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Abstract: Battery models are one of the most important tools for understanding the behaviour of
batteries. This is particularly important for the fast-moving electrical vehicle industry, where new
battery chemistries are continually being developed. The main limiting factor on how fast battery
models can be developed is the experimental technique used for collection of data required for
model parametrisation. Currently, this is a very time-consuming process. In this paper, a fast novel
parametrisation testing technique is presented. A model is then parametrised using this testing
technique and compared to a model parametrised using current common testing techniques. This
comparison is conducted using a WLTP (worldwide harmonised light vehicle test procedure) drive
cycle. As part of the validation, the experiments were conducted at different temperatures and
repeated using two different temperature control methods: climate chamber and a Peltier element
temperature control method. The new technique introduced in this paper, named AMPP (accelerated
model parametrisation procedure), is as good as GITT (galvanostatic intermittent titration technique)
for parametrisation of ECMs (equivalent circuit models); however, it is 90% faster. When using
experimental data from a climate chamber, a model parametrised using GITT was marginally better
than AMPP; however, when using experimental data using conductive control, such as the ICP
(isothermal control platform), a model parametrised using AMPP performed as well as GITT at 25 ◦C
and better than GITT at 10 ◦C.

Keywords: equivalent circuit model (ECM); HPPC; GITT; AMPP; parametrisations; lithium-ion; battery

1. Introduction

The battery industry is growing at an exceptional rate driven by the growing electric
vehicle industry. Range and power demands from consumers are forcing the industry to
develop more capable batteries. Therefore, along with new chemistries being developed,
existing chemistries are continually tweaked to meet a need. These often small changes can
result in large changes in the behaviour of the battery over a single cycle and/or its lifetime.
To understand cell performance, extensive tests are required. These tests should reflect
the usage case, both in terms of operational load and thermal conditions. Since testing is
expensive and time-consuming, the battery industry looks to minimise the experimental
work required during the development of any new battery pack. Numerical models provide
an excellent alternative and are employed whenever there is sufficient confidence in their
outputs and results.

There are different methods for modelling batteries such as physics-based models
or equivalent circuit models (ECMs). Physics-based models predict the behaviour of the
underlying electrochemical mechanisms through parameterisation of material properties
and mathematical equations that define the electrochemistry. Equivalent circuit models
predict battery performance by fitting the parameters of an equivalent circuit to experi-
mental training datasets such that the equivalent circuit’s voltage response closely matches
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the voltage response from the training set [1,2]. ECMs are often preferred within the auto-
motive industry because they are comparatively simpler, requiring far less computational
effort compared to their physics-based counterparts, and they can be tailored to be most
effective in a specific application [3,4]. There are three stages to developing a robust ECM:
(i) equivalent circuit design, (ii) model parameterisation and (iii) model validation. Model
parameterisation further splits into two stages: experiments for data collection required for
parametrisation and then parameter value identification based on a fitting process of the
equivalent circuit to the experimental data. The focus of this study is on the experimental
techniques used for data collection for parametrisation of ECMs.

Two factors are important in developing battery models: their accuracy, which is
intuitively critical given the role the model will subsequently play in battery pack devel-
opment and operation, and the time it takes to develop the model. The latter is often
overlooked within academia but is a critical component of success for companies looking
to build battery packs; it can be prohibitively expensive to spend several months creating a
battery model. Most importantly, the accuracy and speed of development of all models are
affected by the experimental method [5] and the precision of the experimental data used to
parameterise these models.

With bad model parameters, it is impossible to create a good model. Moreover, the
accuracy of the experimental data used for the parametrisation is temperature-dependent.
The type of temperature control during testing is important as it does not just set a single
temperature, but also affects the magnitude of the thermal gradients within a cell and, hence,
the electrochemical behaviour. The speed at which a model can be developed depends on
the type of model being developed. Fully discretised 3D equivalent circuit models (ECMs)
are significantly more complex than single-node ECMs and, thus, the development time
increases; this is further increased when the model is thermally coupled. Whilst the model
code can be re-used, their model parameters vary for each battery. Therefore, a developer
may spend considerable time creating the model, but this only needs to be conducted once.
However, a full parameterisation procedure must be followed for every single physical
battery the model will be used to emulate. As a result, parameterisation is a long-term
bottleneck and minimising the time taken to conduct the parameterisation experiments
is important.

Experimental techniques typically used for the parametrisation of ECMs are electro-
chemical impedance spectroscopy (EIS) [6–8], Galvanostatic intermittent titration technique
(GITT) [9–13] and hybrid pulse power characterisation (HPPC) [5,14–17]. GITT is the most
common technique used by the battery industry, in part because it does not require complex
cell-cycling equipment. By contrast, EIS requires expensive specialist potentiostats that
are fitted with additional capability to run EIS cycles. Such potentiostats are not typically
found in labs of private-sector companies [11,18,19].

The purpose of this study is to present parameterisation methods that are relevant to
industry and comparable to existing and widely used techniques. HPPC has a series of
pulses applied at different SoC intervals. The charge pulses are followed by a discharge
pulse and are repeated at different pulse magnitudes at every SoC but the pulses generate
heat and cause errors in ECM parameters and, therefore, HPPC is not commonly used in
industry in comparison to GITT. Therefore, GITT was used as the benchmark throughout
the presented investigation. The procedure combines constant current discharge pulses
(i.e., current loading the battery) followed by long rest periods where the electrochemical
relaxation of the cell is monitored and recorded.

