αi,n,b1 (z)p+
1

2
αi,n,b2 (z)p2 and

Ȟ i,n,a : (z, p) 7→ αi,n,a0 (z) + αi,n,a1 (z)p+
1

2
αi,n,a2 (z)p2.

Remark 3. Here, αi,n,bj and αi,n,aj (for j ∈ {0, 1, 2}) are functions of z. A natural choice for

the functions (Ȟ i,n,b)(i,n)∈{1,...,d}×{1,...,N} and (Ȟ i,n,a)(i,n)∈{1,...,d}×{1,...,N} derives from Taylor

expansions around p = 0. In that case,

∀i ∈ {1, . . . , d},∀n ∈ {1, . . . , N},∀j ∈ {0, 1, 2},
αi,n,bj (z) = ∂jpH

i,n,b
ξ (z, 0) and αi,n,aj = ∂jpH

i,n,a
ξ (z, 0).

If we consider the limit case where Qi = +∞ for all i ∈ {1, . . . , d}, Eq. (1.21) then
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becomes

0 = ∂tθ̌(t, q) + µᵀq − γ

2
qᵀΣq +

d∑
i=1

N∑
n=1

(∫
R∗+

zαi,n,b0 (z)νi,n,b(dz) +

∫
R∗+

zαi,n,a0 (z)νi,n,a(dz)

)

+
d∑
i=1

N∑
n=1

(∫
R∗+

αi,n,b1 (z)
(
θ̌(t, q)− θ̌(t, q + zei) + ci,n,b

)
νi,n,b(dz)

+

∫
R∗+

αi,n,a1 (z)
(
θ̌(t, q)− θ̌(t, q − zei) + ci,n,a

)
νi,n,a(dz)

)

+
1

2

d∑
i=1

N∑
n=1

(∫
R∗+

1

z
αi,n,b2 (z)

(
θ̌(t, q)− θ̌(t, q + zei) + ci,n,b

)2
νi,n,b(dz)

+

∫
R∗+

1

z
αi,n,a2 (z)

(
θ̌(t, q)− θ̌(t, q − zei) + ci,n,a

)2
νi,n,a(dz)

)
,

(1.23)

with terminal condition

θ̌(T, q) = 0. (1.24)

Using the same ansatz as in Section 1.3, we obtain the following result (we omit the proof

as it follows the same logic as for that of Proposition 1):

Proposition 4. Let us introduce for all i ∈ {1, . . . , d}, n ∈ {1, . . . , N}, j ∈ {0, 1, 2}, k ∈
N, the following constants:

∆i,n,b
j,k =

∫
R∗+

zkαi,n,bj (z)νi,n,b(dz) and ∆i,n,a
j,k =

∫
R∗+

zkαi,n,aj (z)νi,n,a(dz),

V b
j,k =

(
N∑
n=1

∆1,n,b
j,k , . . . ,

N∑
n=1

∆d,n,b
j,k

)ᵀ

and V a
j,k =

(
N∑
n=1

∆1,n,a
j,k , . . . ,

N∑
n=1

∆d,n,a
j,k

)ᵀ

,

Ṽ b
j,k =

(
N∑
n=1

c1,n,b∆1,n,b
j,k , . . . ,

N∑
n=1

cd,n,b∆d,n,b
j,k

)ᵀ

and Ṽ a
j,k =

(
N∑
n=1

c1,n,a∆1,n,a
j,k , . . . ,

N∑
n=1

cd,n,a∆d,n,a
j,k

)ᵀ

,

χbj,k =
d∑
i=1

N∑
n=1

∆i,n,b
j,k and χaj,k =

d∑
i=1

N∑
n=1

∆i,n,a
j,k ,

34



χ̃bj,k =
d∑
i=1

N∑
n=1

ci,n,b∆i,n,b
j,k and χ̃aj,k =

d∑
i=1

N∑
n=1

ci,n,a∆i,n,a
j,k ,

χ̂bj,k =
d∑
i=1

N∑
n=1

(ci,n,b)2∆i,n,b
j,k and χ̂aj,k =

d∑
i=1

N∑
n=1

(ci,n,a)2∆i,n,a
j,k ,

and

Db
j,k = diag

(
N∑
n=1

∆1,n,b
j,k , . . . ,

N∑
n=1

∆d,n,b
j,k

)
and Da

j,k = diag

(
N∑
n=1

∆1,n,a
j,k , . . . ,

N∑
n=1

∆d,n,a
j,k

)
.

Let us consider three differentiable functions A : [0, T ] → S+
d , B : [0, T ] → Rd, and

C : [0, T ]→ R solutions of the system of ordinary differential equations

A′(t) = 2A(t)
(
Db

2,1 +Da
2,1

)
A(t)− 1

2
γΣ,

B′(t) = µ+ 2A(t)
(
V b

1,1 − V a
1,1

)
+ 2A(t)

(
Db

2,2 −Da
2,2

)
D(A(t))

+2A(t)
(
Db

2,1 +Da
2,1

)
B(t) + 2A(t)

(
Ṽ b

2,0 − Ṽ a
2,0

)
,

C ′(t) = Tr
(
Db

0,1 +Da
0,1

)
+ Tr

((
Db

1,2 +Da
1,2

)
A(t)

)
+
(
V b

1,1 − V a
1,1

)ᵀ
B(t)

+
(
χ̃b1,0 + χ̃a1,0

)
+ 1

2
D(A(t))ᵀ

(
Db

2,3 +Da
2,3

)
D(A(t))

+B(t)ᵀ
(
Db

2,2 −Da
2,2

)
D(A(t)) +

(
Ṽ b

2,1 + Ṽ a
2,1

)ᵀ
D(A(t))

+1
2
B(t)ᵀ

(
Db

2,1 +Da
2,1

)
B(t) +

(
Ṽ b

2,0 − Ṽ a
2,0

)ᵀ
B(t)

+1
2

(
χ̂b2,0 + χ̂a2,0

)
.

(1.25)

with terminal conditions

A(T ) = 0, B(T ) = 0, and C(T ) = 0. (1.26)

Then θ̌ : (t, q) ∈ [0, T ] × Rd 7→ −qᵀA(t)q − qᵀB(t) − C(t) is solution of Eq. (1.23) with

terminal condition (1.24).

We can now solve (1.25) with terminal conditions (1.26) in closed-form. This is the

purpose of the following proposition whose proof is omitted (see Proposition 2 for a

similar proof).

Proposition 5. Assume
∑N

n=1 ∆i,n,b
2,1 + ∆i,n,a

2,1 > 0 for all i ∈ {1, . . . , d}. The system of
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ODEs (1.25) with terminal conditions (1.26) admits the unique solution

A(t) =
1

2
D
− 1

2
+ Â

(
eÂ(T−t) − e−Â(T−t)

)(
eÂ(T−t) + e−Â(T−t)

)−1

D
− 1

2
+ ,

B(t) = −2e−2
∫ T
t A(u)D+ du

∫ T

t

e2
∫ T
s A(u)D+ du

(
1

2
µ+ A(s)

(
V− + Ṽ− +D−D(A(s))

))
ds,

C(t) = −Tr
(
Db

0,1 +Da
0,1

)
(T − t)− Tr

((
Db

1,2 +Da
1,2

) ∫ T

t

A(s)ds

)
− V ᵀ

−

∫ T

t

B(s)ds

− 1

2

∫ T

t

D(A(s))ᵀ
(
Db

2,3 +Da
2,3

)
D(A(s))ds− 1

2

∫ T

t

B(s)ᵀD+B(s)ds

−
∫ T

t

B(s)ᵀD−D(A(s))ds−
(
χ̃b1,0 + χ̃a1,0

)
(T − t)− 1

2

(
χ̂b2,0 + χ̂a2,0

)
(T − t)

−
(
Ṽ b

2,1 + Ṽ a
2,1

)ᵀ ∫ T

t

D(A(s))ds,

where

D+ = Db
2,1 +Da

2,1, D− = Db
2,2 −Da

2,2, V− = V b
1,1 − V a

1,1, Ṽ− = Ṽ b
2,0 − Ṽ a

2,0

and Â =
√
γ
(
D

1
2
+ΣD

1
2
+

) 1
2

.

Now, using the same method as in Section 1.3, we get the following asymptotic results:

Proposition 6. Let (A,B,C) be the solution of the system of ODEs (1.25) with terminal

conditions (1.26).

If D
1
2
+µ ∈ Im(Â), then,

A(0)
T→+∞−→ 1

2

√
γΓ,

B(0)
T→+∞−→ −D−

1
2

+ Â+D
1
2
+µ−D

− 1
2

+ ÂÂ+D
− 1

2
+

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)
,

C(0)

T

T→+∞−→ −Tr
(
Db

0,1 +Da
0,1

)
− 1

2

√
γTr

((
Db

1,2 +Da
1,2

)
Γ
)

+ V ᵀ
−D

− 1
2

+ Â+D
1
2
+µ

+ V ᵀ
−D

− 1
2

+ ÂÂ+D
− 1

2
+

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)
− 1

8
γD(Γ)

(T
Db

2,3+Da
2,3

)
D(Γ)

− 1

2
µᵀD

1
2
+Â

+Â+D
1
2
+µ− µᵀD

1
2
+Â

+D
− 1

2
+

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)
− 1

2

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)ᵀ

D
− 1

2
+ ÂÂ+D

− 1
2

+

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)
+

1

2

√
γµᵀD

1
2
+Â

+D
− 1

2
+ D−D(Γ)

+
1

2

√
γ

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)ᵀ

D
− 1

2
+ ÂÂ+D

− 1
2

+ D−D(Γ)

36



−
(
χ̂b2,0 + χ̂a2,0

)
− 1

2

(
χ̂b2,0 + χ̂a2,0

)
− 1

2

√
γ
(
Ṽ b

2,1 + Ṽ a
2,1

)ᵀ
D(Γ),

where Γ = D
− 1

2
+

(
D

1
2
+ΣD

1
2
+

) 1
2

D
− 1

2
+ and Â+ is the Moore-Penrose generalized inverse of Â.

Remark 4. The assumption D
1
2
+µ ∈ Im(Â) is satisfied when µ = 0 or when Σ is invertible.

If this assumption is not satisfied, then it can be shown that B(0)
T

T→+∞−→ −D−
1
2

+ Â+ÂD
1
2
+µ.

In particular, there is no constant asymptotic approximation of the quotes. In fact, if

the assumption D
1
2
+µ ∈ Im(Â) is not satisfied, the market maker may have an incentive

to propose very good quotes to clients in order to build portfolios bearing positive return

at no risk.

1.5.4 From value functions to heuristics and quotes

Quotes: the general case

The greedy quoting strategy associated with our closed-form proxy of the value function

leads to the following quotes for all i ∈ {1, . . . , d} and n ∈ {1, . . . , N}:

δ̌i,n,bt (z) = δ̃i,n,b∗ξ

(
z,
θ̌(t, qt−)− θ̌(t, qt− + zei) + ci,n,b

z

)
= δ̃i,n,b∗ξ

(
z, 2qᵀt−A(t)ei + zei

ᵀ
A(t)ei + ei

ᵀ
B(t) +

ci,n,b

z

)
,

δ̌i,n,at (z) = δ̃i,n,a∗ξ

(
z,
θ̌(t, qt−)− θ̌(t, qt− − zei) + ci,n,a

z

)
= δ̃i,n,a∗ξ

(
z,−2qᵀt−A(t)ei + zei

ᵀ
A(t)ei − eiᵀB(t) +

ci,n,a

z

)
,

where δ̃i,n,b∗ξ and δ̃i,n,a∗ξ are given in Theorems 3 and 4 for ξ = γ and ξ = 0 respectively

(depending on whether one considers Model A or Model B).

The asymptotic regime exhibited in the above paragraphs can then serve to obtain the
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following simple closed-form approximations:

δ̆i,n,bt (z) = δ̃i,n,b∗ξ

(
z,
√
γqᵀt−Γei +

1

2

√
γzei

ᵀ
Γei − eiᵀD−

1
2

+ Â+D
1
2
+µ (1.27)

− eiᵀD−
1
2

+ ÂÂ+D
− 1

2
+

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)
+
ci,n,b

z

)
,

δ̆i,n,at (z) = δ̃i,n,a∗ξ

(
z,−√γqᵀt−Γei +

1

2

√
γzei

ᵀ
Γei + ei

ᵀ
D
− 1

2
+ Â+D

1
2
+µ (1.28)

+ ei
ᵀ
D
− 1

2
+ ÂÂ+D

− 1
2

+

(
V− + Ṽ− +

1

2

√
γD−D(Γ)

)
+
ci,n,a

z

)
.

If we assume that for all i ∈ {1, . . . , d} and for all n ∈ {1, . . . , N} we have νi,n,b =

νi,n,a and Λi,n,b = Λi,n,a, then ∀i ∈ {1, . . . , d},∀n ∈ {1, . . . , N}, H i,n,b = H i,n,a, and it

is thus natural to chose symmetric approximations of the Hamiltonian functions, i.e.

∀i ∈ {1, . . . , d},∀n ∈ {1, . . . , N}, Ȟ i,n,b = Ȟ i,n,a. In that case, (1.27) and (1.28) simplify

into

δ̆i,n,bt (z) = δ̃i,n,b∗ξ

(
z,
√
γqᵀt−Γei +

1

2

√
γzei

ᵀ
Γei − eiᵀD−

1
2

+ Â+D
1
2
+µ+

ci,n,b

z

)
, (1.29)

δ̆i,n,at (z) = δ̃i,n,a∗ξ

(
z,−√γqᵀt−Γei +

1

2

√
γzei

ᵀ
Γei + ei

ᵀ
D
− 1

2
+ Â+D

1
2
+µ+

ci,n,a

z

)
. (1.30)

All these approximations of the quotes can be used directly or as a starting point in

iterative methods designed to compute the optimal quotes (policy iteration algorithms,

actor-critic algorithms, etc.).

Quotes: the case of symmetric exponential intensities

If we assume that for all i ∈ {1, . . . , d} and for all n ∈ {1, . . . , N} we have νi,n,b = νi,n,a =:

νi,n and intensity functions given by

Λi,n,b(δ) = Λi,n,a(δ) = Ai,ne−k
i,nδ, Ai,n, ki,n > 0,

then (see Guéant (2017)), in the limit case where δ∞ = +∞ the Hamiltonian functions

are given, for all i ∈ {1, . . . , d} and n ∈ {1, . . . , N}, by

H i,n,b
ξ (z, p) = H i,n,a

ξ (z, p) =
Ai,n

ki,n
Ci,n
ξ (z) exp(−ki,np),
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where

Ci,n
ξ (z) =


(
1 + ξz

ki,n

)−(1+ ki,n

ξz

)
if ξ > 0

e−1 if ξ = 0,

and the functions δ̃i,n,b∗ξ and δ̃i,n,a∗ξ are given, for all i ∈ {1, . . . , d} and n ∈ {1, . . . , N}, by

δ̃i,n,b∗ξ (z, p) = δ̃i,n,a∗ξ (z, p) =

p+ 1
ξz

log
(
1 + ξz

ki,n

)
if ξ > 0

p+ 1
ki,n

if ξ = 0.

Therefore, if we consider the quadratic approximation of the Hamiltonian functions based

on their Taylor expansion around p = 0 (see Remark 3), then (1.29) and (1.30) become

δ̆i,n,bt (z) =


√
γ
(
qᵀt−Γei + 1

2z
iei

ᵀ
Γei − 1

γ e
iᵀD

− 1
2

+ Â+D
1
2
+µ
)

+ ci,n,b

z + 1
γz log

(
1 + γz

ki,n

)
in Model A,

√
γ
(
qᵀt−Γei + 1

2z
iei

ᵀ
Γei − 1

γ e
iᵀD

− 1
2

+ Â+D
1
2
+µ
)

+ ci,n,b

z + 1
ki,n in Model B.

δ̆i,n,at (z) =


√
γ
(
qᵀt−Γei − 1

2z
iei

ᵀ
Γei + 1

γ e
iᵀD

− 1
2

+ Â+D
1
2
+µ
)

+ ci,n,a

z + 1
γz log

(
1 + γz

ki,n

)
in Model A,

√
γ
(
qᵀt−Γei − 1

2z
iei

ᵀ
Γei + 1

γ e
iᵀD

− 1
2

+ Â+D
1
2
+µ
)

+ ci,n,a

z + 1
ki,n in Model B.

where Γ = D
− 1

2
+ (D

1
2
+ΣD

1
2
+)

1
2D
− 1

2
+ and

D+ = diag

(
2

N∑
n=1

A1,nk1,n

∫
R∗+

C1,n
ξ (z)zν1,n(dz), . . . , 2

N∑
n=1

Ad,nkd,n
∫

R∗+

Cd,n
ξ (z)zνd,n(dz)

)
.

1.6 Numerical results

To assess the quality of our approximations, we consider a two-asset example for which

we can approximate numerically the true function θ and the optimal quotes. By using a

Euler scheme in dimension 3 (one dimension for time and two dimensions for inventory) it

is indeed possible to approximate numerically the solution of Hamilton-Jacobi equations

on a grid.

1.6.1 Characteristics of our example with two assets

We consider the following characteristics for the two assets:

• Asset prices: S1
0 = S2

0 = 100 AC.

• Drifts: µ1 = 0.1 AC · day−1, µ2 = −0.1 AC · day−1.
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• Volatilities: σ1 = 1.2 AC · day−
1
2 , σ2 = 0.6 AC · day−

1
2 .

• Correlation: ρ = 0.5.

This corresponds to a covariance matrix Σ given by

Σ =

(
(σ1)2 ρσ1σ2

ρσ1σ2 (σ2)2

)
=

(
1.44 0.36

0.36 0.36

)
.

We consider Model B18 with time horizon T = 7 days and risk aversion parameter γ =

8 · 10−6 AC−1.

We consider a framework with one tier only and no transaction costs.

The intensity functions are given for all i ∈ {1, 2} by:

Λi,b(δ) = Λi,a(δ) = λRFQ
1

1 + eαΛ+βΛδ
,

with λRFQ = 30 day−1, αΛ = 0.7, and βΛ = 30 AC−1. This corresponds to 30 requests

per day, a probability of 1
1+e0.7

' 33% to trade when the answered quote is the reference

price and a probability of 1
1+e0.4

' 40% to trade when the answered quote is the reference

price improved by 1 cent.

Request sizes are distributed according to a Gamma distribution Γ(αµ, βµ) with αµ = 4

and βµ = 4 · 10−4. This corresponds to an average request size of 10000 assets (i.e.

approximately 1000000AC) and a standard deviation equal to half the average.

1.6.2 Value function and optimal quotes

In order to discretize the problem, we first approximate the Gamma distribution of sizes

with 4 sizes: z1 = 6250, z2 = 12500, z3 = 18750, and z4 = 25000 assets – thereafter

refered to by very small, small, large, and very large size – with respective probability

p1 = 0.534, p2 = 0.350, p3 = 0.097 and p4 = 0.019. We impose risk limits Q1 = 75000

and Q2 = 300000, i.e. no trade that would result in an inventory q1 for asset 1 such that

|q1| > 75000 is accepted, and similarly no trade that would result in an inventory q2 for

asset 2 such that |q2| > 300000 is accepted.

The solution θ to Eq. (1.21) with terminal condition (1.22) can then be approximated

numerically using a monotone implicit Euler scheme on a grid of size 101× 25× 97 (101

18The results would be similar for Model A.
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points in time, 25 points for the inventory of asset 1, and 97 points for the inventory of

asset 2).

Because we are mainly interested in asymptotic quotes, it is important to check that the

time horizon chosen is sufficienty long. For that purpose, we plot in Figure 1.1 the optimal

bid quotes for asset 1 and asset 2 at time t = 0 for different values of the inventory. We

see that the asymptotic regime is clearly reached and, from now on, we will only consider

the value function and the optimal quotes at time t = 0.
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Study of the convergence towards stationary quotes

Figure 1.1: Optimal bid quotes as a function of time for different values of the inventory
(very small trades) – top left: bid quotes of asset 1 for different values of inventory q2

(q1 = 0), top right: bid quotes of asset 1 for different values of inventory q1 (q2 = 0),
bottom left: bid quotes of asset 2 for different values of inventory q2 (q1 = 0), bottom
right: bid quotes of asset 2 for different values of inventory q1 (q2 = 0).

The numerical approximation of the value function θ (at time t = 0) is plotted in Figure

1.2. The shape of the function θ is as expected given the risk penalty, the positive drift

in the prices of asset 1 and the negative drift in the prices of asset 2. The associated bid

quotes are plotted in Figures 1.3 and 1.4 respectively. The shape of the quote surfaces is

as expected given the positive correlation coefficient (see Bergault and Guéant (2019) or

Guéant (2017) for a deeper discussion about the effect of the different parameters).
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Figure 1.2: Function θ at time t = 0 for different values of the inventory.
q 1

80000
60000

40000
20000

0
20000

40000
60000

80000

q2
300000

200000
100000

0
100000200000300000

Optim
al bid quote 

b

0.1

0.0

0.1

0.2

0.3

0.4

Optimal bid quote for asset 1 (computed with a finite difference scheme) for different values of the inventory (very small trades)

0.1

0.0

0.1

0.2

0.3

0.4

Figure 1.3: Optimal bid quote at t = 0 for asset 1 as a function of the inventory (very
small trades).

42



q 1

80000
60000

40000
20000

0
20000

40000
60000

80000

q2
300000

200000
100000

0
100000200000300000

Optim
al bid quote 

b

0.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Optimal bid quote for asset 2 (computed with a finite difference scheme) for different values of the inventory (very small trades)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1.4: Optimal bid quote at t = 0 for asset 2 as a function of the inventory (very
small trades).

1.6.3 Comparison with closed-form approximations

We now move on to our closed-form approximations. We first plot in Figure 1.5 the

closed-form approximation θ̌ given by Proposition 4.

We clearly see that, in spite of differences in level between the true value function aprox-

imated numerically and the closed-form approximation, the shape is the same. Therefore,

the finite differences involved in the computation of the associated quotes should be sim-

ilar. This is roughly confirmed in Figures 1.6 and 1.7 that are the closed-form counterparts

of Figures 1.3 and 1.4.