However, GITT is not perfect—there are considerable limitations associated with the
procedure. As previously introduced, the time–cost of parameterisation is an important
consideration for private-sector companies, and in this regard GITT is limiting. The time to
complete a GITT procedure can vary, depending on the accuracy of the experimental data
required. One set of GITT experiments lasting up to 80 h are commonly reported [11,13].
These include long rest times which are essential to allow the cell to return to chemical
and thermal equilibrium between current loading pulses [20,21]. When parameterising a
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thermally coupled ECM that operates over a range of currents, this time is multiplied by
the number of temperatures and C-rates experiments should be conducted. Hence, it can
easily take many months to collect the full suite of data required for complete parameter
extraction and model accuracy.

This study presents a novel accelerated model parameterisation procedure (AMPP)
to meet the clear need of reduced parameterisation time. The performance of the AMPP
was assessed against the GITT benchmark through parameterisation of ECMs which are
then compared directly via the WLTP (worldwide harmonised light vehicle test procedure)
driving cycle. All experiments were conducted at two different temperatures, 10 ◦C and
25 ◦C. This facilitated the assessment of the parameterisation procedure performance in
ambient and sub-ambient conditions, where battery resistance will be higher and sensitivity
to temperature change is more significant. This point leads to the second key objective of
the investigation—evaluating the suitability of climate chamber control compared with
high-precision conductive thermal control when GITT and AMPP are used for ECM pa-
rameterisation experiments. Misrepresentation of battery temperature leads to error ridden
results, since temperature affects the electrochemical response of any battery [5,8,11,22].
Isothermal conditions are typically desired during battery parameterisation, but seldom
achieved in climate chambers given the limitations associated with convective cooling.
To demonstrate the influence of good temperature control on accurate experimental data,
a comparison of two temperature control methods is made for the AMPP technique: a
climate chamber and a Peltier element control system. In this study, the Peltier element
control system will be referred to as the ICP (isothermal control platform). The ICP uses
Peltier elements to control the temperature of cooling plates which sandwich the cell; the
whole setup is then submerged in oil to extract heat from the Peltier elements [13].

2. Modelling and Parametrisation Method
2.1. Model and Parameter Extraction

The sole focus of this paper is on the experiments for the parameterisation. Hence,
for the model selection and parameter extraction, care was taken to ensure that no new
methodology was introduced and existing methodology from the literature was used.

Each set of experimental data for parameterisation was used to extract a unique set of
ECM parameters (Figure 1), bounded by limits set for the investigation. In all cases, the data
were used to parameterise a simple equivalent circuit containing three resistor–capacitor
(RC) parallel pairs in series with each other and a series resistor to represent the ohmic
resistance of the cell [11]. The time constant, τ = RC, of each RC pair was set to τ1 = 2.1 s,
τ2 = 35 s and τ3 = 350 s. These values are typical for the 622NMC-graphite chemistry
(LiNi0.6Mn0.2Co0.2O2) present in our test cell [12]. The time constants were held constant
to remove a degree of freedom from the parameter extraction process, which would add
variability to the subsequent performance of the parameterised ECMs. Fixing the time
constants does not favour GITT over AMPP or vice versa; it allows us to isolate resistive
response during the completion of each procedure, which in turn yields a more robust
comparison process, increasing confidence in quoted quantities within the confinements of
the investigation.
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The parameter extraction process was built around the MATLAB optimisation toolbox,
employing methods developed by Jackey et al. [23]. An identical procedure was followed
for each unique set of parameters, in order to normalise results and reduce procedural
error from one set to the next. Parameters were extracted for specific state-of-charge (SoC)
windows. The SoC windows used by Li et al. [12] were followed in this study, such that 2%
SoC windows were employed below 20% SoC and above 90% SoC. From 20–90% SoC, the
window size was 4% SoC.

2.2. Parametrisation of ECM

A 20 Ah NMC-622 pouch cell was used to conduct the GITT and AMPP experiments
(Table 1). Both experiments were conducted on the same physical cell. For the AMPP, a
Biologic HCP-1005 Potentiostat (Seyssinet-Pariset, France) was used, with a maximum
allowable current of 100 A. For the GITT, a 120 A Maccor model Series 4000 battery cycler
(Tulsa, OK, USA) was used.

Table 1. Specification of pouch cell used in the experiments.

Capacity Imax Charge Imax
Discharge

Imax Pulse
Discharge Vmax Vmin

20 Ah 20 A 70 A 100 A 4.2 V 2.7 V

2.2.1. Galvanostatic Intermittent Titration Technique (GITT)

GITT is a popular experimental test procedure used for parametrisation of models
and is sometimes referred to as the pulse–discharge technique [11,13]. This experiment
uses a set of constant current pulses followed by long rests at different states of charge.
This experiment can be carried out upon charge or discharge. Due to the long rest times
involved, this procedure takes significant time to complete—in this case, approximately
80 h.