In order to assess more precisely the quality of our closed-form approximations, we plot

in Figures 1.8, 1.9, 1.10, and 1.11 the functions

q1 7→ δ̄1,b(q1, 0, zk), k ∈ {1, . . . , 4} q1 7→ δ̂1,b(q1, 0, zk), k ∈ {1, . . . , 4}

q2 7→ δ̄1,b(0, q2, zk), k ∈ {1, . . . , 4} q2 7→ δ̂1,b(0, q2, zk), k ∈ {1, . . . , 4}

q1 7→ δ̄2,b(q1, 0, zk), k ∈ {1, . . . , 4} q1 7→ δ̂2,b(q1, 0, zk), k ∈ {1, . . . , 4}

q2 7→ δ̄2,b(0, q2, zk), k ∈ {1, . . . , 4} q2 7→ δ̂2,b(0, q2, zk), k ∈ {1, . . . , 4}

where δ̄i,b is the optimal bid quote for asset i as a function of time, inventory, and size of
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Figure 1.5: Function θ̌ at t = 0 for different values of the inventory.
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Figure 1.6: Closed-form approximation for the optimal bid quote at t = 0 for asset 1 as
a function of the inventory (very small trades).

request and δ̂i,b is the closed-form approximation of the optimal bid quote for asset i as

a function of inventory and size of request.

We clearly see that our closed-form approximations are close to the true optimal quotes,
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Figure 1.7: Closed-form approximation for the optimal bid quote at t = 0 for asset 2 as
a function of the inventory (very small trades).

except for large values of the inventory in asset 2.
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Comparison of bid quotes for asset 1 for different trade sizes as a function of q1 (q2 = 0)
very small trades -- closed-form approximation
small trades -- closed-form approximation
large trades -- closed-form approximation
very large trades -- closed-form approximation
very small trades -- optimal (computed with a finite difference scheme)
small trades -- optimal (computed with a finite difference scheme)
large trades -- optimal (computed with a finite difference scheme)
very large trades -- optimal (computed with a finite difference scheme)

Figure 1.8: Comparison between optimal bid quote for asset 1 and its closed-form ap-
proximation for different trade sizes as a function of q1 (q2 = 0).

In order to confirm the quality of our closed-form approximations, we compare the per-
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Comparison of bid quotes for asset 1 for different trade sizes as a function of q2 (q1 = 0)
very small trades -- closed-form approximation
small trades -- closed-form approximation
large trades -- closed-form approximation
very large trades -- closed-form approximation
very small trades -- optimal
small trades -- optimal (computed with a finite difference scheme)
large trades -- optimal (computed with a finite difference scheme)
very large trades -- optimal (computed with a finite difference scheme)

Figure 1.9: Comparison between optimal bid quote for asset 1 and its closed-form ap-
proximation for different trade sizes as a function of q2 (q1 = 0).
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Comparison of bid quotes for asset 2 for different trade sizes as a function of q1 (q2 = 0)
very small trades -- closed-form approximation
small trades -- closed-form approximation
large trades -- closed-form approximation
very large trades -- closed-form approximation
very small trades -- optimal (computed with a finite difference scheme)
small trades -- optimal (computed with a finite difference scheme)
large trades -- optimal (computed with a finite difference scheme)
very large trades -- optimal (computed with a finite difference scheme)

Figure 1.10: Comparison between optimal bid quote for asset 2 and its closed-form ap-
proximation for different trade sizes as a function of q1 (q2 = 0).

formance of a market maker, when quoting the true optimal quotes versus their closed-

form approximations. The respective distributions of PnL after 4000 Monte-Carlo simu-
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Comparison of bid quotes for asset 2 for different trade sizes as a function of q2 (q1 = 0)
very small trades -- closed-form approximation
small trades -- closed-form approximation
large trades -- closed-form approximation
very large trades -- closed-form approximation
very small trades -- optimal (computed with a finite difference scheme)
small trades -- optimal (computed with a finite difference scheme)
large trades -- optimal (computed with a finite difference scheme)
very large trades -- optimal (computed with a finite difference scheme)

Figure 1.11: Comparison between optimal bid quote for asset 2 and its closed-form ap-
proximation for different trade sizes as a function of q2 (q1 = 0).

lations are plotted in Figures 1.12 and 1.13.
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Histogram of the PnL over 4000 simulations starting from zero inventory (with optimal quotes)

Figure 1.12: Distribution of the PnL of a market maker using the optimal quotes.

When using the optimal quotes, the market maker gets an average PnL of 88600AC with a

standard deviation of 86900AC. When using the closed-form approximation, the perform-

ance is very similar, as she gets an average PnL of 89000AC with a standard deviation of

87500AC.
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Histogram of the PnL over 4000 simulations starting from zero inventory (with approximate quotes)

Figure 1.13: Distribution of the PnL of a market maker using the closed-form approxim-
ations.

These results are really satisfying in terms of performance. We see that, although the

closed-form approximation of optimal quotes may be inaccurate for large values of the

inventory, such large inventory are seldom reached and therefore the gap between quotes

does not really impact the distribution of the PnL.

We believe that what we observe here in this two-asset example is general. In particular,

the results in higher dimensions should be just as good.

Conclusion

We proposed closed-form approximations for the value functions associated with many

multi-asset extensions of the market making models available in the literature. These

closed-form approximations have been obtained through the “approximation” of a Hamilton-

Jacobi equation by another Hamilton-Jacobi equation that can be simplified into a Riccati

equation and two linear ordinary differential equations, all solvable in closed-form. These

closed-form approximations can be used for various purposes, in particular to design

quoting strategies through a greedy approach. The resulting closed-form approximations

of the optimal quotes generalize those obtained by Guéant, Lehalle, and Fernandez-Tapia

in Guéant et al. (2013) to a general framework suitable for practical use.
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1.7 Appendix: On the construction of the processes

N i,b and N i,a

Let us consider a new filtered probability space
(
Ω,F , (Ft)t∈R+ , P̃

)
. For the sake of

simplicity, assume that there is only one asset with size of transactions denoted by z and

risk limit Q (the generalization is straightforward). Let us assume that the reference price

of that asset is driven by a Brownian motion W as in Section 1.2.1. Let us introduce

N̄ b and N̄a two independent Poisson processes of intensity 1, independent of W . Let N b

and Na be two processes, starting at 0, solutions of the coupled stochastic differential

equation:

dN b
t = 1{zNb

t−−zNa
t−+z≤Q}dN̄

b
t ,

dNa
t = 1{zNb

t−−zNa
t−−z≥−Q}dN̄

a
t .

Then, under P̃, N b and Na are two point processes with respective intensities

λbt = 1{qt−+z≤Q} and λat = 1{qt−−z≥−Q},

where qt = zN b
t − zNa

t . For each δ ∈ A, we introduce the probability measure P̃δ given

by the Radon-Nikodym derivative

dP̃δ

dP̃

∣∣∣
Ft

= Lδt , (1.31)

where
(
Lδt
)
t∈R+ is the unique solution of the stochastic differential equation

dLδt = Lδt−

(∫
R∗+

(
Λb(δbt )− 1

)
dÑ b

t +

∫
R∗+

(Λa(δat )− 1) dÑa
t

)
,

with Lδ0 = 1, where Ñ b and Ña are the compensated processes associated with N b and

Na, respectively.

We then know from Brémaud and Jacod (1977) that under P̃δ, the jump processes N b

and Na have respective intensities

λδ,bt = Λb(δbt )1{qt−+z≤Q} and λδ,at = Λa(δat )1{qt−−z≥−Q}

as in Section 1.2.1. Since W is still a Brownian motion under P̃δ, our optimal control

problem can be seen as the choice of an optimal probability measure P̃δ.
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Chapter 2

Intraday option price dynamics

and spot volatility

2.1 Introduction

2.1.1 Classical stochastic volatility literature

Stochastic volatility has been a staple of mathematical finance and econometrics for

decades. From a time-series perspective, stochastic volatility can be present in the data

in the form of heteroskedasticity. The celebrated ARCH model by Engle (1982) can be

interpreted as a discrete-time stochastic volatility model for assets log returns. On this

front, we also highlight an empirical research by Andersen et al. (2001) that compares

daily log returns before and after normalising by volatility. More especifically, consider

the model1

d log(St) = µtdt+ σtdWt, (2.1)

where (St)t>0, (µt)t>0, (σt)t>0 and (Wt)t>0 denote the asset price, drift, volatility and

Brownian motion processes, respectively, with t measured in days. Motivated by (2.1),

they estimate, among other quantities, the empirical distributions of daily log returns

log(St+1/St) and daily standardised log returns log(St+1/St)/σ[t,t+1] for 30 Dow Jones

stocks, where σ[t,t+1] denotes the integrated volatility over the interval [t, t+ 1], i.e.

σ2
[t,t+1] =

∫ t+1

t

σ2
sds.

1For brevity, we adapted the model for log prices so our equations differ slightly from the original
ones in Andersen et al. (2001).
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The integrated volatility σ[t,t+1] is estimated with realised volatility on 5-minute samples

of last traded prices controlled for microstructure effects via a MA(1) filter. They have

reported that although the empirical distribution of daily log returns exhibit fatter tails

than normal distribution – in line with the literature –, the empirical distribution of daily

standardised log returns are remarkably close to the normal distribution, with median

kurtosis reducing from 5.416 (non-standardised log returns) to 3.129 (standardised log

returns).

Stochastic volatility models are also ubiquitous in the option pricing literature. An early,

yet still influential model is the Heston (1993) model. Risk-neutral pricing implies that

European-type option prices are an expectation of the risk-neutral distribution of the

underlying price at expiry. Stochastic volatility models are able to replicate the stylised

skewness and kurtosis of such price distributions. In Heston (1993)’s own words:

Conceptually, one can characterize the option models in terms of the first

four moments of the spot return (under the risk-neutral probabilities). The

Black and Scholes (1973) model shows that the mean spot return does not

affect option prices at all, while variance has a substantial effect. Therefore,

the pricing analysis of this article controls for the variance when comparing

option models with different skewness and kurtosis. [...] Correlation between

volatility and the spot price is necessary to generate skewness. Skewness in

the distribution of spot returns affects the pricing of in-the-money options

relative to out-of-the money options. Without this correlation, stochastic

volatility only changes the kurtosis. Kurtosis affects the pricing of near-the-

money versus far-from-the-money options.

The author also remarks on the impact of the “volatility of volatility” parameter to the

kurtosis of the distribution.

Of course, when calibrating the model to an entire implied volatility surface, we need

to fit multiple marginal distributions from a single set of parameters. In particular, a

challenge for stochastic volatility models is to fit the so-called at-the-money volatility

skew. The introduction of jumps was an early attempt to model the reproduce statistical

properties of the at-the-money volatility skew. More recently, rough volatility models

were also found to be able to replicate such properties. We have mentioned this fact to

illustrate some limitations of early stochastic volatility models, and we refer the reader

to a more in-depth discussion in Gatheral et al. (2018).

Despite its limitations, we will employ the Heston model in the analyses of this chapter,

due to its simplicity and ease of implementation. For further discussion on stochastic

volatility models, including a modern perspective of the Heston model, we refer the
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reader to the books Gatheral (2011) and Bergomi (2015).

2.1.2 Small time option price dynamics

Another aspect of an option pricing model – apart from describing a snapshot of the

implied volatility surface via marginal probability distributions – is its ability to accur-

ately describe how such implied volatility surface evolves over time, i.e. its dynamics.

These two facets of an option pricing model are well illustrated when comparing local and

stochastic volatility models. Local volatility models can be calibrated to tightly match

observed implied volatility surfaces, which makes it useful for option pricing consistently

across liquid and illiquid markets. However, the only risk factor in local volatility models

is the underlying price, which limits its applications to hedging and risk management.

Stochastic volatility models, on the other hand, are more restrictive on the shape of their

implied volatility surfaces it can generate but a sufficiently rich structure of stochastic

factors can describe the implied volatility dynamics more realistically. For a detailed

discussion on this topic, we refer the reader to Hagan et al. (2002) and Bergomi (2015).

In our regime of interest, small time option dynamics has been extensively studied in the

academic literature. From leading-order asymptotics of at-the-money call options Muhle-

Karbe and Nutz (2011), to small time functional central limit theorem of functions of

semimartingales Gerhold et al. (2015), to higher-order small time asymptotics for rough

volatility models Friz et al. (2021). The topic is usually studied in the point of view of

options near expiry, which presents a wide range of applications, such as: to identify the

leading order on which option prices converge to their payoff, (ii) to approximate the

implied volatility surface – thus providing in particular a useful parametrisation – (iii) to

approximate option prices for calibration purposes.

In this chapter, our focus is on the modeling of intraday dynamics of option prices,

possibly far away from expiry. In particular, given the empirical nature of this chapter,

we are interested in the observed P dynamics of option prices, in which case the martingale

property of option price processes cannot be assumed. We describe precisely this point

of view in the following Proposition 7.

We consider a setting in which the market can be incomplete. From the fundamental

theorems of asset pricing the market is arbitrage-free if and only if there exists an equi-

valent martingale measure (ELMM) and is only unique for complete markets. Given that

we are in the incomplete market setting, we take the approach in which we are given

an ELMM Q and derive the dynamics of an arbitrage-free price process for an option

(Ct)t∈[0,T ] with payoff function f . For what follows, we also assume interest rates equal

to zero – the non-zero interest rate case can be achieved by using the T -forward measure
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as the Q measure.

Proposition 7. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space that satisfies the

usual conditions, let Q be probability measure equivalent to P and let the state process

(Xt)t∈[0,T ] be an Rd-valued continuous process of the form

dXt = µtdt+ σtdWt, (2.2)

= µQ(t,Xt)dt+ σQ(t,Xt)dW
Q
t , ∀t ∈ [0, T ], (2.3)

X0 = x0 ∈ Rd a.s.,

dWQ
t = θtdt+ dWt, ∀t ∈ [0, T ], (2.4)

where (µt)t∈[0,T ], (σt)t∈[0,T ] and (θt)t∈[0,T ] are adapted Rd, Rd×n and Rd-valued processes,

respectively, that are continuous and square-integrable, i.e.

E

[∫ T

0

(
‖µt‖2 + ‖σt‖2

F + ‖θt‖2) dt] <∞, (2.5)

where ‖·‖F denotes the Frobenius norm, µQ : [0, T ] × Rd → Rd and σQ : [0, T ] × Rd →
Rd×n are continuous functions, and (Wt)t∈[0,T ], and (WQ

t )t∈[0,T ] are adapted n-dimensional

vector independent Brownian motions under P and Q, respectively.

Given an FT -measurable and bounded function f : Rd → R with EQ[|f(XT )|] <∞, define

the option price process (Ct)t∈[0,T ] with

Ct := EQ [f(XT ) | Ft] , ∀t ∈ [0, T ].

Then, there exists a function ϕ : [0, T ]× Rd → R such that

Ct = ϕ(t,Xt), ∀t ∈ [0, T ]. (2.6)

Furthermore, if ϕ is of class C1,2([0, T )×D), where D ⊆ Rd is a set that contains an open

neighbourhood of x0 and

P (Xt ∈ D, ∀t ∈ [0, T )) = 1,

then the processes (Xt)t∈[0,T ] and (Ct)t∈[0,T ] admit the small time asymptotics

1√
t

∥∥∥X i
t − X̃ i

t

∥∥∥
L2(P)

t→0−−→ 0, ∀i ∈ {1, . . . , d} (2.7)

1√
t

∥∥∥Ct − C̃t∥∥∥
L2(P)

t→0−−→ 0, (2.8)
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where ∇x denotes the gradient operator with respect to x and

X̃t = X0 + σ0Wt, C̃t = C0 +∇xϕ(0, X0) ·
(
X̃t − X̃0

)
, ∀t ∈ [0, T ].

Proof. See Appendix 2.7.1.

To illustrate Proposition 7, we use the Heston model as an example. Under Q, the

(discounted) state process is the pair (Xt = (logSt, Vt))t∈[0,T ] with

d(logSt) = −1

2
Vtdt+

√
VtdWt,

dVt = κ (θ − Vt) dt+ ν
√
VtdZt,

d[W,Z]t = ρdt,

(2.9)

where (Wt, Zt)t∈[0,T ] is a pair of correlated Q-Brownian motions. Let L be a lower-diagonal

matrix of the Cholesky decomposition of the correlation matrix[
1 ρ

ρ 1

]
= LL>,

then we can identify the coefficients in (2.3) with

µQ(t, St, Vt) =

[
−1

2
Vt

κ (θ − Vt)

]
, σQ(t, St, Vt) =

[√
Vt 0

0 ν
√
Vt

]
L.

As for the process (θ)t∈[0,T ], even though we emphasize the importance of the P dynamics

– as it is the measure in which we observe the underlying and option prices move –, we

only need to know the precise parametrisation under Q and assume that the conditions

on (θ)t∈[0,T ] are relaxed enough so that in encompasses a realistic choice of (θt)t∈[0,T ] for

the model under P. We thus illustrate this example for the particular case of θ ≡ 0.

With θ ≡ 0, the square-integrability conditions (2.5) are met when V 2
t < ∞ for all

t ∈ [0, T ]. We remark that (Vt)t∈[0,T ] is the CIR process. Under the Feller condition

2κθ > ν2, it is well known that all moments of the CIR process are finite due to its link

to the noncentral χ2 distribution.

The boundedness of the function f can be achieved with the put option payoff function.

Besides, a call option would also enjoy the small time asymptotics via put-call parity and

the small time asymptotics of the underlying price in (2.7) and put option price in (2.8).

Finally, the assumption that put option formula ϕ is of class C1,2([0, T ] ×D) under the

Heston model deserves attention. The classical conditions to ensure that the PDE that
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ϕ ∈ C1,2([0, T ]×D), such as that the PDE is uniformly elliptic, does not hold. However,

Heath and Schweizer (2000) provide a new set of sufficient conditions2 that can be applied

to popular option pricing models, including the Heston model with the Feller condition.

The small time asymptotics can thus be applied to the Heston state process and vanilla

option price process, namely

S̃t = S0 +
√
V 0S0Wt, Ṽt = ν

√
V 0Zt,

C̃t = C0 + ∂sϕ(0, S0, V0)
(
S̃t − S̃0

)
+ ∂vϕ(0, S0, V0)

(
Ṽt − Ṽ0

)
, ∀t ∈ [0, T ].

Proposition 7 adapts existing results into the context we are interested in. For instance,

the small time asymptotics of the state process (2.7) is very similar to Proposition 2.1

in Muhle-Karbe and Nutz (2011) and in particular its Heston model example in Corol-

lary 2.1. Muhle-Karbe and Nutz (2011), however, require the martingale assumption,

so the small time asymptotics is only applicable for the Q dynamics of the underlying

price and option price processes, whereas Proposition 7 encompasses the full state process

(including the underlying volatility) and the option price process under P.

Another related result is Theorem 3 in Gerhold et al. (2015), which is a functional central

limit theorem for the small time process of the form (f(Xt))t∈[0,T ], where (Xt)t∈[0,T ] is

an Itô semimartingale with mild regularity assumptions and f is a twice differentiable

multivariate function. The functional central limit theorem is a weak convergence result.

In contrast, our Proposition 7 requires strong assumptions, which enables a stronger mode

of convergence. The L2(P) convergence in (2.7) and (2.8) show that Brownian motion

in the asymptotic process is the same as in the original state process – a minor detail,

which nonetheless helps in building intuition for the convergence result.

The goal of Proposition 7 is to state with precision how the option price moves at small

time scales under the P measure in tandem with its driving factors in the same regime.

We discuss this result further in Section 2.3.

2.1.3 Empirical studies on options and volatility

Volatility is usually studied as one of the following incarnations: spot volatility, his-

torical volatility and implied volatility. Under the lens of a stochastic volatility model,

spot volatility is typically part of the state process and thus a direct driver of option

prices. Other more complex stochastic volatility models might model the forward volat-

ility curves, such as the N-factor Bergomi model and rough volatility models. The spot

2See also Theorem 4.7 in Ruf (2013) which requires slightly weaker conditions.
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volatility, however, is a latent variable, and as such it is usually estimated via historical

or even implied volatility, taking advantage of the theoretical relationship among these

three concepts – see Lee (2005) for a review.

Estimating historical volatility using high-frequency data is subject to another difficulty:

microstructure noise. Several methods have been proposed to address microstructure

noise, see e.g. Robert and Rosenbaum (2011) and the book Aı̈t-Sahalia and Jacod

(2014). Furthermore, the approximation of spot volatility by integrated volatility is

another source of error. Some methodologies to estimate spot volatility, such as in

Kristensen (2010), provide such error estimates. A recent study using transactional tick

data from S&P 500 E-mini futures have reported a maximum granularity of approxim-

ately 30 minutes for spot volatility estimations to stay within a reasonable noise-to-signal

ratio range – see Section 5 in Bennedsen et al. (2021).

Estimating spot volatility via implied volatility seems more difficult, but there are em-

pirical studies that take this approach. For instance, Livieri et al. (2018) have used daily

at-the-money implied volatilities near expiry as proxies for spot volatility. They were able

to find evidence of rough volatility, although they have also reported that the estimate is

biased due the applied methodology. For intraday spot volatility estimates, however, we

are not aware of any research pursuing this approach.

On the topic of intraday option price dynamics and spot volatility, the only empirical

study that we are aware of is Abergel and Zaatour (2012). They have used tick data

on options and futures on Eurostoxx 50, Dax 30 and Kospi 200 with the goal of finding

whether quadratic variation is a driver of option prices. They have used the Epps effect on

correlations between option and futures price to find a reasonable sampling frequency of

5-minutes. Quadratic variation was then estimated via realised volatility every 5 minutes

on a 25-minute sliding window of log-prices sampled every second. Alternatively to

realised variance, they have also used the method in Garman and Klass (1980) to estimate

quadratic variation which they claim to be less sensitive to microstructure noise. Then,

they have compared two linear regression analyses: a single linear regression of option

log returns against the underlying future log returns and a multiple linear regression with

the addition of the realised variance changes. They have reported that, between the two

regressions, both the estimated regression coefficient on the underlying future component

and the R2 between the two regressions has remained unchanged. In conclusion, they

have found no evidence that quadratic variation is a driver of option prices.

Given the aforementioned difficulties in estimating intraday spot volatility, it would not

be unreasonable to believe that the multiple linear regression analysis failed to capture

the effect of spot volatility changes on option log returns due to noise. Indeed, we can

identify several sources of noise: the approximation of spot volatility by realised volatility,

56



microstructure noise and the overlapping sliding windows of consecutive realised volatility

estimates. As for microstructure noise, it would be more suitable to use an estimator

designed to filter out or be robust against microstructure noise. In Garman and Klass

(1980), the estimator seems to be developed as a method to make full use of open-high-

low-close data, rather than addressing microstructure noise specifically.

Some related studies are also worth mentioning. In Cont et al. (2002), the implied volat-

ility surface dynamics is empirically studied endogenously via spectral decomposition.

The high-frequency dynamics of the implied volatility surface is studied mathematically

in Baldacci (2020) linking Hawkes processes to factors such as level, slope and curvature.

2.1.4 Main contributions

Our main goal is to improve the understanding of the role of stochastic volatility in

intraday option price dynamics. More specifically, we empirically assess its first-order

status as is suggested by the small-time asymptotic result in Proposition 7. Given that

option prices are a nonlinear function with respect to its underlying price, one could also

expect that second-order factors such as the underlying squared log-returns could have a

stronger effect than spot volatility even at small time scales.

Having described the difficulties in estimating spot volatility at fine granularity using

time series data, we propose an alternative method that does not rely on the underlying

price time series but instead uses snapshots of option prices. Given a stochastic volatility

model – here, we employ the Heston model –, the spot volatility can be recovered by the

recalibration of the spot volatility variable while keeping the remaining model parameters

fixed. Indeed, if we follow the Heston model by the letter, spot volatility V0 is a latent

variable which is part of the state process and all other parameters (κ, θ, ν and ρ) are

constants.

To the best of our knowledge, the recalibration of an option pricing model to estimate

spot volatility is novel. We highlight that model recalibration itself is a well-studied

topic. In Buehler (2006), for example, arbitrage-free model recalibration is studied in

the context of recalibrating not only the state variables but also model parameters that

would be assumed to be constant by the original model – thus the act of recalibrating such

parameters would imply the extension of the original model to a meta-model. We instead

follow the original model for which we know precisely the governing dynamics of the model

and, in the case of the Heston model, that it fulfills the conditions of Proposition 7. Our

contribution is in having model recalibration as the means for estimating spot volatility.

The reliance of the method in the choice of a particular option pricing model comes,
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of course, at the cost of model bias. This is a tradeoff that we are willing to take in

order to obtain a much finer granularity on spot volatility estimates at the timescale of

seconds, which does not seem to be possible via the time-series approach. We discuss

this limitation on the time-series approach in more details in Section 2.3.

Equipped with our granular spot volatility estimation and motivated by the linear ap-

proximation obtained with the small time asymptotics, we perform a linear regression

on option price changes with respect to its underlying price and volatility changes in

Section 2.4. The regression coefficients are effectively estimates of the Heston first-order

Greeks, with which we compare. Our results indicate that the regression coefficients are

aligned with the Heston first-order Greeks and that the second-order effects from the un-

derlying price changes squared are negligible. We further conduct an analysis to quantify

the contribution of spot volatility changes that cannot be explained by the underlying

price changes.

In the context of the thesis, in the previous chapter we have investigated multi-asset

market making in the ergodic regime. In the next chapter, we propose options market

making in a small horizon regime. The latter regime is in resonance with the small time

asymptotics that we study in this chapter. Therefore, this chapter provides a theoretical

and empirical motivation for the market making model proposed in the next chapter.

2.1.5 Dataset and source code

The empirical analysis is done on Euro Stoxx 50 options tick quotes data resampled at

1-second granularity. The dataset spans from 22 November 2021 to 16 December 20211,

which starts on the business day following the 19 November 2021 option expiry date and

ends the day before the 17 December option expiry date. A summary description of the

dataset is shown in Table 2.1. The underlying forward price time series and interest rate

term structure are obtained via put-call parity as explained in Section 2.2.

The source code for the data analysis is available online3. It is written in Python and

uses several open-source libraries. We list them by their role in this paper.

• Heston implementation

– Fyne (Vieira, 2020)

• Statistical

– ARCH (Sheppard et al., 2020)

3See https://github.com/dougmvieira/phd-thesis-data-analysis.
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Active options Mid-price changes

min median mean max min median mean max
expiry

2021-12-17 63 96 184.4 368 502,289 1,438,384 5,131,799.3 21,726,774
2022-01-21 71 98 155.9 302 473,453 1,846,570 5,235,255.0 19,131,413
2022-02-18 40 89 142.4 260 609,294 2,418,363 6,527,861.7 20,983,439
2022-03-18 42 78 171.9 366 1,373,316 4,413,055 10,641,834.7 30,627,963
2022-04-14 2 15 50.4 257 54,660 946,325 5,735,217.8 18,696,776
2022-05-20 0 3 29.3 91 0 149,987 4,397,388.5 13,885,170
2022-06-17 28 39 91.7 190 1,552,464 3,133,436 7,528,210.9 19,061,507
2022-09-16 8 25 73.2 168 361,657 1,310,148 6,873,333.4 21,875,047
2022-12-16 13 49 100.5 214 810,932 3,236,768 10,058,118.7 29,411,099
2023-03-17 0 2 60.6 162 0 130,175 5,939,196.1 20,565,618
2023-06-16 0 6 95.2 252 0 437,789 12,229,296.8 44,285,754
2023-09-15 0 1 33.0 92 0 100,761 5,528,575.2 18,882,990
2023-12-15 2 6 35.4 95 86,344 498,257 4,792,903.3 16,748,657
2024-06-21 0 0 24.2 66 0 0 2,246,601.5 8,704,599
2024-12-20 0 1 28.5 78 0 61,661 2,399,767.1 9,227,876
2025-12-19 0 1 29.1 79 0 39,180 1,895,997.4 7,212,144
2026-12-18 0 0 0.4 1 0 0 0.4 1
2027-12-17 0 0 0.1 1 0 0 0.1 2
2028-12-15 0 0 0.2 1 0 0 0.4 4
2029-12-21 0 0 1.6 5 0 0 2.7 11
2030-12-20 0 0 0.4 1 0 0 2.4 29
total 359 474 1,308.2 2,993 6,825,749 18,406,413 97,161,363.4 287,101,368

Table 2.1: Summary daily statistics of the options quotes dataset
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– Statsmodels (Seabold and Perktold, 2020)

• Data structures

– xarray (Hoyer and Hamman, 2020)

2.1.6 Structure of the chapter

In Section 2.2, we present the bootstrap methodology to extract the underlying forward

price time series and interest rate term structure from options data, and show the Heston

model calibration results. In Section 2.3, we discuss the small time option asymptotic

result and its implications on spot volatility estimation, and then proceed to estimate spot

volatility from options data. In Section 2.4, we perform the linear regression analysis on

options prices and volatilities, we compare the estimated Greeks with what is expected

from the calibrated Heston model, and then quantify the effect of volatility on option

price changes.

2.2 Bootstrap methodology

2.2.1 Overview

In this section, we aim at recovering the underlying forward prices and the interest rate

term structure using only option quotes. For short expiries, data for the corresponding

futures are readily available and could be used as discounted forward prices, however at

long expiries option prices present tighter spreads than the corresponding futures. We

also need to untangle the effects of dividend yields and interest rates to price options

consistently. Having a methodology to extract the forward prices and interest rates

using only options quotes is worthwhile because it provides a systematic approach in

obtaining such quantities across all expiries that is accurate enough to feed into the

option pricing model. Furthermore, even though options might not be traded as much

as its corresponding future, their quotes are frequently updated as we can observe from

Table 2.1.

The bootstrapping methodology we present relies only on put-call parity and on the

structure of dividend yields and bonds, hence it does not require specific assumptions on

the stochastic dynamics of the underlying price process. The overall methodology can be

summarised in the following steps:

1. Construct synthetic forwards as a combinations of calls and puts
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2. Extract a normalised underlying price process via PCA

3. Assuming an affine form for the dividends, perform a linear regression on the nor-

malised underlying price process using the synthetic forwards and strikes of each

expiry

4. The forwards and interest rate term structures are obtained from the regression

coefficients.

Relying on the regression coefficients after assuming a particular form for the dividends

could seem arbitrary at first glance, however, as we see later, these seem sensible steps.

Ideally, one would only rely on no-arbitrage arguments. Unfortunately, using no-arbitrage

arguments alone provide no-arbitrage bounds for such quantities which are too wide for

practical use and that are sensitive to too few options – see Appendix 2.6 for more details.

Thus, the extra assumptions allows us to obtain sensible quantities that are robust to

fauly price changes on individual options.

The proposed bootstrapping technique is presented by introducing and showing the res-

ults of each step. In Section 2.2.2, we recover the normalised underlying price process via

PCA. In Section 2.2.3, we perform the linear regression that extracts the forward price

time series and the interest rate term structure. Finally, we calibrate the Heston model

using the bootstrapped forwards and interest rates in Section 2.2.4.

2.2.2 Normalised underlying price process via PCA

We start by formally stating the put-call parity result that is used for the proposed

methodology. Let Cbid
t,T,K , Cask

t,T,K , P bid
t,T,K and P ask

t,T,K denote the bid and ask prices of

European call and put options at time t with expiry T and strike K. Let St denote the

price of its underlying at time t. Let Bt,T denote the price of a T -maturity zero-coupon

bond at time t with BT,T = 1. Let Ft,T be the forward price4 at time t on the same

underlying with expiry T . We assume that: (i) there are no arbitrage opportunities and,

(ii) for a given strike K and expiry T , that both the call and put options with strike K

and expiry T are tradeable, as well as the corresponding forward contract with expiry T .

Then, Bt,T and Ft,T must follow the put-call parity inequalities

Cbid
t,T,K − P ask

t,T,K 6 Bt,TFt,T −Bt,TK 6 Cask
t,T,K − P bid

t,T,K . (2.10)

Note that we have stated the inequalities with the forward price instead of the underlying

4For clarity, we denote by ‘forward price’ the strike of a forward contract such that its present value
is zero.
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price so that the result holds whether or not the underlying pays dividends. In particular,

if the underlying is dividend-free, then St = Bt,TFt,T . For completeness, we provide a

formal no-arbitrage argument for the above inequalities in Appendix 2.6.1.

The main idea is to use the synthetic forward prices Ct,T,K − Pt,T,K to find a common

driver that is equal to the underlying price up to an affine transformation. On the other

hand, the two variables we need to estimate Bt,T and Ft,T are time and strike dependent,

so we need to assume some structure to obtain sensible estimates of the underlying price

process at each time t. Considering we are in the intraday regime, we can afford to freeze

some variables in time – i.e. assume they are approximately constant in the day. In this

respect, we assume that the bond prices are constant in time, i.e. Bt,T = BT , and assume

an affine dividend structure of the form

Bt,TFt,T = D0
T +D1

TSt, (2.11)

where D0
T , D

1
T ∈ R are constants that for each expiry T . Intuitively, we assume that the

dividends issued between t and T have an unconditional component D0
T and a component

D1
T that is proportional to the company’s equity. Then, (2.10) becomes

Cbid
t,T,K − P ask

t,T,K 6 D0
T +D1

TSt −BTK 6 Cask
t,T,K − P bid

t,T,K .

We heuristically approximate the middle term by the mid-point of the bounds i.e. the

mid-price of the synthetic futures, so as to obtain

D0
T +D1

TSt −BTK ≈ F synthetic
t,T,K :=

(
Cbid
t,T,K − P ask

t,T,K

)
+
(
Cask
t,T,K − P bid

t,T,K

)
2

. (2.12)

If we take the difference in time at every interval of size h of the left-hand side, then BTK

and D0
T are canceled out and we obtain D1

TSt+h −D1
TSt. We can further cancel out D1

T

by normalising by the standard deviation, so we obtain

St+h − St√
Var (St+h − St)

≈
F synthetic
t+h,T,K − F

synthetic
t,T,K√

Var
(
F synthetic
t+h,T,K − F

synthetic
t,T,K

) (2.13)

from which we can recover the normalised underlying price process by integrating in time.

Later, in Section 2.2.3, we revert the normalisation to obtain the forward price processes.

Note that the left-hand side in (2.13) does not depend on neither strike nor expiry.

Therefore, each synthetic future can be used to estimate the normalised underlying price

process. It remains to aggregate the estimates in a sensible way. We do so by performing

PCA on all normalised synthetic forward prices and collecting the first component. In
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Figure 2.1: Normalised underlying price time series as obtained via the bootstrap meth-
odology compared with the normalised mid-price of an in-the-money option with strike
4000 and shortest expiry – for reference, Euro Stoxx 50 closed at 4,108 on the same day.
The normalisation of the option price is done via removing the average mid-price and
dividing by standard deviation of the mid-price changes.

this manner, we also hope to average out microstructure effects from our underlying price

process estimate, and thus should belong to the second and higher principal components.

The methodology for extracting the underlying price process up to an affine transforma-

tion is then summarised as

1. Collect all the synthetic forward contract bid and ask quotes,

2. For each synthetic forward, compute the mid-price changes and normalise by the

standard deviation,

3. Perform PCA on the normalised mid-price changes,

4. Integrate the first principal component in time to obtain the normalised underlying

price process.
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Figure 2.2: The upper plot shows the weights of the first principal component across the
strikes and expiries of the synthetic forwards. The lower plot shows the relative variance
explained by the first ten principal components.
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By applying this methodology on the Euro Stoxx 50 index options, we obtain the time

series depicted in Figure 2.1. The corresponding PCA results are depicted in Figure 2.2.

The recovered normalised underlying price process passes the visual sanity check by

being similar to the in-the-money option. As for the PCA results, we can observe that

the weights are higher for options close to expiry and near the money – this is likely due

to their tighter spreads.

2.2.3 Forwards and bonds prices regression

Revisiting the dividend form (2.11) and the approximation in (2.12), we have just estim-

ated the normalised version of St and so we are ready to find the forward prices Ft,T .

Denote by S̃t the normalised underlying price, then we perform, for each expiry T , a

linear regression based on the following equation

F synthetic
t,T,K = D̃0

T + D̃1
T S̃t −BTK. (2.14)

In the context of deriving no-arbitrage bounds for bonds and interest rates, Figure 2.32

depicts the snapshot of synthetic forwards quotes versus the strike for various expiries.

As for the choice of the loss function of the linear regression, ideally we would like to

find estimates for D̃0
T , D̃1

T and BT such that the fitted time series would lie inside within

the bid-ask spread of the synthetic futures. To find such loss function, we consider a

family of power loss functions and properly normalise the residuals by the half-spread.

Proposition 8 guides our choice for the exponent of the power loss function.

Proposition 8. Let {y
i
, ȳi, xi}Ni=1 be a dataset with y

i
, ȳi ∈ R, y

i
< ȳi and xi ∈ Rd for

each i ∈ {1, . . . , N} and define the feasible region of linear constraints

F :=
{
β ∈ Rd : y

i
< β>xi < ȳi, ∀i ∈ {1, . . . , N}

}
. (2.15)

If F is non-empty, then there exists p0 ∈ [1,∞) such that, for every p ∈ (p0,∞], β∗ ∈ F ,

where β∗ is a solution to the optimisation problem

inf
β∈Rd

∥∥(ỹ1 − β>x̃1, . . . , ỹN − β>x̃N
)∥∥

p
, (2.16)

and

ỹi =
(y
i
+ ȳi)/2

(ȳi − yi)/2
, x̃i =

xi
(ȳi − yi)/2

, ∀i ∈ {1, . . . , N}.

Proof. See Appendix 2.7.2.
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Proposition 8 states that if the linear constraints (2.15) is satisfied, then by choosing

sufficiently high power p > p0 then our linear regression will find coefficients β that satisfy

the constraint. Notice that if p = 2, the loss function (2.16) is the familiar ordinary least

squares. Hence, we perform the linear regression on the synthetic forwards bid and ask

quotes and, if p0 < 2, Proposition 8 states that the fitted prices lie within the bid-ask

spread.

Therefore, the complete methodology for recovering the forwards and interest rate term

structure is summarised in the following steps:

1. Recover the normalised underlying price time series as in Section 2.2.2,

2. Group the synthetic forward contract bid and ask quotes for each expiry,

3. Perform the linear regression in (2.14) via ordinary least squares,

4. Collect the coefficient BT as in (2.14) to obtain the interest rate term structure for

each expiry,

5. Revert the affine structure of dividends with D̃0
T + D̃1

T S̃t as in (2.14) to obtain The

forward price time series for each expiry.

Figure 2.3 shows the estimated forward price time series and interest rate term structure,

respectively. We clearly see the effect of dividends on the discounted forward prices

across the different expiries as the longer expiries the more heavily the discount due

to accumulated dividend. The estimated interest rate term structure should reflect the

interest rate term structure for the Euro. For reference, the Euro Stoxx 50 Index was at

4,1085 and the Euro short-term rate €STR was at -0.575%6 on 2 December 2022. The

discontinuity around the expiry 20 May 2022 can be attributed to small sample size – see

Table 2.1.

The goodness of fit of the regression can be assessed by whether the fitted synthetic for-

wards are indeed within the observed bid-ask spreads of the synthetic forwards. Table 2.2

shows the goodness of fit in this point of view. We can observe that the fitted synthetic

forwards for most expiries remain within the discounted forward bid-ask spread – the ex-

ception being the 14 April and 20 May 2022 expiries which suffer from the small sample

size. The maximum relative spread – i.e. the spread between the fitted price and the

mid-price divided by the observed half-spread – is mostly tight for the closest expiries,

5Qontigo. EURO STOXX 50. Retrieved from https://www.stoxx.com/index-details?symbol=

SX5E.
6European Central Bank, Statistical Data Warehouse. Euro short-term rate data – Volume-weighted

trimmed mean rate. Retrieved from https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=438.

EST.B.EU000A2X2A25.WT.
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Figure 2.3: Estimated discounted forward price time series for each expiry (upper) and
estimated interest rate term structure (lower) on 2 December 2022.
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Maximum spread Estimates within spreads
expiry

2021-12-17 94.202% 100.000%
2022-01-21 93.176% 100.000%
2022-02-18 81.701% 100.000%
2022-03-18 74.356% 100.000%
2022-04-14 189.162% 98.896%
2022-05-20 110.718% 99.968%
2022-06-17 68.093% 100.000%
2022-09-16 55.318% 100.000%
2022-12-16 72.110% 100.000%
2023-03-17 59.482% 100.000%
2023-06-16 73.228% 100.000%
2023-09-15 64.657% 100.000%
2023-12-15 63.101% 100.000%
2024-06-21 61.340% 100.000%
2024-12-20 70.869% 100.000%
2025-12-19 71.317% 100.000%

Table 2.2: Goodness of fit of the linear regression as measured by the relative spread of
the fitted synthetic forwards compared to the observed synthetic forwards quotes.

V0 0.047471
κ 3.646890
θ 0.048739
ν 0.596065
ρ -0.809805

Table 2.3: Calibrated Heston parameters.

but the gap widens on longer, less liquid expiries. We conclude that the assumptions of

the affine structure for dividends and constant intraday bond prices are flexible enough to

obtain fitted values within the synthetic forwards bid-ask spread and, by using ordinary

linear squares, we find that p0 < 2.

2.2.4 Model calibration

Having explained the bootstrapping methodology we are now ready to calibrate the He-

ston model parameters with option prices. We recall that we use the dynamics (2.9) for

the discounted forward price dynamics. On the option pricing side, given a risk-neutral

measure Q and a short rate process (rt)t∈[0,T ], we price a call option with expiry T and
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Figure 2.4: Calibrated Heston implied volatilities (solid blue line) versus market bid and
ask implied volatilities (orange markers) on 2 December 2022 at 12pm. Implied volatilities
with positive log-moneyness are from call options and implied volatilities with negative
log-moneyness are from put options. Log-moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.5: Calibrated Heston implied volatilities (solid blue line) versus market bid and
ask implied volatilities (orange markers) on 22 November 2022 at 12pm. Implied volatilit-
ies with positive log-moneyness are from call options and implied volatilities with negative
log-moneyness are from put options. Log-moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.6: Calibrated Heston implied volatilities (solid blue line) versus market bid and
ask implied volatilities (orange markers) on 16 December 2022 at 12pm. Implied volatilit-
ies with positive log-moneyness are from call options and implied volatilities with negative
log-moneyness are from put options. Log-moneyness is computed as log(K/St)/

√
T − t.
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strike K with

Ct = EQ
[
e−

∫ T
t rsds(FT,T −K)+

∣∣∣Ft] , ∀t ∈ [0, T ].

If we further assume that the short-rate process is independent of the forward price

process we have that

Ct = EQ
[
e−

∫ T
t rsds

∣∣∣Ft]EQ [(FT,T −K)+|Ft]

= Bt,TEQ [(FT,T −K)+|Ft]
= EQ [(Bt,TFT,T −Bt,TK)+|Ft] , ∀t ∈ [0, T ].

Of course, the same argument also follows for put options. Therefore, we can apply the

discounting directly to the data and avoid embedding interest rates to the model. We use

the discounted forward price and discounted strike, but one could alternatively inflate

the option prices – i.e. divide the option prices by the bond price – and use the forward

price and strikes with no discounting.

In reality, interest rates have an inverse relationship with equity indices. Given that in-

terest rates here are used only for discounting, we believe this effect to be minimised. Also

note that the independence assumption is weaker than the assumption of deterministic

interest rates.

For the assumptions of Proposition 7 to be satisfied, we need to enforce the Feller con-

dition. It is often mentioned in the literature, see e.g. Da Fonseca and Grasselli (2011),

that the Feller condition is violated when calibrating the Heston model – in fact, even the

analogous Gindikin condition for Wishart model is reported to be violated in Da Fonseca

and Grasselli (2011). This means that enforcing the Feller condition to the model calib-

ration is a considerable toll on goodness of fit. Intuitively, it restricts the how heavy the

tails of the marginal distributions can be via the vol-of-vol parameter ν relative to the

mean-reversion parameter κ.

On another hand, our focus is on the impact of spot volatility on option prices, which

should be stronger for options that are near the money. Therefore, even though the model

might not fit well at the tails, the central part of the distribution is more likely to be

relevant. One could argue that the Heston model by construction does not realistically

model the tail distribution of log returns, which is asymptotically exponential in the

model and asymptotically power-law in empirical studies – see Dragulescu and Yakovenko

(2002). The consistent violation of the Feller condition could be a reflection of the

mismatch on the tail behaviour between the model and data, i.e. when considering a

strip of options in a finite range of strikes, in order to achieve a tail decay akin to a

power-law, the exponential decay rate must be small.
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In summary, the Heston model, in particular with the Feller condition enforced, suffers

from two limitations. In Section 2.1.1, we have stated that the Heston model is unable to

replicate the at-the-money volatility skew with fidelity. In this section, we also highlight

the limitations with respect to the tails of marginal distributions. Taking these limitations

into account, we restrict the model calibration to just three expiries (second to fourth

expiries) and we use as the loss function the squared relative deviation of option prices,

namely (
CHeston
t,K,T − Ct,K,T

)2

C2
t,K,T

.

Using the squared relative deviation as opposed to the squared absolute deviation is

common in the literature – see Da Fonseca and Grasselli (2011) for a discussion. We

have noticed, however, that our calibration results were quite sensitive as to how the loss

function is normalised. This is likely due to the lack of flexibility imposed by the Feller

condition. We opt for the price normalisation so that we put more weight on options

near and out of the money.

We calibrate the full Heston model once on the snapshot of 12 pm on 2 December 2022,

which is in the middle of the dataset. Then, we recalibrate for the spot volatility para-

meter for all other time slices. The calibrated model parameters for the 2 December

snapshot is shown in Table 2.3. The smile fit for 2 December is depicted in Figure 2.4.

The smile fit for the first and last day of data are also shown in Figures 2.5 and 2.6.