The GITT used in this experiment (Figure 2a) followed the method previously pre-
sented by Zhao et al. [11] and was split into three regions depending on the SoC in order to
capture the cell response in finer increments at low and high SoC where there is greater
variation in cell OCV with respect to SoC. The three regions are as follows:

I. 100–90% SoC discharge: 1C discharge rate applied in 1% ∆SoC increments with a 2 h
rest following each pulse.

II. 90–20% SoC discharge: 1C discharge rate applied in 5% ∆SoC increments with a 2 h
rest following each pulse.

III. 20–0% SoC discharge: 1C discharge rate applied in 1% ∆SoC increments with a 2 h
rest following each pulse. Note that this step is not completed as the lower voltage
cut-off (2.7 V) is reached prior to 0% SoC.

Prior to starting the GITT, the cell was charged using constant current at 0.5 C (10 A) to
4.2 V. A constant voltage hold was applied at 4.2 V until the current dropped below C/100.
This was followed by a 30 min rest. All charges were performed with the test cell held at
25 ◦C.
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2.2.2. Accelerated Model Parameterisation Procedure (AMPP)

A novel parametrisation-testing profile has been carefully designed to capture the
cell’s response across the full SoC window with a smaller time–cost than that associated
with GITT (see Table 2). The aim of the AMPP technique is to be more representative
of what a cell would experience in application while reducing the experimental time for
collecting experimental data required for parametrising ECMs. Unlike GITT, the AMPP
technique is unique in that it comprises a combination of charge and discharge pulses with
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varying current rates (C-rate) and durations. The pulses are applied at different SoCs to
effectively capture the cell’s behaviour. As with GITT, prior to starting the AMPP technique,
the cell was charged at constant 0.5 C (10 A) current to 4.2 V. A constant voltage hold was
applied at 4.2 V until the current dropped below C/100 (200 mA). This was followed by a
30 min rest.

Table 2. Step specification of the AMPP technique.

Procedure Duration (s)

Discharge −0.5 C 360
Rest 60

Discharge −3 C 10
Rest 60

Charge 1 C 77
Rest 60

Discharge −3 C 5
Rest 60

Discharge −5 C 3
Rest 60

Discharge −3 C 3
Rest 60

Discharge −5 C 5
Rest 60

Charge 0.5 C 154
Rest 60

Discharge −5 C 10
Rest 60

Discharge −1 C 10
Rest 60

The AMPP technique is outlined in Table 2. After an initial discharge to take the cell’s
SoC down by 5% (−0.5C for 360 s), the sum of the charge passed during the discharge
pulses and the sum of the charge passed during charge pulses are equivalent and, therefore,
keep the state of the cell at the end of the test, the same as the beginning. For example, the
initial discharge of 0.5 C brings the SoC to 95%. After the first set of charge and discharge
pulses is completed, the cell finishes at 95% SoC again. Prior to the start of the second set of
pulses, the cell SoC is brought down to 90% (−0.5 C for 360 s) and the sequence is repeated.

The parametrisation test procedure was applied until 19 sets of the procedure were
completed (Figure 2). If the upper or the lower voltage cut-off was reached within a given
set, the procedure would skip to a 60 s rest and then the next step in the procedure (i.e.,
the next pulse) would begin. The total time taken for the 19 sets of the procedure to be
completed was approximately 6.5 h (8 h including an initial charge step following by a
constant voltage hold).

2.3. Temperature Control

Temperature control is an important part of any battery experiment, but especially so
in experiments required to capture transient responses from the battery where the current
is associated with heat generation [11,24,25]. When developing a temperature-dependent
model, the method used for controlling the temperature becomes important too because it
takes time to transition from one temperature to the next. The cell will also be required to
rest at a particular temperature to ensure thermal equilibrium in the cell prior to starting
the experiment.

In the reviewed literature, temperature control is achieved through convective or
conductive heat transfer using three main methods: climate chamber, fluid immersion, and
Peltier elements. Each temperature control method has benefits and drawbacks. The climate
chamber is commonplace in the battery industry [26–28] because it is easy to operate and
can accommodate a variety of cell form factors and sizes. However, temperature control
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is achieved via forced air convection—air’s limited thermal inertia leads to low cooling
rates and, thus, a lag in thermal response. The consequence is inaccuracies between the
setpoint and cell temperature. Direct immersion temperature control is another method
which typically involves submerging a cell inside a dielectric fluid such as a mineral
oil [29,30]. Direct liquid immersion drastically enhances cooling rates, compared to forced
air convection [31], but there is still a significant lag in the performance of the thermal
control for the test cell because the immersion fluid may only be heated or cooled to the
desired temperature at a certain (slow) rate. Furthermore, the method is time-intensive in
terms of setup and costly as it requires specialised test rigs and expensive coolant fluids.
Peltier elements provide an alternative which incorporates conductive cooling. In the case
of cell cooling, Peltier elements are mounted onto copper plates that are in direct contact
with the cell surface (using thermal paste at the cell interface). On each Peltier element’s
waste heat side, a cooling system is required to remove heat from the system. Whilst
complex, this thermal-control solution is consistently regarded in the literature to be the
most effective [32]. Conductive cooling through Peltier elements has very little thermal
lag—meaning a far more reactive thermal-control system can be implemented. Peltier
elements can operate in both directions. Heating a cell to a desired temperature is also
possible—this is once again to the considerable benefit of the control–feedback system built
to maintain isothermal surface conditions on the test cell.

The experiments in this study were repeated under two different cooling methods so
that differences in results due to an improved cooling system could be assessed. The stan-
dard cooling method used was forced air convection in a climate chamber (representative
of the apparatus most widely used in the battery industry). In addition, the ICP which
utilises Peltier elements was used as a conductive cooling method. Each set of experiments
was conducted under two temperatures, 10 ◦C and 25 ◦C.