Looking at the parameters in Table 2.3, we see that the optimal parameters are at the

constraint border imposed by the Feller condition. We can see this reflected in Figure 2.4,

where the model smiles are considerably flat compared to the market smile, especially

when close to expiry. The Figures 2.5 and 2.6 are a sanity check that the model calibration

does not look too different when using the same κ, θ, ν and ρ for other dates and we also

notice the difference in the number of active options among these three dates.

2.3 Volatility estimation

2.3.1 Overview

In this section, we estimate spot volatility using the method we propose based on the

Heston model recalibration. In Section 2.3.2, we revisit the small time asymptotics in the

context of spot volatility estimation to motivate our proposed method. In Section 2.3.3,

we estimate spot volatility in a controlled study using simulated option quotes with the

Heston parameters we found in the previous section. Finally, in Section 2.3.4, we estimate
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spot volatility using real options data and compare with the findings of the controlled

experiment.

2.3.2 Limitations in spot volatility estimation via realised volat-

ility

In Section 2.1.3, we have mentioned that estimating spot volatility via realised volatility is

subject to two types of errors: microstructure noise and approximation of spot volatility

by integrated volatility. To make this more precise, let us revisit the continuous SDE

model (2.1). We wish to estimate the spot volatility σt. For simplicity, we consider the

historical volatility estimate as realised volatility, i.e.

σ̂2
[t,t+Nh] =

N∑
i=1

log

(
St+(i+1)h

St+ih

)
,

where N ∈ N is the number of samples and h measures the sampling frequency. Realised

volatility is a consistent estimator of integrated volatility σ[t,t+Nh] as N → ∞ with con-

stant horizon Nh. If the horizon Nh is small, then spot volatility can be approximated by

integrated volatility. Therefore, we can identify three sources of error: (i) measurement

error σ̂[t,t+Nh] − σ[t,t+Nh], (ii) “localisation” error σ[t,t+Nh] − σt and (iii) microstructure

noise, which is exogenous and include effects such as the bid-ask bounce and rounding

error.

The typical scenario for integrated volatility estimation is for daily volatility estimates.

In this case, sampling prices at finer granularity is motivated by the goal of reducing

measurement error. Then, if the sampling granularity is too fine, e.g. by using tick data,

then estimates are subject to microstructure noise. Therefore, several methods have been

developed to this end – as those mentioned in Section 2.1.3. In the context of the above

example, the horizon Nh is constant, so better estimates are obtained by increasing the

number of samples N and, consequently, reducing h. However, when the object of study

is intraday spot volatility, we need to control both the measurement error, but also the

localisation error, and for the latter we need a small horizon Nh→ 0.

For the regime in which Nh → 0, it is useful to analyse measurement errors from the

point of view of small time asymptotics. On the Heston example for Proposition 7, we

have seen that the volatility of (St)t∈[0,T ] is asymptotically constant at small time scales.

This intuitively means that the finer the granularity the more difficult it is to estimate

volatility from sample paths of (St)t∈[0,T ]. This difficulty corresponds to the measurement

error.
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To illustrate this difficulty, suppose that we are estimating spot variance for a process

(st := σtWt)t∈[−T,T ] at two consecutive time intervals [−τ, 0] and [0, τ ] using realised

variance and fix the number of samples N for each time interval. If τ is small enough,

then st ≈ σ0Wt for t ∈ [−τ, τ ], so that the both estimates σ̂[−τ,0] and σ̂[0,τ ] will be σ2
0 plus

the measurement error – which follows the χ2 distribution under the small time regime.

Therefore, any change from one estimate to the other would not reflect the change from,

say, σ2
[−τ,0] to σ2

[0,τ ], but it would be purely χ2-distributed noise.

Notice that, by keepingN constant and decreasing the time step τ , the sampling frequency

N/τ increases. However, it does not increase quickly enough to yield sensible granular

estimates. A natural question to ask is how frequently do we need to sample in order

to control the measurement error. The following proposition answers this question for a

specific toy model.

Proposition 9. Let (st, σt)t>0 be stochastic processes that follows the SDEs

dst = σtdWt,

dσt = νdZt,

where ν > 0, s0, σ0 ∈ R and (Wt, Zt)t>0 is a vector of independent Brownian motions.

Define the realised variances on [−T, 0] and [0, T ]:

σ̂2
± =

1

T

N∑
i=1

(
s±iT/N − s±(i−1)T/N

)2
.

Then, σ̂2
+ and σ̂2

− are unbiased estimators of integrated variance, i.e.

E
[
σ̂2

+

]
=

1

T
E

[∫ T

0

σ2
t dt

]
, E

[
σ̂2
−
]

=
1

T
E

[∫ 0

−T
σ2
t dt

]
.

Furthermore, if NαT → 1 as T → 0, then the signal-to-noise ratio admits the following

subcritical, critical and supercritical regimes.

E
[
σ̂2

+ − σ̂2
−
]2

Var (σ̂2
+ − σ̂2

−)

T→0−→


0, α < 1/2,

ν4

2σ4
0
, α = 1/2,

∞, α > 1/2.

Proof. See Appendix 2.7.4.

We can interpret Proposition 9 as follows. We start with sufficiently small intervals [−T, 0]

and [0, T ] and realised variances for each interval based on N equidistant samples. Then

75



if we wish to shrink the intervals to [−T/β, 0] and [0, T/β] for β > 1 with no detriment in

signal-to-noise ratio, we require at least β2N equidistant samples in each smaller interval.

The toy model in Proposition 9 deserves some comments. The small-time asymptotics of

a process (St, σt)t∈[0,T ] that satisfies the assumptions of Proposition 7 would be

dSt = σ0dWt,

dσt = ν0dZt,

where the Brownian motions (Wt)t∈[0,T ] and (Zt)t∈[0,T ] could be correlated. To capture the

effect of stochastic volatility, we let dSt = σtdWt and to simplify the computations, we

assume (Wt)t∈[0,T ] and (Zt)t∈[0,T ] are independent. Therefore, the toy model is not entirely

artificial: it captures the essential dynamics of more complicated stochastic models at

small time scales. It is worth noting that one could alternatively consider a toy model

in which the Brownian motions are perfectly (negatively) correlated but this would not

be very useful because then option prices would ultimately be driven only by underlying

price changes.

When using real data, the granularity of the samples is a given rather than a property

that we can control. Hence, how granular we can estimate spot volatility via historical

volatility is fundamentally constrained. We have seen in Section 2.1.3 a useful reference

that a reasonable granularity for spot volatility estimates considering the measurement

and localisation errors would be in the order of minutes. On the other hand, from what we

have discussed, it seems that the measurement error is a limiting obstacle when estimating

spot volatility with fine granularity via historical volatility. This is the motivation for a

method that relies instead on options data.

We propose the use of a stochastic volatility model to recover the spot volatility from

option prices, rather than relying on the observation of the asset price process itself.

For each snapshot of the implied volatility surface, we recalibrate the pricing model only

for the latent state variables – that is the spot volatility in the Heston model – while

keeping the model parameters constant. As we have mentioned in Section 2.1.4, this

method follows the stochastic volatility model by the letter, because the state variables

are dynamic while the model parameters are constants. It is also worth noting that,

similarly to the Black-Scholes implied volatility, the inverse mapping from option prices

to spot volatility is one-to-one in the Heston model – one can simply observe that the

derivative with respect to the spot volatility is positive.

The advantage of using a stochastic volatility model to recover the spot volatility is that

the estimation is cross-sectional and as such is free of localisation error. Besides, the use

of multiple option prices would intuitively average out rounding error, and in this sense it
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would be robust to microstructure noise. The tradeoff, however, is that the spot volatility

estimates are model dependent and are thus subject to model bias.

2.3.3 Volatility estimation on simulated data

We perform the volatility estimation first on a controlled setting with simulated option

prices. Using the parameters from Table 2.3, we simulate the underlying price and volat-

ility processes by discretising the Heston model as follows

Si+1 = Si exp

(
−1

2
Vih+

√
V iZih

)
,

Vi+1 = κ(θ − Vi)h+ ν
√
V i

(
ρZi
√
h+

√
1− ρ2Z⊥i

√
h
)
,

where h is the time scaling factor, Zi and Z⊥i are independent standard normal random

variables. The step size is one second.

With the underlying price and volatility processes, we compute option prices with the

Heston pricing formula for the first 7 expiries as in Table 2.1 with the “today” date being

2 December 2021. For each expiry, we simulate 100 calls and 100 puts for log-moneyness

ranging from -0.5 to 0.5, where we define log-moneyness as log(K/St)/
√
T − t. We obtain

in total 200 options for each expiry, which is approximately what we have for the most

liquid expiries on average according to Table 2.1. Prices are computed for each second

between 8am and 4.30pm in line with the real trading session.

As an effort to add more realism to the simulated prices, we round the option prices by

the nearest tick and recover the underlying using the bootstrap methodology explained

in Section 2.2 and also calibrate the Heston model at 12pm. The calibration result on

simulated data is depicted in Figure 2.7.

We finally perform the spot volatility estimation by recalibrating the Heston model only

for Vt for each second of the data. We compare the estimated volatility
√
V t with the true

spot volatility that we have simulated. Additionally, we also compute realised volatilities

at each 5-minute time interval by annualising the sample standard deviation on 1-second

log returns. We provide confidence intervals for the realised volatility estimates via sta-

tionary bootstrap – see Politis and Romano (1994). We have not provided confidence

intervals for the spot volatility estimates, but it could be computed using spatial boot-

strap techniques. The estimation results are depicted in Figure 2.8. We highlight that

the realised volatility is computed for reference and is not used elsewhere in the analysis.

In Figure 2.8, we observe that our proposed method accurately estimated the spot volat-

ility from options data, despite the rounding of option prices. Of course, in our simulated
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Figure 2.7: Calibrated Heston implied volatilities (solid blue line) versus market bid and
ask implied volatilities (orange markers) on 2 December 2021 at 12pm. Implied volatilities
with positive log-moneyness are from call options and implied volatilities with negative
log-moneyness are from put options. Log-moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.8: Comparison among true spot volatility, spot volatility estimated by recalib-
rating the Heston model and 5-minute realised volatility with confidence bounds on the
simulated data.
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Figure 2.9: Comparison between spot volatility estimated by recalibrating the Heston
model and 5-minute realised volatility with confidence bounds on 2 December 2021.

study, there is no model bias because the models used for simulation and for spot volatility

estimation are the same. On the other hand, we see that the 5-minute realised volatilities

are quite noisy and, as we postulated, we cannot reliably infer the true spot volatility

changes from the estimated changes of the realised variance. In fact, we observe that

consecutive confidence intervals overlap too often, which indicates that most apparent

changes in realised volatility are subject to measurement error. On the other hand, the

true spot volatility often lies within the 95% confidence bands of the realised volatility,

which is reassuring.

2.3.4 Volatility estimation on real data

We now estimate spot volatility in real data. The estimates for spot volatility and realised

volatility measurements are computed in the same way as with the numerical experiment.

Figure 2.9 depicts the result for 2 December 2021 and Figure 2.10 depicts the results for

all available dates.

The spot volatility estimates appear disconnected from the realised volatility measure-
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Figure 2.10: Comparison between spot volatility estimated by recalibrating the Heston
model and 5-minute realised volatility with confidence bounds for all available dates.
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ments across all dates. The estimates of spot volatility do not overlap the confidence

bounds of realised volatility and they also appear to vary less throughout the day than

the realised volatility measurements. This contrasts with the numerical experiment, which

suggests that model bias could be severely affecting the results.

We note that the Feller condition imposes a restriction on θ but not on Vt. Given that both

θ and Vt have an effect on the level of the Heston smile, it could be that the Feller condition

makes θ artificially small and Vt artificially high, thus systematically overestimating spot

volatility. In fact, we have also performed the spot volatility estimation without enforcing

the Feller condition, in which case the estimated spot volatility and realised volatility were

similar in level. However, even in the absence of the Feller condition, the estimated spot

volatilities varied throughout the day compared to the realised volatility.

Another important question is whether changes in the spot volatility estimates are a

reflection of changes in true spot volatility. From the numerical study, we have seen that

we cannot assess this by naively comparing with changes in realised volatility, especially

considering that we are not controlling for microstructure effects. Further investigation

would be needed in this regard.

We believe that the spot volatility estimates could be improved by employing a more

realistic model, such as the Wishart model. More recent and successful models such

as the N -factor Bergomi model and rough volatility models could also, in principle, be

applied. However, these models have as an input the full forward volatility term structure

in functional form, and thus the choice of the parametrisation of the functional form will

directly impact the spot volatility estimates.

In the case of rough volatility models, we also note that Proposition 7 would not apply.

It fails due to the rough component in the state process (Xt)t∈[0,T ]. Taking a fractional

Brownian motion with Hurst parameter H < 1/2 as an example of a rough process, its

self-similarity property tells us that

WH
ht

hH
D
= WH

t , ∀h > 0,

where
D
= means equality in distribution. The scaling factor of a rough fractional Brownian

motion is smaller than square root and therefore it dominates over the square root scaling

in (2.8).

82



2.4 Greeks estimation

2.4.1 Overview

In this section, we estimate the Greeks via a linear regression to assess the intraday effect

of spot volatility on option prices. In Section 2.4.2, we specify the linear regression under

the lens of the small time asymptotics of the Heston model. In Section 2.4.3, we perform

the linear regression with the same simulated data as in Section 2.3.3 and perform a semi-

partial R2 analysis. Finally, in Section 2.4.4, we estimate the Greeks using real options

data and compare with the findings of the controlled experiment.

2.4.2 Linear regression setup

Even though the option prices are a nonlinear function of the market state parameters

(e.g. underlying price and spot volatility), the small-time asymptotics for options in

Proposition 7 shows that the function is linear at small enough time scales. This implies

that we can estimate the options first-order Greeks by a linear regression of option prices

on its state variables. In the context of the Heston model, we perform the following linear

regression:

CK,T,P
t − CK,T,P

t−1 =

∆K,T,P
Heston (St − St−1) + VK,T,PHeston (Vt − Vt−1) + ΓK,T,PHeston (St − St−1)2 + ΘK,T,P

Heston + εK,T,Pt , (2.17)

where the time is in seconds and spans over a trading session and the strike-expiry-

payoff triples (K,T, P ) cover all call and put options, where the payoff component P ∈
{call, put} indicates whether the option is a call or a put. Note that neither theta nor

gamma are first-order Greeks, and therefore, they should have no contribution to the

variance of option price changes under small time scales.

We note that the linear model (2.17) is naturally decoupled for each triple (K,T, P ).

Therefore, we perform the regression separately for each option. This does not affect the

estimates of the regression coefficients and it allows for analysing other regression results,

such as R2, by strike, expiry and payoff. Overall regression results also have their value,

however given that our main goal is to assess the effect of spot volatility on option prices,

which is highly dependent on the payoff specification of option, especially its moneyness,

and thus pooling all options together would dilute the effect of spot volatility.

The linear regression is performed via OLS, and we assume standard conditions that

ensure the estimates are consistent and asymptotically normal. Namely, if we put (2.17)
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in the form

Yi = β ·Xi + εi, (2.18)

for i ∈ {1, . . . , N}, our assumptions are7

Linearity The model is of the form (2.18),

Stationarity and weak dependence The process (Yi, Xi)
N
i=1 is jointly stationary and

weakly dependent,

No Perfect Collinearity No independent variable is a linear combination of the others.

Zero Conditional Mean Conditional on the independent variables, the mean of the

errors is zero: E [εi|Xi] = 0,

Homoskedasticity Conditional on the independent variables, the variance of the errors

is constant, i.e. Var (εi|Xi) = σ2,

No Serial Correlation Conditional on the independent variables, the errors are not

serially correlated, i.e. E [εiεj|Xi, Xj] = 0 for all i 6= j.

The first four assumptions are sufficient for the OLS estimators β̂ to be consistent. The

last two assumptions are also needed for the OLS estimators β̂ to be asymptotically

normal, which we use when constructing confidence intervals.

2.4.3 Greeks estimation on simulated data

Figures 2.11-2.18 compare, across all strikes of the selected expiries, the 95% confidence

intervals of the Greeks estimated via linear regression model in (2.17) with the hypothet-

ical Greeks under the small time asymptotics using the calibrated Heston model. We

have selected liquid expiries starting from the third expiry. We have skipped the first

two expiries to highlight the effect of spot volatility, which is more pronounced towards

longer expiries.

In this controlled study, we observe a tight agreement between the linear regression estim-

ates and the hypothetical values. Having the hypothetical Greeks inside the confidence

interval means that we cannot reject the hypothesis that they differ. Furthermore, in the

case of the first-order Greeks, having the 2.5% bound above zero means that we reject

the hypothesis that the state variables, in particular spot volatility, are not significant.

Therefore, in our numerical experiment, we clearly see the small time asymptotics in

action and, in particular, the effect of spot volatility on option price changes.

7See, for example, Chapter 11 in Wooldridge (2015) for reference.
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Figure 2.11: Greek delta under the Heston model across call options on the simulated
data. The triangles represent the 95% confidence interval of the delta estimated by the
linear regression. The solid line is the theoretical delta computed using the calibrated
Heston model on the average forward price and average volatility. Moneyness is computed
as log(K/St)/

√
T − t.

85



Figure 2.12: Greek delta under the Heston model across put options on the simulated
data. The triangles represent the 95% confidence interval of the delta estimated by the
linear regression. The solid line is the theoretical delta computed using the calibrated
Heston model on the average forward price and average volatility. Moneyness is computed
as log(K/St)/

√
T − t.
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Figure 2.13: Greek vega under the Heston model across call options on the simulated data.
The triangles represent the 95% confidence interval of the vega estimated by the linear
regression. The solid line is the theoretical vega computed using the calibrated Heston
model on the average forward price and average volatility. Moneyness is computed as
log(K/St)/

√
T − t.
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Figure 2.14: Greek vega under the Heston model across put options on the simulated data.
The triangles represent the 95% confidence interval of the vega estimated by the linear
regression. The solid line is the theoretical vega computed using the calibrated Heston
model on the average forward price and average volatility. Moneyness is computed as
log(K/St)/

√
T − t.
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Figure 2.15: Greek gamma under the Heston model across call options on the simulated
data. The triangles represent the 95% confidence interval of the gamma estimated by the
linear regression. The solid line is the theoretical gamma which, under the small time
asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.16: Greek gamma under the Heston model across put options on the simulated
data. The triangles represent the 95% confidence interval of the gamma estimated by the
linear regression. The solid line is the theoretical gamma which, under the small time
asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.17: Greek theta in seconds under the Heston model across call options on 2
December 2021. The triangles represent the 95% confidence interval of the theta estim-
ated by the linear regression. The solid line is the theoretical gamma which, under the
small time asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.18: Greek theta in seconds under the Heston model across put options on 2
December 2021. The triangles represent the 95% confidence interval of the theta estim-
ated by the linear regression. The solid line is the theoretical gamma which, under the
small time asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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As for the Greeks gamma and theta, we notice the widening of the confidence intervals

around the money. This could indicate some residual contribution that arises from longer

time scales. In particular, we note the effect of theta, which highlights that options are

not martingales in the historical P measure.

Besides assessing whether or not the spot volatility has a significant effect on option price

changes, we also wish to quantify such effect. For this, we employ the semi-partial R2.

To introduce the semi-partial R2, we first recall the ANOVA decomposition

TSS = ESS + RSS,

where TSS is the total sum of squares (of the exogenous variables), ESS is the sum of

the explained sum of squares (explained by the endogenous variables) and RSS is the

residual sum of squares. The coefficient of determination R2 is a measure of explained

variance in the sense that, from its definition we have

1 = R2 +
RSS

TSS
⇒ R2 =

ESS

TSS
.

Now, suppose we would like to isolate the variance contribution of one of the endogenous

variables, say X1. This is not simply its covariance with respect to the exogenous variable

because X1 can be correlated with the other endogenous variables. Instead, consider a

submodel in which X1 is removed, and let ESS′ denote the explained sum of squares for

this submodel. Then,

TSS = (ESS− ESS′) + ESS′ + RSS,

which implies

1 = sR2 + (R′)
2

+
RSS

TSS
,

where sR2 is the semi-partial R2 on X1. It is a measure of the variance explained by X1

beyond what is already explained by the other endogenous variables – which is measured

by (R′)2. For more details, see Chapter 3 in Cohen (2013).

Figures 2.19 and 2.20 display the R2 and the spot volatility sR2, respectively, across

all strikes of the selected expiries. In Figure 2.19, we see that almost all options attain

R2 = 1, which means that the linear approximation at such a small time scale seems

appropriate. The exception is with out-of-the-money call options, which could be due to

the tick value rounding.

In Figure 2.20, we can observe that out-of-the-money call options at around 0.3-0.4

moneyness achieve very high sR2 of up to ca. 70%, which shows how strong the ef-

fect of spot volatility can be on some options. From the Greeks plots – Figures 2.11 and
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Figure 2.19: The R2 for the linear regression in (2.17) across put and call options on
simulated data. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.20: The spot volatility semi-partial R2 for the linear regression in (2.17) across
put and call options on simulated data. Moneyness is computed as log(K/St)/

√
T − t.
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2.13 –, we observe that vega seems high relative to delta around this region. In contrast,

put options peak at more modest levels of ca. 10%. This asymmetry can also be observed

in the corresponding Greeks plots for put options in Figures 2.12 and 2.14. This is likely

caused by the leverage effect, encoded in the parameter ρ.

2.4.4 Greeks estimation on real data

We now perform the same analysis in real data on 2 December 2021. This date has

been chosen because it sits in the middle of the date range of our dataset and presents

a high number of active options. Figures 2.21-2.28 compare, across all strikes of the

selected expiries, the 95% confidence intervals of the Greeks estimated via linear regression

model in (2.17) with the hypothetical Greeks under the small time asymptotics using the

calibrated Heston model. Despite the mismatch between our spot volatility estimates

and realised volatility in Section 2.3.4, the Greeks estimation in real data seems overall

in line with the numerical experiments.

For the Greek delta, Figures 2.21 and 2.22 shows that the estimates exhibit tight confid-

ence bounds around the hypothetical Heston delta. For the Greek vega, Figures 2.23 and

2.24 show estimates with wider confidence bounds, which indicates that the estimates are

noisier, as we would expect given the difficulties in estimating spot volatility. We also

notice that the hypothetical vega – and, to some extent, the hypothetical deltas – seem

lower than the linear regression estimates. This could be another artefact of the Feller

condition, or maybe a limitation of the Heston model itself.

For the Greeks gamma and theta, Figures 2.25-2.28 show that the estimates are indeed

mostly not significant, as we would predict with the small time asymptotics, with possibly

the exception of gammas for at-the-money call options near expiry. Indeed, as we get

closer to expiry, the Greek gamma explodes – a well-known effect in the context of pin

risk –, which could explain the higher Gamma sensitivity. Comparing the Greeks vega

and gamma, we highlight that we have found an estimate of spot volatility that is indeed

of first-order and has higher explanatory power at small time scales than gamma.

We have checked for robustness when varying the resampling frequency. For reference,

Figure 2.29 shows the same linear regression but with samples resampled every 5-seconds

rather than the 1-second frequency employed elsewhere. We have noticed that decreasing

the sampling frequency degrades the Greeks estimates. Besides, when performing the

linear regression on dates with a lower number of active options, we also notice a degrad-

ation of the Greeks estimates. This indicates that the linear regression estimates benefit

from larger sample sizes.
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Figure 2.21: Greek delta under the Heston model across call options on 2 December 2021.
The triangles represent the 95% confidence interval of the delta estimated by the linear
regression. The solid line is the theoretical delta computed using the calibrated Heston
model on the average forward price and average volatility. Moneyness is computed as
log(K/St)/

√
T − t.
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Figure 2.22: Greek delta under the Heston model across put options on 2 December 2021.
The triangles represent the 95% confidence interval of the delta estimated by the linear
regression. The solid line is the theoretical delta computed using the calibrated Heston
model on the average forward price and average volatility. Moneyness is computed as
log(K/St)/

√
T − t.
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Figure 2.23: Greek vega under the Heston model across call options on 2 December 2021.
The triangles represent the 95% confidence interval of the vega estimated by the linear
regression. The solid line is the theoretical vega computed using the calibrated Heston
model on the average forward price and average volatility. Moneyness is computed as
log(K/St)/

√
T − t.
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Figure 2.24: Greek vega under the Heston model across put options on 2 December 2021.
The triangles represent the 95% confidence interval of the vega estimated by the linear
regression. The solid line is the theoretical vega computed using the calibrated Heston
model on the average forward price and average volatility. Moneyness is computed as
log(K/St)/

√
T − t.
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Figure 2.25: Greek gamma under the Heston model across call options on 2 December
2021. The triangles represent the 95% confidence interval of the gamma estimated by the
linear regression. The solid line is the theoretical gamma which, under the small time
asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.26: Greek gamma under the Heston model across put options on 2 December
2021. The triangles represent the 95% confidence interval of the gamma estimated by the
linear regression. The solid line is the theoretical gamma which, under the small time
asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.27: Greek theta in seconds under the Heston model across call options on 2
December 2021. The triangles represent the 95% confidence interval of the theta estim-
ated by the linear regression. The solid line is the theoretical gamma which, under the
small time asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.

103



Figure 2.28: Greek theta in seconds under the Heston model across put options on 2
December 2021. The triangles represent the 95% confidence interval of the theta estim-
ated by the linear regression. The solid line is the theoretical gamma which, under the
small time asymptotics is zero. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.29: Greek vega under the Heston model across call options on 2 December
2021 on 5-second samples rather than 1-second samples. The triangles represent the 95%
confidence interval of the vega estimated by the linear regression. The solid line is the
theoretical vega computed using the calibrated Heston model on the average forward
price and average volatility. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.30: The R2 for the linear regression in (2.17) across put and call options on 2
December 2021. Moneyness is computed as log(K/St)/

√
T − t.
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Figure 2.31: The spot volatility semi-partial R2 for the linear regression in (2.17) across
put and call options on 2 December 2021. Moneyness is computed as log(K/St)/

√
T − t.
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Finally, the semi-partial R2 analysis on 2 December 2021 is depicted in Figures 2.30 and

2.31. We observe the same patterns as in the numerical experiment, although the R2

decays faster for out-of-the-money calls and puts and the sR2 peaks at most half as high

as in the numerical experiment. This could indicate that microstructure noise is more

present in real data or that we are missing other factors that drive option price changes.

The latter hypothesis is plausible given the empirical findings in Cont et al. (2002) which

have found that at least 2 factors (eigenmodes) are required to explain more than 95%

of variance of the implied volatility surface of S&P 500, whereas we treat spot volatility

as its own factor – following the Heston model.

2.5 Conclusion

We have shown that the measurement error in estimation of spot volatility via historical

volatility limits the granularity of its intraday estimates. This motivated us to propose an

alternative estimation method for spot volatility using options data. Such method relies

on inverting a stochastic volatility model, which enables us to circumvent the measure-

ment error limitation but at the cost of introducing model dependency.

Our spot volatility estimates from the Heston model are indeed biased and its link to

the true spot volatility dynamics requires further investigation. Nevertheless, our spot

volatility estimates were able to estimate Greeks with 1-second option price changes which

were consistent with the Greeks that the calibrated Heston model predicted. Our Greeks

estimates reject the hypothesis that the spot volatility has no effect on option prices at

a 2.5% significance level for at-the-money calls and puts. We have further quantified the

effect of spot volatility using semi-partial R2 and have identified that up to 30% of the

variance of option price changes can be uniquely attributed to changes in spot volatility.

This peak was identified for out-of-the-money call options and we have also noticed the

asymmetry with respect to out-of-the-money put options, which indicated a modest peak

of ca. 5%.

We suggest some directions for further research. The use of a more realistic stochastic

volatility model such as the Wishart model could reduce model bias and more accur-

ately estimate spot volatility with our proposed method. Besides, mathematically or

empirically assess the model bias of the proposed method and its ability to estimate spot

volatility changes with fidelity.

Finally, given our positive result our spot volatility estimates driving option prices, it

would be interesting to revisit the approach in Abergel and Zaatour (2012) in which

spot volatility is estimated from historical volatility. Given the difficulties mentioned
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in Section 2.1.3 and further expanded in Section 2.3.2, special attention is required on

measurement error of the estimates so as to choose the appropriate estimation granularity

and on microstructure noise so that an appropriate estimator is used and possibly adjusted

with respect to intraday patterns, as is done in e.g. Bennedsen et al. (2021).

2.6 Appendix: No-arbitrage bounds for forwards and

bonds

In this section, we start by providing a no-arbitrage argument for (2.10) and then apply

it to obtain no-arbitrage bounds on forwards and bonds.

2.6.1 No-arbitrage argument for (2.10)

Consider a portfolio with the following positions: long in a call option, short in a put

option, short in a forward contract and long in K−Ft,T units of a T -maturity zero-coupon

bond. At expiry, the value of the portfolio is

(ST −K)+ − (K − ST )+ − (ST − Ft,T ) + (Ft,T +K) = 0

Therefore, if there is no arbitrage, the value of this portfolio at time t must not be positive,

i.e.

Cbid
t,T,K − P ask

t,T,K −Bt,TFt,T +Bt,TK 6 0. (2.19)

If we consider a portfolio with reverse positions, by the same arguments, we obtain that

−Cask
t,T,K + P bid

t,T,K +Bt,TFt,T −Bt,TK 6 0. (2.20)

The inequalities (2.19) and (2.20) imply (2.10).

2.6.2 Bounds for forwards and bonds

We analyse no-arbitrage bounds for the forward prices and the interest rate term struc-

ture. The no-arbitrage bounds in this section are derived from the put-call parity inequal-

ity (2.10). From it, we define the bid and ask quotes for the bond and the discounted

forward contract via linear programming.

Definition 1. Given a time t, expiry T , a finite set of strikes Kbid for which bid European

calls and ask European puts with expiry T are available, and a finite set Kask for which
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Figure 2.32: Synthetic forward bid and ask for all strikes and expiries plus their corres-
ponding strikes – i.e. Cbid

t,T,K − P ask
t,T,K + K and 6 Cask

t,T,K − P bid
t,T,K + K. The shaded areas

are the feasible set for no-arbitrage bonds and discounted forwards – i.e. for F̃t,T −Bt,TK
as in Definition 1.
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Figure 2.33: No arbitrage interval for the forward prices (top plot) and interest rate term
structure (bottom plot).
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Figure 2.34: No arbitrage intervals for dividend yields of the underlying for the first
expiry.
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bid European calls and ask European puts with expiry T are available, we define the

no-arbitrage bond prices Bbid
t,T and Bask

t,T and the no-arbitrage discounted forward price

F̃ ask
t,T and F̃ bid

t,T by

F̃ ask
t,T := max

F̃t,T∈R,Bt,T∈R+

{
F̃t,T : Cbid

t,T,K − P ask
t,T,K 6 F̃t,T −Bt,TK, ∀K ∈ Kbid,

F̃t,T −Bt,TK 6 Cask
t,T,K − P bid

t,T,K , ∀K ∈ Kask
}
,

F̃ bid
t,T := min

F̃t,T∈R,Bt,T∈R+

{
F̃t,T : Cbid

t,T,K − P ask
t,T,K 6 F̃t,T −Bt,TK, ∀K ∈ Kbid,

F̃t,T −Bt,TK 6 Cask
t,T,K − P bid

t,T,K , ∀K ∈ Kask
}
,

Bask
t,T := max

F̃t,T∈R,Bt,T∈R+

{
Bt,T : Cbid

t,T,K − P ask
t,T,K 6 F̃t,T −Bt,TK, ∀K ∈ Kbid,

F̃t,T −Bt,TK 6 Cask
t,T,K − P bid

t,T,K , ∀K ∈ Kask
}
,

Bbid
t,T := min

F̃t,T∈R,Bt,T∈R+

{
Bt,T : Cbid

t,T,K − P ask
t,T,K 6 F̃t,T −Bt,TK, ∀K ∈ Kbid,

F̃t,T −Bt,TK 6 Cask
t,T,K − P bid

t,T,K , ∀K ∈ Kask
}
.

The linear programming method is illustrated in Figure 2.32. For each linear program-

ming problem, the optimal pair (F̃t,T , Bt,T ) defines a straight line that is constrained by

two quotes. The projection of the shaded areas in Figure 2.32 to the y-axis are the no-

arbitrage forward price interval and the slope of the lines define the no-arbitrage bond

price interval. The actual no-arbitrage forward and bond price intervals are depicted in

Figure 2.33.

Additionally, from the forward prices at different expiries, it is also possible to define

no-arbitrage dividend yields that are accrued from the first expiry. Such dividend yields

are depicted in Figure 2.34.

The no-arbitrage bounds obtained with this methodology has the advantage of being

completely model-free and their bounds are defined by static arbitrage trading strategies.

As a bootstrapping method, however, it faces some limitations: the no-arbitrage gaps are

too wide and most bounds are each defined by four away-from-the-money option prices

only – the information on the most liquid options is disregarded.
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2.7 Appendix: Proofs

2.7.1 Proof of Proposition 7

Given that (Xt)t∈[0,T ] has a SDE form (2.3) under Q it is, in particular, a Markov process

under Q, hence

Ct = EQ [f(XT )|Ft] = EQ [f(XT )|Xt] ∀t ∈ [0, T ].

Consequently, for each t ∈ [0, T ], there exists a function x 7→ ϕ(t, x) such that (2.6) is

true.

Now, we would like to show the small time asymptotics (2.7) for the state process. For

each i ∈ {1, . . . , d}, triangle inequality yields

1√
t

∥∥∥X i
t − X̃ i

t

∥∥∥
L2(P)

=
1√
t

∥∥∥∥∫ t

0

µisds+

∫ t

0

(
σis − σi0

)
· dWs

∥∥∥∥
L2(P)

6
1√
t

∥∥∥∥∫ t

0

µisds

∥∥∥∥
L2(P)

+
1√
t

∥∥∥∥∫ t

0

(
σis − σi0

)
· dWs

∥∥∥∥
L2(P)

,

where X i
t and µit denote the i-th element of the vector Xt and µt, respectively, and σit

denotes the i-th row of the matrix σt. Therefore, we arrive at (2.7) if both

1√
t

∥∥∥∥∫ t

0

µisds

∥∥∥∥
L2(P)

t→0−−→ 0, and (2.21)

1√
t

∥∥∥∥∫ t

0

(
σis − σi0

)
· dWs

∥∥∥∥
L2(P)

t→0−−→ 0. (2.22)

By the mean value theorem, for each t ∈ [0, T ], there exists r ∈ [0, t] such that

µir =
1

t

∫ t

0

µisds,

which, (µt)t∈[0,T ] being continuous, implies

lim
t→0

1

t

∫ t

0

µisds = µi0. (2.23)

Jensen’s inequality yields, for each t ∈ [0, T ],(
1

t

∫ t

0

µisds

)2

6
1

t

∫ t

0

(
µis
)2
ds,
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hence, (
1√
t

∫ t

0

µisds

)2

= t

(
1

t

∫ t

0

µisds

)2

6
∫ t

0

(µis)
2ds 6

∫ T

0

(µis)
2ds,

which is P-integrable by hypothesis. Thus, we can apply dominated convergence theorem

and (2.23) to obtain

lim
t→0

1

t
E

[(∫ t

0

µisds

)2
]

= lim
t→0

E

[(
1√
t

∫ t

0

µisds

)2
]

= E

[
lim
t→0

(
1√
t

∫ t

0

µisds

)2
]

= E

[(
lim
t→0

t
)(

lim
t→0

1

t

∫ t

0

µisds

)2
]

= 0,

which implies (2.21).

By Itô isometry, we obtain that

E

[(∫ t

0

(σis − σi0) · dWs

)2
]

= E

[∫ t

0

(σis − σi0) · (σis − σi0)ds

]
, ∀t > 0. (2.24)

Additionally,∫ t

0

(σis − σi0) · (σis − σi0)ds = σi0 · σi0t− 2σi0 ·
∫ t

0

σisds+

∫ t

0

σis · σisds

6
∣∣σi0 · σi0∣∣T + 2

∥∥σi0∥∥1

∫ T

0

∥∥σis∥∥1
ds+

∫ T

0

∥∥σis∥∥2
ds, ∀t > 0.

Given that (σt)t∈[0,T ] is square-integrable and that L2(P) ⊂ L1(P), we have that the

right-hand side of the inequality is P-integrable. Hence, we can use Fubini theorem to

obtain

E

[∫ t

0

(σis − σi0) · (σis − σi0)ds

]
=

∫ t

0

E
[
(σis − σi0) · (σis − σi0)

]
ds, ∀t > 0. (2.25)

Using the same argument with the mean-value theorem and the assumption that (σt)t∈[0,T ]

is continuous, we have that

lim
t→0

1

t

∫ t

0

E
[
(σis − σi0) · (σis − σi0)

]
ds = (σi0 − σi0) · (σi0 − σi0) = 0.
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This limit combined with (2.25) and (2.24) imply (2.22).

It remains to show the small time asymptotics (2.8) of the option price process. If ϕ is

of class C1,2([0, T )×D), then we can apply Itô’s formula to obtain

dϕ(t,Xt) = Θtdt+∇xϕ(t,Xt) · σQ(t,Xt)dW
Q
t ∀t ∈ [0, T ),

where

Θt =∂tϕ(t,Xt) +∇xϕ(t,Xt) · µQ(t,Xt)

+
1

2
Tr
(
σQ(t,Xt)

>∆xϕ(t,Xt)σ
Q(t,Xt)

)
, ∀t ∈ [0, T ),

and ∆x denotes the Laplace operator with respect to x.

By construction, (Ct)t∈[0,T ] is a Q-martingale, which implies Θ ≡ 0 and, therefore

dCt = ∇xϕ(t,Xt) · σQ(t,Xt)dW
Q
t , ∀t ∈ [0, T ).

From (2.4), we rewrite the dynamics above as

dCt = ∇xϕ(t,Xt) · σQ(t,Xt)θtdt+∇xϕ(t,Xt) · σQ(t,Xt)dWt, ∀t ∈ [0, T ). (2.26)

Let K ⊂ D be a non-empty compact set containing x0, which exists due to the assumption

that D has non-empty interior containing x0. Define the stopping time τ as the first exit

time of (Xt)t∈[0,T ] on K, i.e.

τ = inf {t ∈ [0, T ] : Xt /∈ K} ,

where we take the convention that inf ∅ =∞.

Define

C ′t := C0 +

∫ t

0

∇xϕ (s ∧ τ,Xs∧τ ) · σQ (s ∧ τ,Xs∧τ ) θs∧τds

+

∫ t

0

∇xϕ (s ∧ τ,Xs∧τ ) · σQ (s ∧ τ,Xs∧τ )dWs, t ∈ [0, T/2].
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In order to prove (2.8), it is sufficient, by triangle inequality, to show that both

1√
t
‖Ct − C ′t‖L2(P)

t→0−−→ 0, and (2.27)

1√
t

∥∥∥C ′t − C̃t∥∥∥
L2(P)

t→0−−→ 0. (2.28)

We start with (2.28). By hypothesis, ϕ is continuously differentiable in [0, T ) × D, in

particular ∇xϕ is continuous on the compact set K×[0, T/2] and thus uniformly bounded

on K × [0, T/2] by, say, M > 0.

Furthermore, we have that quadratic variation is preserved by change of measure, i.e.

Tr
(
σQ (t,Xt)

> σQ (t,Xt)
)
dt = d[X,X]t = Tr

(
σ>t σt

)
dt, ∀t ∈ [0, T ].

Therefore,

E

[∫ T/2

0

∥∥σQ (t ∧ τ,Xt∧τ )ϕx (t ∧ τ,Xt∧τ )
∥∥2
dt

]

6M2E

[∫ T/2

0

∥∥σQ (t ∧ τ,Xt∧τ )
∥∥2

F
dt

]

= M2E

[∫ T/2

0

‖σt‖2
F dt

]
<∞,

and, by Cauchy-Schwarz inequality on the L2(P) norm,

E

[∫ T/2

0

(
ϕx (t ∧ τ,Xt∧τ ) · σQ (t ∧ τ,Xt∧τ ) θt∧τ

)2
dt

]

6M2E

[∫ T/2

0

∥∥σQ (t ∧ τ,Xt∧τ ) θt∧τ
∥∥2
dt

]

6M2E

[∫ T/2

0

∥∥σQ (t ∧ τ,Xt∧τ )
∥∥2

F
dt

]
E

[∫ T/2

0

‖θt∧τ‖2 dt

]
<∞,

which implies that (C ′t)t∈[0,T/2] fulfills the square-integrability condition (2.5) for its drift

and diffusion coefficients. This enables us to use the same arguments as in (Xt)t∈[0,T ] to

obtain the small time asymptotics for (C ′t)t∈[0,T/2], which implies (2.28).

Because we have assumed f is bounded, we have that Ct is bounded almost surely for all

t ∈ [0, T/2] and thus ‖Ct‖L2(P) is uniformly bounded on [0, T/2]. We have just showed

that (C ′t)t∈[0,T/2] satisfies the square-integrability conditions, which implies, by Jensen
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inequality, that ‖C ′t‖L2(P) is also uniformly bounded on [0, T/2]. Therefore ‖Ct − C ′t‖L2(P)

is uniformly bounded on [0, T/2].

On the other hand, since (Xt)t∈[0,T ] is continuous and X0 = x0, then τ > 0 a.s. This

implies that
C ′t − Ct√

t

t→0−−→ 0 a.s. (2.29)

We have already shown that ‖Ct − C ′t‖L2(P) is uniformly bounded on the interval [0, T/2],

thus the dominated convergence theorem lets us go from (2.29) to (2.27).

2.7.2 Proof of Proposition 8

Note that, for each i ∈ {1, . . . , N},

y
i

=
y
i
+ ȳi

2
−
ȳi − yi

2
, ȳi =

y
i
+ ȳi

2
+
ȳi − yi

2
.

Replacing this in (2.15), yields

F =

{
β ∈ Rd :

y
i
+ ȳi

2
−
ȳi − yi

2
< β>xi <

y
i
+ ȳi

2
+
ȳi − yi

2
, ∀i ∈ {1, . . . , N}

}
=

{
β ∈ Rd : −

ȳi − yi
2

< β>xi −
y
i
+ ȳi

2
<
ȳi − yi

2
, ∀i ∈ {1, . . . , N}

}
=
{
β ∈ Rd :

∣∣ỹi − β>x̃i∣∣ < 1, ∀i ∈ {1, . . . , N}
}

=
{
β ∈ Rd :

∥∥(ỹ1 − β>x̃1, . . . , ỹN − β>x̃N
)∥∥
∞ < 1

}
Since F is non-empty, take an element β0 ∈ F and let β∗∞ be the solution to (2.16) with

p =∞. Then,∥∥(ỹ1 − β>∗ x̃1, . . . , ỹN − β>∗ x̃N
)∥∥
∞ 6

∥∥(ỹ1 − β>0 x̃1, . . . , ỹN − β>0 x̃N
)∥∥
∞ < 1,

which shows β∗∞ ∈ F . Define the functions

`(β, p) =
∥∥(ỹ1 − β>x̃1, . . . , ỹN − β>x̃N

)∥∥
p
, `∗(p) = inf

β∈Rd
`(β, p).

We have that `(β, p)p is convex for all β ∈ Rd and p ∈ (1,∞). Therefore, `∗(p)p is also

convex for all p ∈ (1,∞), which implies it is continuous for all p ∈ (1,∞). Since `(β, p)

is continuous for all β ∈ Rd and p ∈ (1,∞], then

lim
p→∞

`∗(p) = lim
p→∞

inf
β∈Rd

`(β, p) = inf
β∈Rd

`(β,∞) = `∗(∞),
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which shows `∗(p) is also continuous at p =∞.

Consider the open interval O = (`∗(∞), 1). Since β∗∞ ∈ F , then O ⊂ F . Furthermore,

because `∗(p) is continuous for all p ∈ (1,∞], then (`∗)−1(O) is an open interval (p0,∞)

for some p0 ∈ [1,∞), which concludes the proof.

2.7.3 Lemma for Proposition 9

Lemma 1. Consider the SDE

dSt = σtdWt, S0 = 0,

dσt = νdZt, σ0 ∈ R,

where (Wt, Zt)t>0 is a vector of independent Brownian motions. Then,

E
[
S2
t

]
= E

[∫ t

0

σ2
sds

]
= σ2

0t+
1

2
ν2t2, Var(S2

t ) = 2σ4
0t

2 + 6ν2σ2
0t

3 +
3

2
ν4t4.

Proof. We start by computing the following.

E
[
σ2
t

]
= σ2

0 + ν2t,

E
[
σ4
t

]
= E

[
(σ0 + ν

√
tW1)4

]
= σ4

0 + 6ν2σ2
0t+ 3ν4t2,

E
[
S2
t

]
=

∫ t

0

E
[
σ2
s

]
ds

= σ2
0t+

1

2
ν2t2,

E
[
S2
t

]2
= σ4

0t
2 + ν2σ2

0t
3 +

1

4
ν4t4,

E
[
σ2
sS

2
s

]
= E

[∫ t

0

S2
sd[σ, σ]s

]
+ E

[∫ t

0

σ2
sd[S, S]s

]
= ν2

∫ t

0

E
[
S2
s

]
ds+

∫ t

0

E
[
σ4
s

]
ds

=
1

2
ν2σ2

0t
2 +

1

6
ν4t3 + σ4

0t+ 3ν2σ2
0t

2 + ν4t3

= σ4
0t+

7

2
ν2σ2

0t
2 +

7

6
ν4t3,

E
[
S4
t

]
= 6E

[∫ t

0

S2
sd[S, S]s

]
= 6

∫ t

0

E
[
S2
sσ

2
s

]
ds
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= 3σ4
0t

2 + 7ν2σ2
0t

3 +
7

4
ν4t4.