2.3.1. Climate Chamber

A Binder KB53 climate chamber (Bohemia, NY, USA) was used. Prior to every experi-
ment, the cell was left at rest for 24 h at the desired testing temperature, so that the entire
cell would be at thermal equilibrium.

2.3.2. Isothermal Control Platform (ICP)

The ICP, developed by Thermal Hazard Technology to accurately control the tempera-
ture of batteries during testing, was used as an alternative temperature control method in
this study. Figure 3 shows the ICP’s cell containment area, including multiple temperature
control modules which are made up of Peltier elements and copper blocks and mounted
across both surfaces of the cell. A PID control system was employed, using the Peltier
elements to drive temperature which is measured through Type-T thermocouples mounted
in the copper blocks. Heat produced by the cell was removed via conduction cooling
through the Peltier elements. In cooling mode, the Peltier elements generate waste heat in
addition to the heat generated by the test cell. This waste heat is removed by having the
whole setup submerged in an oil bath. The oil bath has a separate thermal control system,
allowing the user to maintain a near-constant temperature difference between the test area
and the oil, regardless of the desired test temperature. In turn, this contributes towards
further optimisation of the thermal control system. Further details about the ICP have been
covered by Hales et al. [13]. Prior to every experiment, the cell was left at rest for one hour
at the desired setpoint temperature to ensure thorough thermalisation.



Batteries 2022, 8, 125 8 of 18

Batteries 2022, 8, x FOR PEER REVIEW 8 of 19 
 

was left at rest for one hour at the desired setpoint temperature to ensure thorough ther-
malisation. 

 
Figure 3. Isothermal control platform (ICP) using Peltier elements to control cell temperature with 
conductive heat transfer through metallic blocks. 

2.4. Parameter Performance Evaluation 
Evaluating parameter performance required a driving cycle and experimental data 

against which the performance of each unique parameter set could be benchmarked. The 
WLTP drive cycle was used as this is a common standard benchmark [33]. This was re-
peated twice and scaled to create a two-hour driving cycle which would discharge exactly 
60% of the cell’s quoted watt-hour capacity (Figure 4). During the experimental process, 
the input to the battery cycler was a power demand time series, defining the power de-
manded from the cell (discharge, shown as positive in Figure 4a) or power demanded by 
the cell (charge, shown as negative in Figure 4a). The battery cycler software includes a 
feedback loop which reads the terminal voltage of the cell under test in order to determine 
the current flow out of/into the cell. This feedback loop operates at a frequency of 10 Hz. 
The experiments were conducted beginning at 80% SoC, thus ending approximately at 
20% SoC (taking into account a slight variance given SoC is a coulombic measure and the 
WLTP is defined by power). This allowed the assessment of the extracted parameters 
across a wide SoC range. The experimental data were gathered from tests on the same cell, 
once again using the ICP to maintain isothermal cell surface conditions, at 25 °C and 10 
°C. By way of example, Figure 4 also shows the voltage response from the cell for the test 
conducted at 25 °C. It is observable in Figure 4 that a large portion (2.72–3.97 V) of the 
cell’s operating window (2.7–4.2 V) was covered during the experiment. This ensured that 
the parameters across the full SoC of the cell were being evaluated—essential for confi-
dence in analysis and conclusions. 

Figure 3. Isothermal control platform (ICP) using Peltier elements to control cell temperature with
conductive heat transfer through metallic blocks.

2.4. Parameter Performance Evaluation

Evaluating parameter performance required a driving cycle and experimental data
against which the performance of each unique parameter set could be benchmarked. The
WLTP drive cycle was used as this is a common standard benchmark [33]. This was
repeated twice and scaled to create a two-hour driving cycle which would discharge exactly
60% of the cell’s quoted watt-hour capacity (Figure 4). During the experimental process, the
input to the battery cycler was a power demand time series, defining the power demanded
from the cell (discharge, shown as positive in Figure 4a) or power demanded by the cell
(charge, shown as negative in Figure 4a). The battery cycler software includes a feedback
loop which reads the terminal voltage of the cell under test in order to determine the
current flow out of/into the cell. This feedback loop operates at a frequency of 10 Hz. The
experiments were conducted beginning at 80% SoC, thus ending approximately at 20% SoC
(taking into account a slight variance given SoC is a coulombic measure and the WLTP is
defined by power). This allowed the assessment of the extracted parameters across a wide
SoC range. The experimental data were gathered from tests on the same cell, once again
using the ICP to maintain isothermal cell surface conditions, at 25 ◦C and 10 ◦C. By way of
example, Figure 4 also shows the voltage response from the cell for the test conducted at
25 ◦C. It is observable in Figure 4 that a large portion (2.72–3.97 V) of the cell’s operating
window (2.7–4.2 V) was covered during the experiment. This ensured that the parameters
across the full SoC of the cell were being evaluated—essential for confidence in analysis
and conclusions.