Combining these, we obtain

E
[
S2
t

]
= E

[∫ t

0

σ2
sds

]
=

∫ t

0

E
[
σ2
s

]
ds = σ2

0t+
1

2
ν2t2,

Var(S2
t ) = E

[
S4
t

]
− E

[
S2
t

]2
= 2σ4

0t
2 + 6ν2σ2

0t
3 +

3

2
ν4t4.

2.7.4 Proof of Proposition 9

Define the estimators

σ̂2
± =

1

T

N∑
i=1

(
S±iT/N − S±(i−1)T/N

)2
.

Using Lemma 1 and the Markov property, we have that

E
[
σ̂2

+

]
=

1

T

N∑
i=1

E
[(
SiT/N − S(i−1)T/N

)2
]

=
1

T

N∑
i=1

E

[∫ (i−1)T/N

iT/N

σ2
t dt

]

=
1

T
E

[∫ T

0

σ2
t dt

]
,

and, similarly,

E
[
σ̂2
−
]

=
1

T
E

[∫ 0

−T
σ2
t dt

]
,

from which we conclude that the estimators are unbiased.

From Lemma 1, we also have

E
[
σ̂2

+ − σ̂2
−
]

=
1

T

(
E

[∫ T

0

σ2
t dt

]
+ E

[∫ −T
0

σ2
t dt

])
=

1

T

(
σ2

0T +
1

2
ν2T 2 + σ2

0(−T ) +
1

2
ν2(−T )2

)
= ν2T,
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and

Var
(
σ̂2

+ − σ̂2
−
)

= 2Var
(
σ̂2

+

)
=

1

T 2

N∑
i=1

Var
((
SiT/N − S(i−1)T/N

)2
)

=
N

T 2

(
2σ4

0

T 2

N2
+ 6ν2σ2

0

T 3

N3
+

3

2
ν4 T

4

N4

)
= 2σ4

0

1

N
+ 6ν2σ2

0

T

N2
+

3

2
ν4 T

2

N3
.

Therefore, the signal-to-noise ratio is

E
[
σ̂2

+ − σ̂2
−
]2

Var (σ̂2
+ − σ̂2

−)
=

ν4T 2

2σ4
0

1
N

+ 6ν2σ2
0
T
N2 + 3

2
ν4 T 2

N3

=
ν4NT 2

2σ4
0 + 6ν2σ2

0
T
N

+ 3
2
ν4 T 2

N2

If NαT → 1 as T → 0, then

E
[
σ̂2

+ − σ̂2
−
]2

Var (σ̂2
+ − σ̂2

−)

T→0−→


0, α < 1/2,

ν4

2σ4
0
, α = 1/2,

∞, α > 1/2.

Var(S2
t ) = 2σ4

0t
2 + 6ν2σ2

0t
3 +

3

2
ν4t4.

σ̂T/2
T→0
≈ σ2

0

NT

N∑
i=1

(
WiT/N −W(i−1)T/N

)2
=

σ2
0

N2

N∑
i=1

Z2
i , Zi ∼ N(0, 1)

σ̂T/2 − σ̂−T/2
T→0
≈ σ2

0

N2

N∑
i=−N+1

Z2
i
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Chapter 3

High-frequency options market

making

3.1 Introduction

3.1.1 Motivation

Optimal market making has gained traction in mathematical finance since the seminal

paper by Avellaneda and Stoikov (2008). Shortly after, the first paper on options market

making was written by Stoikov and Sağlam (2009). Despite the continuous stream of

papers for market making for general assets – see, e.g., the books Guéant et al. (2013),

Guéant (2017) and references therein –, there was a hiatus on market making for options.

Recently, the topic regained interest and was revisited by El Aoud and Abergel (2015),

Baldacci et al. (2021) and Baldacci et al. (2020). Despite the resurgence, we believe the

options market making problem is still not well understood.

Options comprise an asset class that requires special treatment for market making stra-

tegies. We list some features of options that are relevant for market making:

Stochastic volatility The non-linear payoff of options makes it dependent on the un-

derlying asset’s volatility, as empirically shown in Andersen et al. (2001) for daily re-

turns. This dependency is also present at smaller time scales as shown in Chapter 2.

Small number of driving factors Options are driven by the underlying price and the

volatility surface. In turn, Cont et al. (2002) has reported that only three prin-

cipal components are necessary for capturing 95% of the total variance of volatility

surfaces for equity markets. This small number of driving factors are important
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especially because several distinct options are available for each underlying in a

given venue.

Liquidity linked to moneyness At-the-money options are traded more frequently than

others. Given that moneyness depends on the underlying price, liquidity is stochas-

tic. We discuss this empirically in Section 3.2.

The existing literature models different combinations of the above features in different

manners, which of course has implications on the tractability of the model. Stoikov and

Sağlam (2009) employ a discrete-time approach for optimal market making of a single

option in three cases: (i) constant volatility with frictionless delta hedging, (ii) constant

volatility and market making on both option and underlying (no active delta hedging),

and (iii) stochastic volatility version in which vega and gamma risks are modelled. They

arrive at recursive formulas for optimal quotes in the multi-period models (ii) and (iii).

The recent papers by El Aoud and Abergel (2015), Baldacci et al. (2021) and Baldacci

et al. (2020) are continuous-time models with stochastic volatility that rely on frictionless

trading on the underlying asset. El Aoud and Abergel (2015) focus on model misspecific-

ation and find analytical formulas for the optimal quotes for a single option. Baldacci

et al. (2021) introduce the problem of market making multiple options, for which they

provide a low-dimensional PDE to numerically compute the optimal quotes. The dimen-

sion reduction is achieved by the assumption of constant vega. Finally, Baldacci et al.

(2020) offers an alternative approach to the problem in Baldacci et al. (2021) in which

the dimension of the PDE is obtained heuristically via a quadratic ansatz inspired by

approach in Chapter 1, thus allowing for dynamic vega. None of the papers, however,

model the link between liquidity and moneyness.

In this chapter, we focus on exchange-traded vanilla options. These are typically traded by

high-frequency market makers – see Menkveld (2013). The assumption of frictionless delta

hedging may be realistic in OTC markets, especially for exotic options, but is unsuitable

for our application – the liquidity of exchange-traded vanilla options is comparable with

the liquidity of its underlying or their futures. Instead, we do not include any a priori

hedging strategy – a passive hedging strategy naturally emerges from the optimal quotes

– see Section 3.3 for more details. This feature is in contrast with the existing literature

that, with the exception of model (ii) in Stoikov and Sağlam (2009), rely on frictionless

trading on the underlying asset.

We highlight some extensions to our model that we have not included to preserve tract-

ability. One would be to allow the market maker to send market orders, which could be

especially useful for options market making so that hedging could be performed actively

– either delta hedging by trading on the underlying or even vega hedging by trading on
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liquid at-the-money options. Although rare, there is indeed literature in optimal mar-

ket making that employs limit and market orders – see Guilbaud and Pham (2013) and

Section 2.4 in Ricci (2014). A richer literature is found in the related topic of optimal

execution, for which the reader is referred to the aforementioned books Guéant et al.

(2013) and Guéant (2017).

Another plausible feature in highly correlated markets such as the options market would

be a coupling of liquidity. Intuitively, if a trader seeks delta and vega exposure in a

particular ratio, there are many combinations of options and underlying that could achieve

the desired exposure. Therefore, if the demand for delta and vega exposure is fixed and

a subset of options present spreads that are too high, other options would enjoy higher

trading activity. To the best of our knowledge, such coupling of liquidity among different

assets has never been done in market making literature. The coupling between assets or

options in the aforementioned papers are done exclusively via the price processes only –

either via the covariance matrix or the Greeks.

A third extension, which is especially useful in the context of exchange-traded financial

products is the modelling of competition. Our proposed model derives from the Avel-

laneda and Stoikov (2008) model, which does not model competition and, as mentioned

in Guéant (2017), is better translated in the context of OTC markets in which market

makers post their quotes directly to clients and have no information on the quotes of

theirs competitors. Hence, in principle, our model depicts a monopolistic market maker.

An extension that could add some effects of competition is adverse selection as is done

in Chapter 1, in the sense that, the more competition, the more likely is that the traded

quote is an unfavourable quote for the market maker that posted it. Other approaches

present in the literature is the modelling of partial information as done in Campi and Za-

baljauregui (2020) and game-theoretical approaches as in Oomen (2017) and Bank et al.

(2021) – see also a mean-field game approach in Huang et al. (2019).

To obtain tractable optimal quotes, we consider high-frequency market makers with short-

term strategies, looking to optimise the end-of-day P&L. This motivates the use of small

time-to-horizon asymptotics for which we formally derive explicit asymptotic formulas

for the optimal quotes. With this method, we retain a fair amount of flexibility with

regards to the option dynamics and the shape of the so-called trading intensity function

– which models the trade activity as a function of the market maker controls.

Finally, we perform empirical analysis to understand the structure of option spreads as

a function of moneyness and expiry. The optimal spreads are found to fit very well with

the observed market spreads. This enables us to obtain insights into the codependency of

Greeks, option volatility, trade activity and spreads. The explicit link between liquidity

and moneyness has not been yet studied in the

124



3.1.2 Main contributions

On the theoretical side, we explore an overlooked asymptotic approximation. The small

time-to-horizon asymptotics has only been briefly mentioned in footnote 8 in Guéant et al.

(2013) on the comment that a Taylor expansion of the optimal quotes from their explicit

formula for t close to T coincide with the optimal quotes in Avellaneda and Stoikov (2008)

– which are optimal quotes for small inventory. Indeed, our optimal quotes for the CARA

optimisation criterion reduces to the optimal quotes in Avellaneda and Stoikov (2008) in

the single-asset case.

A related approximation is the small risk aversion, which has been studied by Fodra and

Labadie (2013) and turn the market making models with stochastic volatility tractable.

For our purposes, the small time-to-horizon asymptotics is more appropriate because:

(i) it is compatible with the small time asymptotics as studied in Chapter 2 and (ii)

produces compact optimal quotes when the liquidation penalty is zero. Another strength

of the small time-to-horizon, in general, is that it allows for arbitrary liquidation penalty

functions.

Another asymptotic regime is the ergodic limit performed by Guéant et al. (2013) and

subsequent papers – see Chapter 1 and also Baldacci et al. (2020) in the case of options

market making. The ergodic regime is complementary to our result and one could use

both (each in its own regime) to obtain a rough approximation of the global solution.

On the empirical side, we start by investigating the shape of the trade intensity function –

a key ingredient in market making models. For this purpose, we show how trade activity

varies across moneyness and expiries. It is known at least since George and Longstaff

(1993) that at-the-money and close to expiry options present higher trading activity, but

we analyse this fact in the market making context.

We then apply the model to find the codependency among Greeks, options volatility, trade

activity and spreads. The options market microstructure literature has found empirical

connection among these concepts – see Wei and Zheng (2010) and references therein –,

and thus our contribution is to provide a theoretical ground for the empirical findings.

As stated in Wei and Zheng (2010), the options market microstructure literature is quite

scarce compared to other assets. For the early literature in this field, we refer the reader

to the review by Coughenour and Shastri (1999), which typically studies the relationship

between the options market and its underlying market. A reminiscent topic that is still

active is on price discovery, see e.g. Patel et al. (2019). Bid-ask option spreads have

also been regularly debated. Wei and Zheng (2010) and other authors usually apply

econometric models for option spread dynamics.
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3.1.3 Dataset and source code

The empirical analysis is done on AEX index options quotes and trades tick data on

4 January 20161. The dataset also included the AEX index itself at each timestamp

of the tick data. The dataset was freely available on Euronext’s website at ftp://ftp.

eua-data.euronext.com. The interest rate term structure bootstrapping and the Heston

calibration were performed with a methodology similar to the one in Chapter 2.

The empirical analysis was performed in Python and used several open-source libraries.

We list them by their role in this chapter.

• Heston implementation

– Fyne (Vieira, 2020)

• Statistical

– ARCH (Sheppard et al., 2020)

– Statsmodels (Seabold and Perktold, 2020)

3.1.4 Structure of this chapter

We start by empirically investigating the structure of trading activity across moneyness

and expiries in Section 3.2 to obtain insights about the trading intensity function. Then,

in Section 3.3, we introduce the options market making model and derive its optimal

quotes under three optimisation criteria: (i) risk-neutral, (ii) quadratic running inventory

penalty and (iii) expected CARA utility function, and use the small time-to-horizon

asymptotics to obtain the explicit optimal quotes in the latter two criteria. Finally, in

Section 3.4, we perform an empirical analysis on options spreads across moneyness and

expiries and analyse its dependency on Greeks, options volatility and trading activity.

3.2 Empirical trading intensity

3.2.1 Overview

In this section, we empirically investigate a key ingredient for market making models,

which is the trading intensity function. The trade intensity function determines the

speed at which trades happen at the bid (resp. ask) quote conditional to the spread

1This date was the only one freely available when the data analysis was performed.
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between the bid (resp. ask) quote and a reference price, which can be interpreted as an

ideal fair price. Since the reference price is not observable, we restrict ourselves to the

study of the trading activity conditional on the observed bid-ask spread. More precisely,

if we denote by (Nt)t∈[0,T ] the point process that counts the number of trades with its

associated intensity function (λt)t∈[0,T ] and by (δt)t∈[0,T ] the half-spread observed in the

market, we would like to estimate a deterministic function Λ such that

λt = Λ(δt). (3.1)

We start with a high-level analysis of the trades across moneyness and expiry in Sec-

tion 3.2.2. We then turn into the intraday patterns of the trade activity conditional to

spreads in Section 3.2.3. There is rich literature in intraday patterns, including trade

activity – see e.g. Bouchaud et al. (2018) –, and therefore our contribution is on condi-

tioning this trade activity to the bid-ask spread. Finally, in Section 3.2.4, we calibrate the

exponential trading intensity function and discuss statistical issues as well as the shape

of the intensity function itself.

3.2.2 Arrival rates overview

In this section, we seek a sensible methodology to estimate the intensity function Λ as in

(3.1). For this purpose, we first turn our attention to the structure of arrival rates across

option strikes.

Figure 3.1 shows estimates of order arrival rates across strikes and expiries for call and

put options. At first glance, we observe a symmetry between calls and puts, in particular

the order rates seem higher for slightly out-of-the-money calls and puts. Although not

clearly visible in Figure 3.1, there is actually an asymmetry between calls and puts,

which is discussed later in Section 3.4.3, where trade activity is revisited but without

conditioning on half-spread. Another pattern, now similar to the bid-ask spread patterns

in Figure 3.9 is that, as the strike is deeper in-the-money, the spreads increase. We note

that there are two tick sizes in the displayed plots: AC0.05 and AC0.01, which explain why

very out-of-the-money options have a finer grid than the remaining options. The main

conclusion of Figure 3.1 is that the arrival rate varies across strikes and expiries.

A more subtle pattern in Figure 3.1 is that the arrival rates are not a monotone function

of the half-spread. Intuitively, one would expect that higher spreads translate to lower

trade activity. We observe, however, that the highest trade activities do occur where the

half-spreads are at the lowest levels, but the lowest trade activities do not occur at the

highest spreads. One cause for this unintuitive effect is explained by intraday effects,
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Figure 3.1: Buy and sell order arrival rate estimates conditional on half-spread across
strikes and expiries. The larger the bubble, the larger the arrival rate. The estimates are
for half-spread that lasted for at least 5 minutes.
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Figure 3.2: Number of trades conditional on the half-spread throughout the day, ag-
gregated among all options. The densities for each half-spread has been computed using
kernel density estimation.

given in more detail in Section 3.2.3.

3.2.3 Intraday patterns

As evidenced in Section 3.2.2, the structure of arrival rates is not limited by tick size,

strike and expiry. In this section, we look at how the arrival rates change in time.

Figures 3.2 and 3.3 depict the evolution of the number of trades and half-spreads in time,

both conditioned on half-spreads. The unconditioned versions of these plots are well

studied in the market microstructure literature. Volumes and spreads exhibit the stylised

U-shapes. For volumes, Figure 3.2 we indeed observe peaks of volume at the beginning

and the end of the trading session. By conditioning on the half-spread, we also observe

that the trades at the beginning and the end of the day – but especially at the beginning

– happen at higher spread than the rest of the day.
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Figure 3.3: Duration of each half-spread throughout the day, aggregated among all op-
tions. The densities for each half-spread has been computed using kernel density estim-
ation – the location of each duration is the midpoint of each time interval where the
half-spread has been observed continuously.
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Figure 3.4: Order arrival rate estimates conditional on the half-spread throughout the
day, aggregated among all options. The densities are the simple division of the volume
densities as in Figure 3.2 and the duration densities as in Figure 3.3. The estimates
are shown on a logarithmic scale and estimates shown are clipped between 0.001 and 10
trades per second.
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Figure 3.3 also exhibits the stylised U-shape for average spread, being the spread wider

at the beginning of the day – this is sometimes referred to as the inverted J-shape. We

also observe that the spread is rarely 1 tick, although 2 ticks are the most common spread

for options at the two closest expiries.

Finally, Figure 3.4 combines the previous two plots into the arrival rates estimates. From

the observations we have made, it is clear that the arrival rates at the beginning and end

of the day – especially at the beginning – are skewed towards higher half-spread. As a

consequence, arrival rates also have a structure in time, i.e. the trading intensity needs

to be modelled as time-dependent. In fact, from the market making perspective, the

beginning and end of the trading session would be the most profitable moments in which

spreads are wide and trading activity is high. We expect this effect to be present in most

asset classes and not only options. As such, given that this chapter focuses on options

market making, we henceforth discard the beginning and end of the trading session so

that we can assume that the base intensity is constant in time.

We finally revisit the observation in Section 3.2.2 that the arrival rates are not a monotone

function of the half-spread and its connection to the intraday patterns. Indeed, the U-

shape in arrival rates can explain the higher than expected arrival rates at higher spreads

in Figure 3.1.

3.2.4 Exponential fit

With the lessons learned in Sections 3.2.2 and 3.2.3, we are ready to perform a fit to a

particular form of the trading intensity function, which is

ΛK(δ) = AKe
−κKδ, ∀K ∈ {AC435,AC445,AC460}.

The choice of the exponential shape is due to its mathematical tractability – see Sec-

tion 3.3, and use the option strikes as a measure of moneyness, under the assumption

that the underlying price does not change enough during the day to shift too many op-

tions from one group to another. From the conclusion of Section 3.2.2, we focus on the

second closest expiry 19 Feb 2016 and tick size AC0.05 only and group options with similar

strikes. Then, to avoid intraday effects on the parameters, we disregard the first hour

and the last half hour of the trading session. We can then assume that the base and

decay intensity parameters are constant. The calibration problem then reduces to linear

regression on the logarithm of arrival rates versus the half-spread. Now, given that some

estimates of arrival rates are more accurate than others and since we cannot guarantee

that these estimates are independent, we apply Generalised Least Squares to perform the
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Figure 3.5: GLS fit of the arrival rates for selected strikes of options expiring on 19 Feb
2016 and tick size 0.05, discarding the first hour and the last half hour of the trading
session. The selected strikes are strikes corresponding to the number of trades tertiles.
The arrival rates are obtained using Nadaraya–Watson kernel regression and both the
error bars and the covariance matrix of the errors for the GLS are estimated via stationary
bootstrapping.
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A κ
Class Strike

C 435.0 112.18 (20.96, 600.23) 159.80 (120.08, 199.52)
445.0 39.92 (25.31, 62.97) 186.70 (174.96, 198.44)
460.0 1.84 (nan, nan) 160.05 (nan, nan)

P 395.0 0.77 (nan, nan) 120.33 (nan, nan)
405.0 1.05 (0.80, 1.39) 108.22 (100.97, 115.46)
415.0 29.55 (0.00, 34895864.26) 161.53 (-119.01, 442.07)

Table 3.1: GLS fit of the arrival rates as in Figure 3.5. The confidence interval for each
estimate has 10% significance.

linear regression. The estimates of the covariance matrix of the arrival rate estimates are

obtained via stationary bootstrapping – see Politis and Romano (1994).

The resulting calibration can be visualised in Figure 3.5 and Table 3.1. In Figure 3.5, we

first observe that even after filtering out the beginning and end of the trading session, the

estimates show a slight increase in arrival rates at the highest half-spread. The estimates

at high half-spreads are quite inaccurate, though, since this is an unusual regime in

the market. Another observation is that the arrival rates present some convexity, which

indicates that the arrival rates decay could be better explained with a power law. Looking

at the regression fit, on the other hand, shows the effect of GLS, which puts more weight

towards the most accurate arrival rate intensity estimates.

Table 3.1 shows that the estimation of the parameters is very noisy. This indicates

that either the statistical model is too flexible or that the data is insufficient. We can

still conclude, however, that the intensity decay parameter κ appears mostly constant

throughout strikes and option types. The base intensity A seems to explain most of the

variation of trade activity that we have observed in Figure 3.1.

3.3 Optimal trading strategy

3.3.1 Overview

Our model setup is based on the multi-asset market making model setups of Guéant (2017)

and Chapter 1. The model is tailored for options by incorporating three features: (i) a

stochastic volatility model for the underlying price, (ii) option dynamics with stochastic

Greeks and (iii) a specific trading intensity function motivated by the structure described

in Section 3.2. We then formally solve the optimal control problem for three optimisation

criteria: (i) risk-neutral, (ii) running quadratic inventory penalty and (iii) the expected
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CARA utility function. In each case, we reduce the dimensionality of the problem by

applying the ansatz introduced in Fodra and Labadie (2013) for the risk-neutral case and

the ansatz introduced in Guéant (2017) for the risk-averse cases.

As in Fodra and Labadie (2013), we solve the risk-neutral problem explicitly via the

Feynman-Kac formula, which is useful to compare with the risk-averse case, for which we

find explicit formulas for the optimal quotes under the small time-to-horizon approxim-

ation. In turn, the small time-to-horizon regime is motivated by our empirical results in

the small-time dynamics of option prices in Chapter 2.

We remark that we do not provide verification theorems and as such we do guarantee the

optimality of the solutions that we derive. On the other hand, it is reassuring that the

solutions we find are compatible with similar results in the literature, namely the risk-

neutral case in Fodra and Labadie (2013) and the small time-to-horizon case in footnote

8 in Guéant et al. (2013).