The modelled results were created for each unique ECM parameter set by running the
same driving cycle through the parametrised ECM. As with the experiments, the model was
set to begin at 80% SoC, defined via a high resolution SoC vs. OCV dataset gathered during
preliminary experiments. The model predicted cell terminal voltage as a time series over
the course of the driving cycle, which was immediately comparable to the experimental
data. This provided the means for a thorough investigation of the respective performance
of each parameterisation experiment, as is set out in the following section.
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3. Drive Cycle Validation Results

A model parameterised using the AMPP technique in the climate chamber is able to
carefully represent a WLTP drive cycle both at 10 ◦C (Figure 5b) and 25 ◦C (Figure 6b).
The model parametrised using GITT, however, can better represent the model both at
10 ◦C (Figure 5a) and at 25 ◦C in the climate chamber (Figure 6a). By applying a superior
temperature control method for the AMPP technique using the ICP, the results showed an
improvement in comparison to the AMPP technique in the climate chamber. The AMPP
technique in the ICP was shown to be better than that of the GITT (Figure 5c) at 10 ◦C and
almost as good as GITT at 25 ◦C (Figure 6c). The root mean square (RMS) voltage error
between the experimental drive cycle data and the predicted model emphasises the results
(Table 3). Note all modelling results are shown in Appendix A.

Table 3. Voltage RMS error in the model relative to the drive cycle experimental data.

Temperature (◦C)

ECM Parameterised
Using GITT in

Climate Chamber
(mV)

ECM Parameterised
Using AMPP in

Climate Chamber
(mV)

ECM Parameterised
Using AMPP in ICP

(mV)

25 17.09 22.85 20.03
10 18.99 23.57 16.01
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Figure 6. Drive cycle validation along with associated error for the model parameterised using the
GITT data in the climate chamber, AMPP data in the climate chamber and AMPP data in the ICP
at 25 ◦C. The comparison of the ECM to experimental drive cycle data is shown in subfigures (a–c),
whilst their associated error is shown in subfigures (d–f).

4. Discussion

The AMPP technique contains a series of short duration, high C-rate pulses which
induce a significant rate of heat generation. As a result, AMPP is outperformed by GITT in



Batteries 2022, 8, 125 11 of 18

the climate chamber because thermal control is capped by the limitations associated with
forced air convection. This reaffirms the fact that the battery industry’s current standard
practice (climate chambers) for more vigorous loading cycles (such as AMPP) are not
suitable when forced air convection is the means of temperature control. The presented
results show that the AMPP method is enhanced with better thermal control. The AMPP
data gathered from the ICP showed better agreement with GITT at 10 ◦C and at 25 ◦C
compared to a climate chamber.

The cell produces more heat at lower temperatures due to increased cell resistance,
thus errors due to temperature misrepresentation are expected to be greater at lower
temperatures. This is shown in the results from this investigation: the 10 ◦C results have
a greater cumulative error (Figure 7) and RMS voltage error (Table 3) for both GITT and
AMPP. Note that in Figure 7 it is important to make the comparisons of cumulative error at
a given time rather than at the end of the drive cycle, because at 10 ◦C, the drive cycle did
not complete fully, due to the lower voltage limit being reached.
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Figure 7. Comparison of error between the experimental data and the model parameterised using
different experimental techniques at 10 ◦C and 25 ◦C. The cumulative absolute voltage error (top)
and the absolute voltage error (bottom). To ease the visualisation of the major trends in the graph, a
moving average with a window size of 200 and sampling rate of 2 Hz was applied.

Figure 8 shows that at 10 ◦C, larger temperature deviations were observed in the
AMPP and GITT experiments conducted in the climate chamber, compared to the AMPP
experiment conducted in the ICP. The result is in line with the hypotheses—AMPP-ICP
yielded the smallest RMS voltage error (Table 3). Despite the AMPP-ICP results at 25 ◦C
showing an improvement compared to the AMPP-climate chamber results at 25 ◦C, they
were not found to be more accurate than the GITT-climate chamber at 25 ◦C (Figure 9).
This occurrence may be attributed to two factors. First, GITT at 25 ◦C did not produce
as much heat as the data at 10◦C (see Figure 8), and, thus, the error due to temperature
misrepresentation is diminished. Second, the PID control system used in the ICP was
finely tuned to perform better at lower temperatures, such as 10 ◦C. In the data set out,
the mean temperature deviation during the 10 ◦C ICP experiment was 0.06 ◦C, whilst the
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mean temperature deviation during the 25 ◦C ICP experiment was 0.09 ◦C. This falls into
line with the outputted parameter performance—better performance from the AMPP ICP
dataset recorded at 10 ◦C. It is difficult to quantify this correlation between temperature
deviation and parameter performance with the datasets available, but this does set out a
performance characteristic that could be the focus of a future investigation.
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Figure 9. Difference in error between the ECM models parametrised using the different techniques
against the WLTP drive cycle. The purple colour represents the region where the ECM produced
from the AMPP data showed greater error than the ECM produced from the GITT data. The green
colour represents the region where the ECM produced from the GITT data showed greater error than
the ECM produced from the AMPP data.
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If considering the bigger picture, the difference in errors between models parametrised
using AMPP and GITT are small, therefore making AMPP more beneficial than GITT
mostly because it takes a shorter time to gather experimental data (AMPP is 90% faster).
For example, if experimental data are required over the temperature window −20 ◦C to
60 ◦C at 5 ◦C intervals (which is common in industry), by using GITT, it would take 1360 h
(~2 months) to gather the experimental data, whereas with AMPP it would only take 136 h
(~6 days). It should be noted that the GITT used in this comparison had an SoC interval
of 1% between every pulse at low and high SOCs, whereas AMPP had a 5% SoC interval
for the entire SoC range. This was so that the cells’ behaviour could be captured more
accurately in GITT, hence setting a higher bar in terms of model accuracy for the AMPP to
be compared to. This difference in SoC intervals resulted in AMPP showing it is 90% faster
than GITT. However, if the GITT test was to be repeated with a 5% SoC interval, AMPP
would still be faster by 83%.

Additionally, GITT will only parametrise a model at one C-rate, whereas the C-rates in
AMPP can be selected to cover multiple C-rates the cell will experience during operation.
The results could be further improved by modifying AMPP such that the C-rates are closer
to the application being modelled (WLTP drive cycle in this case). The AMPP technique
presented here incorporated 5 C pulses whilst the WLTP drive cycle had a maximum C-rate
of 1.38 C. Heat generation rate is a function of C-rate, which in turn changes the OCV of a
battery. For the application of the WLTP, 5 C pulses in the parametrisation experiments
cause unnecessary heating (Figure 2) that results in the OCV drifting which ultimately
results in inaccuracies in the model parameters. If the 5 C pulses in AMPP were reduced
to more representative C-rates of the application being modelled, the errors would be
expected to reduce.

5. Conclusions

A novel experimental technique (AMPP) for the fast parameterisation of ECMs is
introduced in this paper. Its performance has been evaluated using two temperature
control methods: forced air convection and conductive cooling. In all experiments, the
industry standard battery model parameterisation method, GITT in a climate chamber, was
used to benchmark results.

The model parametrised using GITT performed marginally better than the AMPP
technique in a climate chamber. The AMPP technique contains a series of high-C-rate
pulses with short rest durations and, therefore, produced significantly more heat. The
AMPP technique reduced the time to complete a single experiment by more than 90%
(80 h to less than 8 h)—and it must be stressed that experiments are usually performed
at multiple temperatures to fully parameterise a thermally coupled ECM. This can take
several weeks or even months using GITT; however, the use of AMPP reduced the testing
time to a few days.

The reduction in model accuracy caused by AMPP can be compensated by employ-
ing enhanced thermal control, such as the ICP. At 25 ◦C, AMPP errors were reduced
when the ICP was used. At 10 ◦C, AMPP-ICP outperformed the GITT-climate cham-
ber. The AMPP technique could be further improved by scaling the magnitude of the
pulses in AMPP to suit both a specific usage application and cells with different C-rate
charging/discharging limits.

A battery model at the beginning of life will not be representative as the battery ages.
Models often need to be parameterised at different stages of their life cycle and at different
temperatures. GITT puts a considerable time–cost burden on the process, whereas AMPP
can reduce the time–cost of this process by an order of magnitude. When coupling the
AMPP technique with a conductive temperature control method such as the ICP, a set
temperature can also be achieved much faster than a climate chamber. This results in
saving further hours of testing time when transitioning from one temperature to the next.

The AMPP-ICP combination, therefore, offers significant benefits to the battery indus-
try. Battery power capability and energy density will continue to rise year-on-year, and,
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thus, the problems associated with heat generation will intensify. We already know that
convective cooling is not fit for purpose, and this provides further evidence that it is limiting
the battery industry. Convective cooling forces engineers to pick parameterisation methods
that do not generate too much heat or have long rest periods. Conductive cooling opens up
the opportunity to use higher currents and shorter rest periods; hence, AMPP-ICP is built
for the future. The ICP provides the hardware solution to manage high heat generation
rates and AMPP takes advantage of this to drastically reduce the time taken to develop
battery models.
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Appendix A. ECM Results

Table A1. ECM results from GITT in a climate chamber at 10 ◦C.

SoC
Fraction OCV [V] R0 [Ohm] R1 [Ohm] R2 [Ohm] R3 [Ohm] Tau 1 [s] Tau 2 [s] Tau 3 [s]

0.12 3.4264 0.013214 0.006915 0.005002 0.011307 2.1 35 350
0.14 3.4384 0.013161 0.005421 0.004671 0.006656 2.1 35 350
0.16 3.4488 0.013153 0.003516 0.003635 0.004616 2.1 35 350
0.18 3.4593 0.012833 0.002714 0.002953 0.003563 2.1 35 350
0.2 3.4713 0.012638 0.002095 0.002176 0.00101 2.1 35 350
0.24 3.5092 0.012219 0.001611 0.002464 0.001506 2.1 35 350
0.28 3.5441 0.012129 0.001266 0.002048 0.002708 2.1 35 350
0.32 3.5715 0.011897 0.000988 0.002097 0.004851 2.1 35 350
0.36 3.5634 0.011758 0.001269 0.001915 0.017278 2.1 35 350
0.4 3.6049 0.011562 0.000966 0.002733 6.86 × 10−5 2.1 35 350
0.44 3.6187 0.011388 0.000722 0.002543 0.00461 2.1 35 350
0.48 3.6339 0.011293 0.000742 0.002558 0.003474 2.1 35 350
0.52 3.6522 0.011123 0.000864 0.002469 0.002641 2.1 35 350
0.56 3.6779 0.01105 0.000973 0.00216 0.00075 2.1 35 350
0.6 3.703 0.010922 0.001065 0.001823 0.001361 2.1 35 350
0.64 3.7406 0.010737 0.001439 0.001502 0.002944 2.1 35 350
0.68 3.7882 0.010662 0.001391 0.001664 0.001272 2.1 35 350
0.72 3.8431 0.009841 0.002736 0.000821 0.004498 2.1 35 350
0.76 3.9103 0.009821 0.002207 0.001229 2.88 × 10−7 2.1 35 350
0.8 3.9383 0.009786 0.002277 0.001575 0.009015 2.1 35 350
0.84 3.9813 0.009776 0.001953 0.001701 0.006636 2.1 35 350
0.9 4.0509 0.009811 0.002013 0.001416 0.006034 2.1 35 350
0.92 4.0754 0.009867 0.001869 0.001552 0.007399 2.1 35 350
0.94 4.0997 0.009873 0.001906 0.001498 0.007223 2.1 35 350
0.96 4.1245 0.009862 0.001972 0.001438 0.007184 2.1 35 350
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Table A2. ECM results from GITT in a climate chamber at 25 ◦C.