3.3.2 Model setup

Price dynamics

Let (Ω, (Ft)t∈[0,T ],P) be a filtered probability measure. The time T > 0 is a horizon for the

strategy, which must be shorter than all option expiries. The market maker trades on d

options, which are driven by n independent Brownian motions. We consider a Markovian

setting in which there exists a pricing function ϕ : [0, T ],Rn → Rd such that the options

reference prices (Ct)t∈[0,T ] is given by Ct = ϕ(t, St, Vt), where (St)t∈[0,T ] is the underlying

price process and (Vt)t∈[0,T ] is the (n− 1)-vector process of volatility factors.

As such, we model the option price dynamics according to the options Greeks, which

arise from formally applying the Itô formula to ϕ, i.e.

dCt = Θtdt+ ∆tdSt + VtdVt = Θtdt+ ∆̄tdS̄t.

where the drift vector (Θt)t∈[0,T ] and the Greek delta vector (∆t)t∈[0,T ] are Rd-valued

adapted process, the matrix of volatility-related Greeks (Vt)t∈[0,T ] is an Rd×(n−1)-valued

adapted process, and underlying price and volatility factors
(
S̄t = (St, Vt)

)
t∈[0,T ]

are an

Rn-valued Itô process given by

dS̄t = µtdt+ σtdWt,

where (µt)t∈[0,T ] is an Rn-valued adapted process and (σt)t∈[0,T ] is an Rn×n-valued adapted

process, and (Wt)t∈[0,T ] is an Rn-vector of independent Brownian motions.
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The drift vector (Θt)t∈[0,T ] is included in the option price dynamics because the market

is incomplete, i.e. the option cannot be fully hedged by the first-order Greeks (∆̄t)t∈[0,T ]

alone. In fact, in the case where Q = P, we need Θtdt to cancel the drift from VtdVt,
because (Vt)t∈[0,T ] is not necessarily a Q-martingale. We also note that by the Itô formula

argument, we have that (Θt)t∈[0,T ] is composed of the Greek theta in the time derivative,

and the Greek gamma and second-order volatility Greeks in the Itô term.

The controls are the bid and ask prices (Cbid
t , Cask

t )t∈[0,T ] around the reference price via

the mark-down and mark-up vectors (δbid
t , δask

t )t∈[0,T ] with

Cbid
t = Ct − δbid

t , Cask
t = Ct + δask

t .

Trade dynamics

Define the Nd-valued adapted point processes (Nbid
t , Nask

t )t∈[0,T ] as the number of trades

that occur at the market maker’s bid and ask quotes, respectively. The intensity pro-

cesseses (λbid
t , λask

t )t∈[0,T ] associated to (Nbid
t , Nask

t )t∈[0,T ] are vector-valued and assumed

to be of the form

ei · λbid
t = Λi

(
St, ei · δbid

t

)
, ei · λask

t = Λi

(
St, ei · δask

t

)
, ∀i ∈ {1, . . . , d},

where {e1, . . . , ed} denotes the canonical basis of Rd and Λ1, . . . ,Λd : [0, T ]×R×Rd×Rd →
R are exponential intensity functions of the form

Λi(S, δ) = eai(S)−bδ, ∀i ∈ {1, . . . , d},

where a1, . . . , an : [0, T ] × (0,∞) × R → R are the base intensity functions and b > 0 is

the intensity decay parameter.

Define the inventory and cash processes (qt)t∈[0,T ] and (Xt)t∈[0,T ] as follows

dqt = dNbid
t − dNask

t , dXt = Cask
t dNask

t − Cbid
t dNbid

t .

The wealth process (Yt)t∈[0,T ] is defined as the sum of the cash and the mark-to-market

value of the inventory, i.e.

Yt = Xt + qt · Ct.
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Using the Itô product rule, we rewrite it as

dYt = Cask
t dNask

t − Cbid
t dNbid

t + qt · dCt + Ct · dqt
= qt · dCt + δask

t dNask
t + δbid

t dNbid
t ,

= qt ·
(
Θt + ∆̄tµt

)
dt+ qt · ∆̄tσtdWt + δask

t dNask
t + δbid

t dNbid
t .

The resulting wealth process can be interpreted as follows. The first two terms qt ·(
Θt + ∆̄tµt

)
dt and qt · ∆̄tσtdWt correspond to what we would typically find in self-

financing equations – they denote the P&L resulting from the exposure from the Greeks.

The last two terms δask
t dNask

t and δbid
t dNbid

t are unique to market making strategies –

they denote the half-spread is immediately earned on every trade.

3.3.3 Risk-neutral case

Optimisation problem and HJB equation

The risk-neutral market maker solves the optimisation problem

sup
δbid,δask∈A

E [YT ] ,

where the set of admissible strategies A is the set of predictable processes. The associated

HJB equation is(
∂t + LS,Θ,∆̄,µ,σ

)
u+

(
q ·
(
Θ + ∆̄µ

))
∂Y u+

1

2

(
q · ∆̄σσ>∆̄>q

)
∂Y Y u

+ sup
δbid

d∑
i=1

Λi(S, δ
bid)
(
u(t, q + ei, Y + δbid

i , S,Θ, ∆̄, µ, σ)− u(t, q, Y, S,Θ, ∆̄, µ, σ)
)

+ sup
δask

d∑
i=1

Λi(S, δ
ask)

(
u(t, q − ei, Y + δask

i , S,Θ, ∆̄, µ, σ)− u(t, q, Y, S,Θ, ∆̄, µ, σ)
)

= 0,

(3.2)

with the terminal condition u(T, q, Y, S,Θ, ∆̄, µ, σ) = Y , where LS,Θ,∆̄,µ,σ denotes the

infinitesimal generator of (St,Θ, ∆̄t, µt, σt)t∈[0,T ].

Solution

Using the ansatz

u(t, q, Y, S,Θ, ∆̄, µ, σ) = Y − v0(t, S,Θ, ∆̄, µ)− q · v1(t,Θ, ∆̄, µ)
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on the HJB equation (3.2), we obtain(
∂t + LS,Θ,∆̄,µ

)
v0 + q ·

(
∂t + LΘ,∆̄,µ

)
v1 − q ·

(
Θ + ∆̄µ

)
+ sup

δbid

d∑
i=1

eai(S)−bδbid
i
(
−δbid

i + ei · v1(t,Θ, ∆̄, µ)
)

+ sup
δask

d∑
i=1

eai(S)−bδask
i
(
−δask

i − ei · v1(t,Θ, ∆̄, µ)
)

= 0,

with the terminal condition v0(T, S,Θ, ∆̄, µ) = v1(T,Θ, ∆̄, µ) = 0.

From this reduced HJB equation, we obtain that the optimal controls δbid∗ and δask∗ in

feedback form are

δbid∗(t,Θ, ∆̄, µ) =
1

b
+ v1(t,Θ, ∆̄, µ), δask∗(t,Θ, ∆̄, µ) =

1

b
− v1(t,Θ, ∆̄, µ),

where v1 is a solution to the PDE(
∂t + LΘ,∆̄,µ

)
v1 = Θ + ∆̄µ.

The Feynman-Kac formula yields

v1(t,Θ, ∆̄, µ) = −E

[∫ T

t

(
Θs + ∆̄sµs

)
ds

∣∣∣∣Θt = Θ, ∆̄t = ∆̄, µt = µ

]
.

Therefore, the optimal controls are

δbid∗(t,Θ, ∆̄, µ) =
1

b
− E

[∫ T

t

(
Θs + ∆̄sµs

)∣∣∣∣Θt = Θ, ∆̄t = ∆̄, µt = µ

]
.

δask∗(t,Θ, ∆̄, µ), =
1

b
+ E

[∫ T

t

(
Θs + ∆̄sµs

)∣∣∣∣Θt = Θ, ∆̄t = ∆̄, µt = µ

]
.

(3.3)

Optimal quotes

From (3.3), we can express the optimal quotes as the optimal mid-price and half-spread

as follows:

Cask∗
t + Cbid∗

t

2
= E

[
Ct +

∫ T

t

(
Θs + ∆̄sµs

)
ds

∣∣∣∣Ft] ,
= E [CT |Ft] ,

Cask∗
t − Cbid∗

t

2
=

1

b
.
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In this setting, we have no liquidation penalty, which can be interpreted either as the case

where the market maker liquidates the terminal portfolio at the reference price or that

it marks it to market without liquidating. This and the absence of further penalisation

in the inventory implies that it is not optimal for the market maker to manage their

inventory.

The optimal mid-price is the P expectation of the option price at the end of the hori-

zon. This raises an interesting distinction between the probability measures P and Q.

The optimal mid-price is a P-martingale, rather than a Q-martingale. The relationship

between P and Q, in this case, is that Q determines the hedging process and the reference

price, whereas the role of P arises from the fact that the strategy’s horizon is shorter

than any option’s expiry, which prevents an arbitrage-free strategy from taking place.

For example, if ∣∣∣∣∫ T

t

(
Θs + ∆̄sµs

)
ds

∣∣∣∣ > 1/b,

then the optimal bid or ask at t could be arbitrageable by a replication strategy – if such

strategy exists.

The optimal half-spread is the constant 1/b and corresponds to the compromise between

small spreads and high flow of trades versus large spreads and low flow – see Cartea et al.

(2015) for more details.

Despite b being present in the optimal quotes, the function a is absent. Consequently,

the optimal quotes are invariant to changes in liquidity caused by moneyness in the

risk-neutral case.

3.3.4 Inventory penalty case

Optimisation problem and HJB equation

We now consider the problem of maximisation of the expected terminal wealth with a

running quadratic inventory penalty and liquidation penalty, namely

sup
δbid,δask∈A

E

[
YT − `(qT )− 1

2
γ

∫ T

0

qt · d[C,C]tqt

]
,

where γ > 0 is the inventory penalty parameter, ` : Rd → R+ is a liquidation function

that is assumed to be non-decreasing and the set of admissible strategies A is the set of
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predictable processes. The associated HJB equation is(
∂t + LS,Θ,∆̄,µ,σ

)
u+

(
q ·
(
Θ + ∆̄µ

))
∂Y u+

1

2

(
q · ∆̄σσ>∆̄>q

)
∂Y Y u

+ sup
δbid

d∑
i=1

Λi(S, δ
bid)
(
u(t, q + ei, Y + δbid

i , S,Θ, ∆̄, µ, σ)− u(t, q, Y, S,Θ, ∆̄, µ, σ)
)

+ sup
δask

d∑
i=1

Λi(S, δ
ask)

(
u(t, q − ei, Y + δask

i , S,Θ, ∆̄, µ, σ)− u(t, q, Y, S,Θ, ∆̄, µ, σ)
)

=
1

2
γq · ∆̄σσ>∆̄>q,

(3.4)

with the terminal condition u(T, q, Y, S,Θ, ∆̄, µ, σ) = Y − `(q), where LS,Θ,∆̄,µ,σ denotes

the infinitesimal generator of (St,Θt, ∆̄t, µt, σt)t∈[0,T ].

Small time-to-horizon solution

Using the ansatz u(t, q, Y, S,Θ, ∆̄, µ, σ) = Y − v(t, q, S,Θ, ∆̄, µ, σ) on (3.4), we obtain(
∂t + LS,Θ,∆̄,µ,σ

)
v − q ·

(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q

+ sup
δbid

d∑
i=1

eai(S)−bδbid
i
(
v(t, q + ei, S,Θ, ∆̄, µ, σ)− v(t, q, S,Θ, ∆̄, µ, σ)− δbid

i

)
+ sup

δask

d∑
i=1

eai(S)−bδask
i
(
v(t, q − ei, S,Θ, ∆̄, µ, σ)− v(t, q, S,Θ, ∆̄, µ, σ)− δask

i

)
= 0,

with the terminal condition v(T, q, S,Θ, ∆̄, µ, σ) = `(q).

From this reduced HJB equation, we obtain that the optimal controls δbid∗ and δask∗ in

feedback form are

δbid∗(t, q, S,Θ, ∆̄, µ, σ) =
1

b
+ v(t, q + ei, S,Θ, ∆̄, µ, σ)− v(t, q, S,Θ, ∆̄, µ, σ),

δask∗(t, q, S,Θ, ∆̄, µ, σ) =
1

b
+ v(t, q − ei, S,Θ, ∆̄, µ, σ)− v(t, q, S,Θ, ∆̄, µ, σ).
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Substituting this back into the HJB equation, we obtain the PIDE(
∂t + LS,Θ,∆̄,µ,σ

)
v − q ·

(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q

+
e−1

b

d∑
i=1

eai(S)−b(v(t,q+ei,S,Θ,∆̄,µ,σ)−v(t,q,S,Θ,∆̄,µ,σ))

+
e−1

b

d∑
i=1

eai(S)−b(v(t,q−ei,S,Θ,∆̄,µ,σ)−v(t,q,S,Θ,∆̄,µ,σ)) = 0,

with the terminal condition v(T, q, S,Θ, ∆̄, µ, σ) = `(q).

Now, we switch the direction of time with τ = T − t and scale τ 7→ ετ

wε(τ, q, S,Θ, ∆̄, µ, σ) = v(T − ετ, q, S,Θ, ∆̄, µ, σ),

∂τw
ε(τ, q, S,Θ, ∆̄, µ, σ) = −ε∂tv(T − ετ, q, S,Θ, ∆̄, µ, σ),

so that the PIDE becomes

∂τw
ε = εLS,Θ,∆̄,µ,σwε − εq ·

(
Θ + ∆̄µ

)
+

1

2
εγq · ∆̄σσ>∆̄>q

+ ε
e−1

b

d∑
i=1

eai(S)−b(wε(τ,q+ei,S,Θ,∆̄,µ,σ)−wε(τ,q,S,Θ,∆̄,µ,σ))

+ ε
e−1

b

d∑
i=1

eai(S)−b(wε(τ,q−ei,S,Θ,∆̄,µ,σ)−wε(τ,q,S,Θ,∆̄,µ,σ)),

with the initial condition wε(0, q, S,Θ, ∆̄, µ, σ) = `(q).

We then propose an ansatz that expands the solution in ε

wε(τ, q, S,Θ, ∆̄, µ, σ) = `(q) +
∞∑
i=1

εiwi(τ, q, S,Θ, ∆̄, µ, σ),
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and expand the Taylor series of the exponential functions on ε to get

∂τw1 +
∞∑
n=1

εn∂τwn+1

= −q ·
(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q +

∞∑
n=1

εnLS,Θ,∆̄,µ,σwn

+
e−1

b

d∑
i=1

eai(S)−b(`(q+ei)−`(q))
∞∏
n=1

∞∑
m=0

εnm(−b)m

m!

(
wn(τ, q + ei, S,Θ, ∆̄, µ, σ)− wn

)m
+
e−1

b

d∑
i=1

eai(S)−b(`(q−ei)−`(q))
∞∏
n=1

∞∑
m=0

εnm(−b)m

m!

(
wn(τ, q − ei, S,Θ, ∆̄, µ, σ)− wn

)m
,

with the initial conditions

w1(0, q, S,Θ, ∆̄, µ, σ) = w2(0, q, S,Θ, ∆̄, µ, σ) = . . . = 0.

Since the PIDE must be true for any ε > 0, we equate each coefficient of a power of ε.

The terms constant in ε produces the differential equation

∂τw1 = −q ·
(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q +

e−1

b

d∑
i=1

eai(S)−b(`(q+ei)−`(q))

+
e−1

b

d∑
i=1

eai(S)−b(`(q−ei)−`(q)),

to which the solution is

w1(τ, q, S,Θ, ∆̄, µ, σ) =− τq ·
(
Θ + ∆̄µ

)
+

1

2
γτq · ∆̄σσ>∆̄>q

+
e−1

b
τ

d∑
i=1

eai(S)−b(`(q+ei)−`(q)) +
e−1

b
τ

d∑
i=1

eai(S)−b(`(q−ei)−`(q)).

Therefore, the solution for v is

v(T − ετ, q, S,Θ, ∆̄, µ, σ) = `(q) + εw1

(
τ, q, S,Θ, ∆̄, µ, σ

)
+O(ε2)

= `(q)− ετq ·
(
Θ + ∆̄µ

)
+

1

2
γετq · ∆̄σσ>∆̄>q

+
e−1

b
ετ

d∑
i=1

eai(S)−b(`(q+ei)−`(q))

+
e−1

b
ετ

d∑
i=1

eai(S)−b(`(q−ei)−`(q)) +O(ε2)
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and the optimal controls for each option i ∈ {1, . . . d} are

δbid∗
i (T − ετ, S,Θ, ∆̄, µ, σ)

=
1

b
− ετei ·

(
Θ + ∆̄µ

)
+ γετei · ∆̄σσ>∆̄>

(
1

2
ei + q

)
+ `(q + ei)− `(q)

+
e−1

b
ετ

d∑
j=1

eaj(S)
(
e−b(`(q+ej+ei)−`(q+ei)) − e−b(`(q+ej)−`(q))

)
+
e−1

b
ετ

d∑
j=1

eaj(S)
(
e−b(`(q−ej+ei)−`(q+ei)) − e−b(`(q−ej)−`(q))

)
+O(ε2),

δask∗
i (T − ετ, S,Θ, ∆̄, µ, σ)

=
1

b
+ ετei ·

(
Θ + ∆̄µ

)
+ γετei · ∆̄σσ>∆̄>

(
1

2
ei − q

)
+ `(q − ei)− `(q)

+
e−1

b
ετ

d∑
j=1

eaj(S)
(
e−b(`(q+ej−ei)−`(q−ei)) − e−b(`(q+ej)−`(q))

)
+
e−1

b
ετ

d∑
j=1

eaj(S)
(
e−b(`(q−ej−ei)−`(q−ei)) − e−b(`(q−ej)−`(q))

)
+O(ε2).

(3.5)

Optimal quotes

From (3.5), if we let ` ≡ 0, we have the optimal mid-price and half-spread in vector form(
Cask∗ + Cbid∗

2

)
(T − ετ, C, g,Θ, ∆̄, µ, σ) = C + ετ

(
Θ + ∆̄

(
µ− γσσ>g

))
+O(ε2),(

Cask∗ − Cbid∗

2

)
(T − ετ, C, g,Θ, ∆̄, µ, σ) =

1

b
+

1

2
γετD

(
∆̄σσ>∆̄>

)
+O(ε2).

where D is the linear operator that maps a square matrix to a vector of its diagonal

elements and g = ∆̄q, i.e. the risk exposure on the first-order Greeks.

Concerning the optimal spread, as in the risk-neutral case, we also have the 1/b term.

Additionally, there is a second term that is an additional widening of spreads if the market

maker is more conservative, which is proportional to the variance of the option itself. It

is interesting to notice that the variance of an option is tied to its Greeks.

Concerning the mid-price, as in the risk-neutral case, it also estimates the near future

movement via the θ and µ terms. This also adds the possibility of arbitrageable quotes

again in the analogous case in which Θ + ∆̄µ is large enough. Additionally, it also

manages risk of the market maker via a proportional control in g. This term could also

be interpreted as a passive hedging arising naturally as a result of risk aversion. The fact
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that the spread is constant in the inventory reflects the separation of roles between spread

and mid-price: the spread optimises the profitability of the overall strategy, whereas the

mid-price is skewed for dynamic risk management.

The link to moneyness for the inventory penalty criterion, as in the risk neutral criterion,

is absent due to the lack of the a function in the optimal quotes. This is due to the

small time-to-horizon asymptotics since the term a actually appears in the ergodic limit

in Chapter 1. For comparison, the optimal half-spread approximation for the inventory

penalty criterion under the ergodic limit under our framework is

1

b
+

1

2

√
γ

2ea−1b

(
∆̄σσ>∆̄>

) 1
2 .

The choice of the exponential intensity function also leads to arbitrageable quotes even

when θ ≡ 0 and µ ≡ 0. Indeed, for large enough inventory, the mid-price can be skewed

enough to let the bid or ask quotes beyond arbitrage bounds. This could be fixed if the

intensity function reaches infinity at origin, i.e. Λi(S, δ)→∞ as δ → 0 from above. An

example of an intensity function with this property is the power law, which has been

studied in the context of optimal execution in Bayraktar and Ludkovski (2014). We

remark that the spread Cask∗
t −Cbid∗

t , however, can never be negative because it is a sum

of non-negative terms.

We remark that the optimal quotes are invariant to the number of traded options, but

tied to the number of factors that drive the option prices. This property allows us to

quote the whole volatility surface as a continuous function of strike and expiry, since the

dimensionality is tied to the number of driving factors (underlying and volatility) instead

of the number of options. This implies, in particular, that including or not the underlying

asset in the market making strategy does not change the optimal quotes. Of course, this

would be different if we acknowledge the differences in liquidity between the underlying

asset and its options.

We should also remark that we have ignored the liquidation penalty. Indeed, the optimal

controls in (3.5) can be seen as a perturbation around the terminal condition, which is the

liquidation penalty. In liquid markets, however, transaction costs are small – especially

at the end of the trading session, where the spread is at its minimum – and the inventory

penalty already ensures that the inventory is kept at reasonable levels.
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3.3.5 CARA case

Optimisation problem and HJB equation

We now consider the problem of maximisation of the expected CARA utility of the

terminal wealth and liquidation penalty, namely

sup
δbid,δask∈A

E
[
e−γ(YT−qT ·Lqt)

]
where γ > 0 is the risk aversion parameter, ` : Rd → R+ is a liquidation function that

is assumed to be non-decreasing and the set of admissible strategies A is the set of

predictable processes bounded from below. The associated HJB equation is(
∂t + LS,Θ,∆̄,µ,σ

)
u+

(
q ·
(
Θ + ∆̄µ

))
∂Y u+

1

2

(
q · ∆̄σσ>∆̄>q

)
∂Y Y u

+ sup
δbid

d∑
i=1

Λi(S, δ
bid)
(
u(t, q + ei, Y + δbid

i , S,Θ, ∆̄, µ, σ)− u(t, q, Y, S,Θ, ∆̄, µ, σ)
)

+ sup
δask

d∑
i=1

Λi(S, δ
ask)

(
u(t, q − ei, Y + δask

i , S,Θ, ∆̄, µ, σ)− u(t, q, Y, S,Θ, ∆̄, µ, σ)
)

= 0,

(3.6)

with the terminal condition u(T, q, Y, Z) = e−γ(Y−`(q)), where LS,Θ,∆̄,µ,σ denotes the infin-

itesimal generator of (St, ∆̄t, µt, σt)t∈[0,T ].