SoC
Fraction OCV [V] R0 [Ohm] R1 [Ohm] R2 [Ohm] R3 [Ohm] Tau 1 [s] Tau 2 [s] Tau 3 [s]

0.06 3.1947 0.011566 0.004657 0.003944 0.011147 2.1 35 350
0.08 3.3173 0.011566 0.003201 0.00424 7.80 × 10−5 2.1 35 350
0.1 3.3948 0.011275 0.002058 0.003386 5.85 × 10−5 2.1 35 350

0.12 3.4272 0.011096 0.001483 0.003163 0.005288 2.1 35 350
0.14 3.4408 0.010966 0.001202 0.00277 0.005414 2.1 35 350
0.16 3.4508 0.010739 0.001089 0.002444 0.003464 2.1 35 350
0.18 3.4612 0.010581 0.000946 0.002161 0.002244 2.1 35 350
0.2 3.4746 0.01046 0.000806 0.001721 0.001114 2.1 35 350

0.24 3.5125 0.01024 0.000658 0.001905 0.000925 2.1 35 350
0.28 3.5449 0.010015 0.000556 0.001934 0.002052 2.1 35 350
0.32 3.5723 0.009809 0.000418 0.002141 0.002555 2.1 35 350
0.36 3.5781 0.009725 0.000596 0.001943 0.010587 2.1 35 350
0.4 3.6098 0.009535 0.000423 0.002444 1.63 × 10−5 2.1 35 350

0.44 3.6234 0.009447 0.00024 0.002333 0.002955 2.1 35 350
0.48 3.6387 0.009276 0.000416 0.002138 0.00265 2.1 35 350
0.52 3.6571 0.009101 0.000611 0.001836 0.002543 2.1 35 350
0.56 3.6832 0.008987 0.000607 0.001724 0.000695 2.1 35 350
0.6 3.708 0.008809 0.000768 0.001234 0.001902 2.1 35 350

0.64 3.7458 0.008693 0.00109 0.000976 0.002376 2.1 35 350
0.68 3.797 0.008588 0.001074 0.001213 0.000836 2.1 35 350
0.72 3.8503 0.008484 0.001209 0.001202 0.003452 2.1 35 350
0.76 3.8912 0.008449 0.001347 0.001473 0.006178 2.1 35 350
0.8 3.9439 0.008032 0.001665 0.000752 3.97 × 10−8 2.1 35 350

0.84 3.9857 0.008013 0.001428 0.00159 0.002517 2.1 35 350
0.9 4.0541 0.008034 0.001364 0.001191 0.003498 2.1 35 350

0.92 4.078 0.008033 0.001124 0.001442 0.00428 2.1 35 350
0.94 4.1023 0.008049 0.001108 0.001411 0.004137 2.1 35 350
0.96 4.127 0.008065 0.001104 0.001379 0.004089 2.1 35 350
0.98 4.1542 0.008109 0.001129 0.001192 0.005278 2.1 35 350

1 4.1779 0.008109 0.001108 0.001246 0.004951 2.1 35 350

Table A3. ECM results from AMPP in a climate chamber at 10 ◦C.

SoC
Fraction OCV [V] R0 [Ohm] R1 [Ohm] R2 [Ohm] R3 [Ohm] Tau 1 [s] Tau 2 [s] Tau 3 [s]

0.24 3.5267 0.010353 0.00202 0.001369 0.017496 2.1 35 350
0.28 3.5521 0.010556 0.001665 0.001814 0.007756 2.1 35 350
0.32 3.5728 0.01051 0.001392 0.002393 0.005783 2.1 35 350
0.36 3.5898 0.010298 0.001402 0.002366 0.006071 2.1 35 350
0.4 3.6047 0.01057 0.000966 0.002492 0.005063 2.1 35 350

0.44 3.6195 0.010535 0.000866 0.002564 0.004764 2.1 35 350
0.48 3.6363 0.010581 0.000661 0.002603 0.004287 2.1 35 350
0.52 3.6567 0.010518 0.000695 0.002535 0.003746 2.1 35 350
0.56 3.6824 0.010343 0.000462 0.002931 0.003146 2.1 35 350
0.6 3.714 0.010636 5.17 × 10−8 0.002765 0.004001 2.1 35 350