Small time-to-horizon solution

Using the ansatz u(t, q, Y, S,Θ, ∆̄, µ, σ) = e−γ(Y−v(t,q,S,Θ,∆̄,µ,σ)) on (3.6), we obtain(
∂t + LS,Θ,∆̄,µ,σ

)
v − q ·

(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q

+ sup
δbid

d∑
i=1

eai(S)−bδbid
i

γ

(
e−γ(δ

bid
i −v(t,q+ei,S,Θ,∆̄,µ,σ)+v(t,q,S,Θ,∆̄,µ,σ)) − 1

)
+ sup

δask

d∑
i=1

eai(S)−bδask
i

γ

(
e−γ(δ

ask
i −v(t,q−ei,S,Θ,∆̄,µ,σ)+v(t,q,S,Θ,∆̄,µ,σ)) − 1

)
= 0,

with the terminal condition v(T, q, S,Θ, ∆̄, µ, σ) = `(q).

From this reduced HJB equation, we obtain that the optimal controls δbid∗ and δask∗ in
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feedback form are

δbid∗(t, S,Θ, ∆̄, µ, σ) =
1

γ
log
(

1 +
γ

b

)
+ v(t, q + ei, S,Θ, ∆̄, µ, σ)− v(t, q, S,Θ, ∆̄, µ, σ),

δask∗(t, S,Θ, ∆̄, µ, σ) =
1

γ
log
(

1 +
γ

b

)
+ v(t, q − ei, S,Θ, ∆̄, µ, σ)− v(t, q, S,Θ, ∆̄, µ, σ).

Substituting this back into the HJB equation, we obtain the PIDE(
∂t + LS,Θ,∆̄,µ,σ

)
v − q ·

(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q

−ε
b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(v(t,q+ei,S,Θ,∆̄,µ,σ)−v(t,q,S,Θ,∆̄,µ,σ))

−ε
b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(v(t,q−ei,S,Θ,∆̄,µ,σ)−v(t,q,S,Θ,∆̄,µ,σ)) = 0,

with the terminal condition v(T, q, S,Θ, ∆̄, µ, σ) = `(q).

Now, we switch the direction of time with τ = T − t and scale τ 7→ ετ

wε(τ, q, S,Θ, ∆̄, µ, σ) = v(T − ετ, q, S,Θ, ∆̄, µ, σ),

∂τw
ε(τ, q, S,Θ, ∆̄, µ, σ) = −ε∂tv(T − ετ, q, S,Θ, ∆̄, µ, σ),

so that the PIDE becomes

∂τw
ε = εLS,Θ,∆̄,µ,σwε − εq ·

(
Θ + ∆̄µ

)
+

1

2
εγq · ∆̄σσ>∆̄>q

− ε

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(v(t,q+ei,S,Θ,∆̄,µ,σ)−v(t,q,S,Θ,∆̄,µ,σ))

− ε

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(v(t,q−ei,S,Θ,∆̄,µ,σ)−v(t,q,S,Θ,∆̄,µ,σ)),

with the initial condition wε(0, q, S,Θ, ∆̄, µ, σ) = `(q).

We then propose an ansatz that expands the solution in ε

wε(τ, q, S,Θ, ∆̄, µ, σ) = `(q) +
∞∑
i=1

εiwi(τ, q, S,Θ, ∆̄, µ, σ),
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and expand the Taylor series of the exponential functions on ε to get

∂τw1 +
∞∑
n=1

εn∂τwn+1

= −q ·
(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q +

∞∑
n=1

εnLS,Θ,∆̄,µ,σwn

− 1

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q+ei)−`(q))
∞∏
n=1

∞∑
m=0

εnm(−b)m

m!

(
wn(τ, q + ei, S,Θ, ∆̄, µ, σ)− wn

)m
− 1

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q−ei)−`(q))
∞∏
n=1

∞∑
m=0

εnm(−b)m

m!

(
wn(τ, q − ei, S,Θ, ∆̄, µ, σ)− wn

)m
,

with the initial conditions

w1(0, q, S,Θ, ∆̄, µ, σ) = w2(0, q, S,Θ, ∆̄, µ, σ) = . . . = 0.

Since the PIDE must be true for any ε > 0, we equate each factor of εn to zero. The

terms constant in ε produces the differential equation

∂τw1 = −q ·
(
Θ + ∆̄µ

)
+

1

2
γq · ∆̄σσ>∆̄>q − 1

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q+ei)−`(q))

− 1

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q−ei)−`(q)),

to which the solution is

w1(τ, q, S,Θ, ∆̄, µ, σ) = −τq ·
(
Θ + ∆̄µ

)
+

1

2
γτq · ∆̄σσ>∆̄>q

− τ

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q+ei)−`(q))

− τ

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q−ei)−`(q)).
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Therefore, the solution for v is

v(T − ετ, q, S,Θ, ∆̄, µ, σ) = `(q) + εw1

(
τ, q, S,Θ, ∆̄, µ, σ

)
+O(ε2)

= `(q)− ετq ·
(
Θ + ∆̄µ

)
+

1

2
γετq · ∆̄σσ>∆̄>q

− ετ

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q+ei)−`(q))

− ετ

b

(
1 +

γ

b

)− b
γ
−1

d∑
i=1

eai(S)−b(`(q−ei)−`(q)) +O(ε2)

and the optimal controls for each option i ∈ {1, . . . d} are

δbid∗
i (T − ετ, S,Θ, ∆̄, µ, σ)

=
1

γ
log
(

1 +
γ

b

)
− ετei ·

(
Θ + ∆̄µ

)
+ γετei · ∆̄σσ> ∆̄>

(
1

2
ei + q

)
+ `(q + ei)− `(q)

− ετ

b

(
1 +

γ

b

)− b
γ
−1

d∑
j=1

eaj(S)
(
e−b(`(q+ej+ei)−`(q+ei)) − e−b(`(q+ej)−`(q))

)
− ετ

b

(
1 +

γ

b

)− b
γ
−1

d∑
j=1

eaj(S)
(
e−b(`(q−ej+ei)−`(q+ei)) − e−b(`(q−ej)−`(q))

)
+O(ε2),

δask∗
i (T − ετ, S,Θ, ∆̄, µ, σ)

=
1

γ
log
(

1 +
γ

b

)
+ ετei ·

(
Θ + ∆̄µ

)
+ γετei · ∆̄σσ> ∆̄>

(
1

2
ei − q

)
+ `(q − ei)− `(q)

− ετ

b

(
1 +

γ

b

)− b
γ
−1

d∑
j=1

eaj(S)
(
e−b(`(q+ej−ei)−`(q−ei)) − e−b(`(q+ej)−`(q))

)
− ετ

b

(
1 +

γ

b

)− b
γ
−1

d∑
j=1

eaj(S)
(
e−b(`(q−ej−ei)−`(q−ei)) − e−b(`(q−ej)−`(q))

)
+O(ε2).

(3.7)

Optimal quotes

From (3.7), if we let ` ≡ 0, we have the optimal mid-price and half-spread in vector form(
Cask∗ + Cbid∗

2

)
(T − ετ, C, g,Θ, ∆̄, µ, σ) = C + ετ∆̄

(
µ− γσσ>g

)
+O(ε2),(

Cask∗ − Cbid∗

2

)
(T − ετ, C, g,Θ, ∆̄, µ, σ) =

1

γ
log
(

1 +
γ

b

)
+

1

2
γετD

(
∆̄σσ>∆̄>

)
+O(ε2).
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where D is the linear operator that maps a square matrix to a vector of its diagonal

elements and g = ∆̄q, i.e. the risk exposure on the first-order Greeks.

Compared to the inventory penalty case, we observe that the only difference is on the first

term of the optimal spread – we have (1/γ) log(1+γ/b) instead of 1/b. These terms come

from the optimal controls in feedback form, and therefore they are also present in other

asymptotic approximations, such as in Chapter 1, where the limit is taken for T → ∞
for both the inventory penalty and the CARA optimisation problems. For reference, the

optimal half-spread approximation for the CARA criterion under the ergodic limit under

our framework is
1

b
+

1

2

√
γ

2eab

(
1 +

γ

b

)1+ b
γ (

∆̄σσ>∆̄>
) 1

2 .

The difference between the CARA and the inventory penalty optimisation criteria is

that the risk aversion in the inventory penalty only considers the market risk, whereas

the CARA criterion also encompasses the positive jumps on the wealth process, namely

δask
t dNask

t + δbid
t dNbid

t . This is then reflected in the first term of the optimal spread and

indeed we have that in the limit γ → 0+, the CARA optimal spread converges to the

inventory penalty optimal spread:

lim
γ→0+

1

γ
log
(

1 +
γ

b

)
= lim

γ→0+
log

(
1 +

1/b

1/γ

)1/γ

=
1

b
.

As with the other two criteria, we also observe the lack of the a function in the optimal

quotes.

A remarkable fact of the optimal controls for the CARA criterion is that it reduces to

the original approximation by Avellaneda and Stoikov (2008) for the single-asset case,

even though their approximation is for small inventory. The link between the small

time-to-horizon and small inventory approximations, however, has already been noticed

in (Guéant et al., 2013, footnote 8) by a Taylor expansion of their exact expression for

optimal quotes – found under the additional assumption of hard inventory constraints.

Nevertheless, the approximations differ when the liquidation penalty is considered.

3.3.6 Numerical illustration

We perform a numerical illustration of the trading strategy with running quadratic in-

ventory penalty under the small time-to-horizon regime. For this, we use on the calibrated

Heston model and exponential intensity function parameters in Section 3.2. For risk aver-

sion, we use the value found later in Section 3.4. We trade 3 calls and 3 puts with the
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Figure 3.6: Simulation of one day of trading. We display the controls and inventory for
the six traded options.
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Figure 3.7: Histogram of daily P&Ls for 1,000 simulations.
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strikes specified in Table 3.1. For simplicity, we take P = Q, in which case option prices

are martingales, so that Θ cancels the µ term.

In Figure 3.6, we can see some features of the optimal quotes and its effect on the

inventory. First, we notice that the spread of the optimal quotes decreases almost linearly

in time, as we would expect from the asymptotic formula, which causes a large number

of trades by the end of the day. We also note the effect of passive hedging by having

inventories with different signs, most notably the almost opposite inventories between the

call options with strikes 435 and 445.

In Figure 3.7, we depict the histogram of daily P&Ls, which has not been adjusted for

the lot size. The positive mean is the result of the accumulation of the half-spreads at

each trade and the dispersion should be mostly due market risk while holding inventory.

It is reassuring that all daily P&Ls are positive, which indicates that the passive hedging

effect is effective at managing Greeks risk.

3.4 Empirical structure of spreads

3.4.1 Overview

Endowed with the optimal spreads from Section 3.3, we assess how these optimal spreads

fit market data and analyse the relationship among Greeks, spreads and trading activity.

We do so by analysing two forms of bid-ask spread: the bid-ask spread of option prices

and the bid-ask spread of implied volatilities.

In Section 3.4.2, we fit the optimal spreads to the observed bid-ask spreads of option

prices, and make the relation between spreads and Greeks. Then, in Section 3.4.3, we

analyse the bid-ask spread of implied volatilities and show how spreads and Greeks impact

the trading activity of options across moneyness and expiries.

3.4.2 Structure of optimal spreads

We first analyse the structure of spreads of option prices. Figure 3.8 shows the density of

the spreads along with the fit from the optimal spreads. The density is obtained using a

Gaussian kernel density estimator to obtain the empirical distribution of the spreads as

a function of log-moneyness. At first glance, a clear pattern is that the spreads tend to

a constant when absolute moneyness goes to infinity.

On the optimal spreads fit, we use the small time-to-horizon asymptotics of the optimal
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Figure 3.8: The background is a density plot in which the stronger the colour, the longer
an option with given moneyness exhibits the given spread. Quotes for all options are
aggregated for this plot. The solid lines are the optimal spreads given the regression para-
meters. The linear regression is done on the average spread conditioned on moneyness.
The estimates for the model parameters are b = 34 and γ = 0.016, and the coefficient of
determination is R2 = 0.95. The log-moneyness is computed with log(K/St).
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spreads from the inventory penalty criterion in Section 3.3. For convenience, we transcribe

the optimal spreads here:(
Cask∗ − Cbid∗

2

)
(T − ετ, C, g, ∆̄, µ, σ) =

1

b
+

1

2
γετD

(
∆̄σσ>∆̄>

)
+O(ε2),

where we recall D maps a square matrix to a vector of its diagonal elements.

The above formula enables us to perform a linear regression on the market spread, where

the intercept is 1/b and the linear parameter is γ – both parameters being fixed across

all options. The Greeks are computed with the Heston model calibrated to option prices.

We regress the optimal spread against the average spread conditional in log-moneyness

and time to expiry from the empirical distribution. We highlight that the regression does

not satisfy the usual assumption of an OLS linear regression, so this regression is to be

interpreted as an L2 fit.

Figure 3.8 thus shows that the model fit is very convincing, especially considering that

only two parameters were fitted against data from all options of the first three expiries.

The R2 despite being very high, does not convey much information since the regression

is on non-stationary variables. Given the optimal formula, we conclude that the shape

of the optimal spreads follows the shape of the Delta function, which explains why the

spreads converge to a constant when log-moneyness is large in either direction. The model

also contains the Vega parameter, but as we have seen in Section 2.4, the spot volatility

contribution to the variance of options at small time scales is relatively small even with

the Heston simulation study, especially at the tails, hence we indeed expect the shape

of Vega to be less perceptible. This shape, however, is only possible in the presence of

positive risk aversion, which is found to be γ = 0.016.

Furthermore, the lack of the base intensity parameter a in the regression model highlights

the fact that indeed it has little effect in the high-frequency regime.

3.4.3 Spreads on implied volatility and trading activity

We now turn our attention to the spread of implied volatilities and its connection to

trading activity. Figure 3.9 depicts the density of the implied volatility spread and Fig-

ure 3.10 depicts the density of trading activity. At first glance, we observe an inverse

relationship between the two plots – which is explained later in this section.

In Figure 3.9 shows many features of the implied volatility spread. We again observe

symmetry between calls and puts. We have a convex shape whose minimum is slightly

out-of-the-money. The shape also disperses with time to expiry.
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Figure 3.9: Distribution of relative implied volatility spreads versus log-moneyness – i.e.
log(K/St) – for different expiries. This relative spread is the difference between the bid
and ask implied volatilities divided by their midpoint implied volatility. The stronger the
colour, the longer the bid-ask spread at the given level and moneyness.

155



Figure 3.10: Relative trade volumes across log-moneyness – i.e. log(K/St) – on all options
belonging to the three closest to expiry dates.
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A key property of the implied volatility spread is its relation to the Greek Vega. Given

a fixed underlying price, let f be a function from implied volatility to option price. The

Greek vega is then V = df/dσ. From the mean value theorem, we have that

f(σ2)− f(σ1)

σ2 − σ1

= V(σ̄),

for a σ̄ ∈ [σ1, σ2]. Therefore,

σ2 − σ1 =
f(σ2)− f(σ1)

V(σ̄)
. (3.8)

This implies that the implied volatility spread is the bid-ask spread of the option divided

by the Greek Vega evaluated at an intermediate point. Combining with the spreads

on option prices in Figure 3.8, we have that, although the Greek vega has a peak at

the money, the minimum implied volatility spread is offset to slightly out-of-the-money

because of lower spreads on option prices. Therefore, although the spread of option prices

seem to be more natural from the perspective of our model, the implied volatility spread

can be seen as a useful normalisation, especially when comparing spreads with trading

activity.

The trading activity in Figure 3.10, as mentioned before, looks like the inverse of the

implied volatility spreads in Figure 3.9. We observe symmetry between calls and puts

and a concave shape with a peak slightly out-of-the-money. The relation to the Greek

Vega in (3.8) shines light to this inverse relation: trading activity is higher on options

where the Greek Vega is cheaper.

Upon a closer inspection of Figure 3.10, however, we notice that the peak of the trade

activity for put options is smaller than the corresponding peak for call options. This

is the asymmetry we have hinted in Figure 3.2.2. The lower activity for put options

also contributes to the argument that trading activity is higher on options where the

Greek Vega is cheaper. Recall that, in Figure 2.31 from the Greeks estimation study in

Chapter 2, the peak on the volatility semi-partial R2 was higher for calls than for puts,

thus indicating that the slightly out-of-the-money call options can offer vega exposure

that is less mixed with delta exposure than what out-of-the-money put options can offer.

Another feature in Figure 3.10 is its ‘bumpy’ shape. Given a range in which the underlying

has moved during the day, each bump reflects the existence of an option that covers a

range of moneyness. It is also worth noting that some options exhibit proportionally more

activity than their neighbouring options. We believe this is connected to the fact that

new options are issued to refine the strike grid as they get more liquid. Therefore, older

options have an accumulated open interest that likely reflects in more trading activity.
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Total volume Relative volume
Expiry

2016-01-15 18145 60.7%
2016-02-19 6015 20.1%
2016-03-18 3290 11.0%
2016-06-17 1168 3.9%
2016-09-16 206 0.7%
2016-12-16 637 2.1%
2017-06-16 15 0.1%
2017-12-15 83 0.3%
2018-12-21 122 0.4%
2019-12-20 104 0.3%
2020-12-18 84 0.3%

Table 3.2: Total volume of trades for all options grouped by expiry date.

Table 3.2 shows the trade activity across expiries. It is clear that options closer to expiry

show higher activity. Similarly to Figure 3.10, however, we also see that some expiries are

favoured relative to their neighbouring expiries. We offer an analogous explanation here:

the expiry grid gets finer with time and thus options of the sparser grid have accumulated

more open interest which reflects in trade activity.

In summary, we observe that our model fits the spreads data well. The lack of the base

intensity parameter in the optimal quotes suggests that the shape of the observed spreads

is mainly attributed to the risk aversion of the market maker with little or no compromise

the trade activity of each option. Instead, the trading activity seems to be motivated by

liquidity takers seeking to trade vega cheaply – i.e. with lower transaction costs.

3.5 Conclusion

In Section 3.2, we have fitted the exponential trading intensity function and found that

the trading intensity features: (i) a base intensity that is sensitive to the moneyness of the

option and (ii) an exponential decay parameter that appears constant. With this shape

of intensity function and assuming that the market maker quotes under small time-to-

horizon, we find in Section 3.3 compact optimal that quotes, under the inventory penalty

and CARA criteria, are insensitive to the base intensity and, thus, only dependent on the

exponential decay parameter, which is invariant to the moneyness of options. Besides,

the optimal quotes are invariant to the number of options traded, in the sense that

optimal quotes only track the exposure to the different Greeks rather than the inventory

of each option individually. Furthermore, we learn that the optimal spread across different

158



options can be summarised in the first-order Greeks of the options – i.e. delta and

volatility-related Greeks. This is in contrast to the literature that assumes continuous

delta-hedging – as in Baldacci et al. (2020) –, in which the Greek delta is absent from the

HJB equation and, consequently, absent from the optimal spreads. Finally, in Section 3.4,

we find that the optimal spread indeed fits well with the observed market spreads, which

is evidence that the choice of the trade intensity function and the small time-to-horizon

regime were reasonable. Furthermore, we find that the shape of market spreads are

mainly due to the effect of options Greeks and that the trade activity is higher where

Greek vega is cheaper to trade – cheaper in the sense that the spread is tighter. In other

words, when varying moneyness and expiries, it seems that lower spreads attract trading

activity, but it is not optimal to lower the spreads where the trading activity is higher.

For further research, we suggest four directions: (i) power-law intensity function, (ii) time-

dependent base intensity, (iii) stochastic trade sizes and (iv) self-excitation of trades. As

noted in Section 3.2, the exponential function does not capture the excess convexity that

is observed in the log-log plot. Furthermore, as observed in Section 3.3, the exponential

intensity function allows for arbitrage if the inventory is large enough (in either positive

or negative directions). We have observed in Section 3.2.3 that the beginning and end

of the trading sessions present wide spreads and high trading activity, which are both

favourable for market makers. As such, modelling time-dependent base intensity could

incorporate this effect and can be relevant to market making on other asset classes.

Following the approach by Bergault and Guéant (2019), introducing stochastic trade sizes

for the optimal market making model is not a difficult task, and it could be more realistic

since the Greeks of the at-the-money and out-of-the-money options can quickly change

upon a change in the underlying price and thus the size of the trades would likely follow.

Finally, the self-excitation of trades, as done in Cartea et al. (2014), could be another

interesting extension. In their model, the self-excitation affects the base intensity only,

and thus we would conjecture that this does not change the optimal quotes under our

framework.
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Concluding remarks

In Chapter 1, we have derived closed-form solutions for the ergodic limit of an asset-

agnostic market making model thanks to a quadratic approximation of its Hamiltonian.

With this closed-form solution, we could observe the effect of the base intensity for

the optimal quotes. In Chapter 2, thanks to a novel methodology to estimate spot

volatility changes at small time scales, were able to empirically recover volatility-related

Greeks from option price changes. We concluded, therefore, that, even locally, spot

volatility drives option prices. In Chapter 3, we have further noticed that the trading

activity of options is linked to its moneyness but only via the base intensity. From

this observation and the need to model stochastic volatility, we have derived an options

market making model suitable for exchange-traded vanilla options. Contrary to the

optimal quotes obtained via the ergodic limit in Chapter 1, the optimal quotes in the

small time-to-horizon limit are invariant to the base intensity, which implies that the

optimal quotes are independent of moneyness in this regime. We then used the optimal

spread to link the Greeks of the options to the observed spread and identified the inverse

relationship between trading activity and the transaction costs – measured as the bid-ask

spread in euros – per unit of vega.

We highlight that our results rely heavily on three assumptions: (i) the exponential

shape of the trading intensity, (ii) frictions in trading the underlying and (iii) the short

horizon of the market maker. As shown in Chapter 3, the exponential shape of the

intensity function has two drawbacks: (i) it does not fit well with empirical data and (ii)

it allows the market maker quotes to be arbitrageable when the inventory is large. Base

intensity is ignored for equity index options, having trade intensity depend on moneyness

under a different regime is still an open problem. The choice of exponential intensity

was due to its tractability, but we believe that an intensity function with a power-law

shape could be more appropriate. Whether the option is liquid relative to its underlying

is important when considering whether the assumption of perfect delta hedge makes

sense. In the case of exchange-traded vanilla options, we believe that the liquidity of

the options is comparable to their underlying, thus we do not assume the perfect delta-

hedging strategy. For exotic options or even for vanilla options of other asset classes –
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e.g. options in currency –, the perfect delta hedge assumption could be more realistic

than not allowing for active delta hedging. The assumption that the market maker has

a short horizon makes sense for liquid exchange-traded options but is less appropriate in

markets where trades occur less frequently, such as for swaptions.

Possible extensions on the empirical analysis in Chapter 2 and on the options market

making model in Chapter 3 are: (i) using a multi-factor stochastic volatility model – such

as the Bergomi model or even a model based on the evolution of the implied volatility

surface directly –, and (ii) consider American puts and calls instead of European vanilla

options.
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Cartea, Á., Jaimungal, S., and Ricci, J. (2014). Buy low, sell high: A high frequency

trading perspective. SIAM Journal on Financial Mathematics, 5(1):415–444.
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