0.64 3.7525 0.010506 4.39 × 10−8 0.002319 0.005944 2.1 35 350
0.68 3.8038 0.010299 4.66 × 10−11 0.00215 0.00858 2.1 35 350
0.72 3.8574 0.010193 4.14 × 10−9 0.002427 0.008523 2.1 35 350
0.76 3.9024 0.010233 2.28 × 10−9 0.003317 0.006257 2.1 35 350
0.8 3.9455 0.010157 1.78 × 10−9 0.003096 0.006285 2.1 35 350

0.84 3.9892 0.010296 6.91 × 10−9 0.003158 0.00536 2.1 35 350
0.9 4.0575 0.010281 5.56 × 10−9 0.00233 0.006255 2.1 35 350

0.92 4.0809 0.010304 6.28 × 10−10 0.001559 0.008847 2.1 35 350
0.94 4.1044 0.010325 1.99 × 10−10 0.002053 0.005632 2.1 35 350
0.96 4.1284 0.010341 3.37 × 10−10 0.002397 0.003662 2.1 35 350
0.98 4.1532 0.010895 1.30 × 10−9 0.000925 0.005857 2.1 35 350

1 4.1834 0.010895 5.18 × 10−9 0.000953 0.005702 2.1 35 350
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Table A4. ECM results from AMPP in a climate chamber at 25 ◦C.

SoC
Fraction OCV [V] R0 [Ohm] R1 [Ohm] R2 [Ohm] R3 [Ohm] Tau 1 [s] Tau 2 [s] Tau 3 [s]

0.14 3.4435 0.010587 0.000449 0.004525 0.000562 2.1 35 350
0.16 3.4563 0.010214 0.000897 0.001458 0.00652 2.1 35 350
0.18 3.4749 0.010104 0.000743 0.001471 0.010942 2.1 35 350
0.2 3.4939 0.009635 0.000704 0.002251 0.002036 2.1 35 350

0.24 3.5267 0.009341 0.000795 0.002119 0.002827 2.1 35 350
0.28 3.5521 0.009247 0.000738 0.002151 0.002895 2.1 35 350
0.32 3.5728 0.009292 0.000215 0.002444 0.002479 2.1 35 350
0.36 3.5898 0.00928 9.02 × 10−8 0.002136 0.002535 2.1 35 350
0.4 3.6047 0.009186 5.83 × 10−6 0.002124 0.002507 2.1 35 350

0.44 3.6195 0.009025 3.56 × 10−10 0.00185 0.002887 2.1 35 350
0.48 3.6363 0.008974 2.59 × 10−10 0.001601 0.002858 2.1 35 350
0.52 3.6567 0.008928 4.62 × 10−9 0.00176 0.002044 2.1 35 350
0.56 3.6824 0.008906 7.32 × 10−9 0.001844 0.002992 2.1 35 350
0.6 3.714 0.008913 4.54 × 10−8 0.001749 0.003692 2.1 35 350

0.64 3.7525 0.008805 1.27 × 10−9 0.001468 0.005304 2.1 35 350
0.68 3.8038 0.008707 3.94 × 10−11 0.001649 0.006487 2.1 35 350
0.72 3.8574 0.00871 1.21 × 10−9 0.001916 0.006594 2.1 35 350
0.76 3.9024 0.008821 3.17 × 10−10 0.002154 0.005457 2.1 35 350
0.8 3.9455 0.008654 1.80 × 10−9 0.002102 0.005715 2.1 35 350

0.84 3.9892 0.008702 1.03 × 10−9 0.001831 0.004788 2.1 35 350
0.9 4.0575 0.008699 4.85 × 10−9 0.001624 0.003119 2.1 35 350

0.92 4.0809 0.008716 1.19 × 10−9 0.000969 0.005907 2.1 35 350
0.94 4.1044 0.008727 8.10 × 10−10 0.00094 0.004866 2.1 35 350
0.96 4.1284 0.008799 1.58 × 10−9 0.001428 0.003859 2.1 35 350
0.98 4.1532 0.009068 4.23 × 10−8 3.58 × 10−5 0.004334 2.1 35 350

1 4.1834 0.009068 3.37 × 10−8 7.36 × 10−5 0.004213 2.1 35 350

Table A5. ECM results from AMPP in the ICP at 10 ◦C.

SoC
Fraction OCV [V] R0 [Ohm] R1 [Ohm] R2 [Ohm] R3 [Ohm] Tau 1 [s] Tau 2 [s] Tau 3 [s]

0.28 3.5789 0.012479 5.90 × 10−5 0.001911 0.017716 2.1 35 350
0.32 3.5972 0.012398 7.84 × 10−9 0.002045 0.007293 2.1 35 350
0.36 3.6121 0.011859 0.000337 0.002049 0.006787 2.1 35 350
0.4 3.6261 0.011751 0.000166 0.00203 0.005824 2.1 35 350

0.44 3.6406 0.011522 0.000306 0.002134 0.00633 2.1 35 350
0.48 3.6573 0.011426 0.000176 0.002168 0.004879 2.1 35 350
0.52 3.678 0.011388 7.98 × 10−5 0.002295 0.004387 2.1 35 350
0.56 3.7042 0.011158 0.000197 0.00233 0.003584 2.1 35 350
0.6 3.7367 0.011256 6.43 × 10−6 0.002313 0.003845 2.1 35 350

0.64 3.7758 0.010951 0.00027 0.00238 0.001264 2.1 35 350
0.68 3.8272 0.010795 0.000386 0.002429 0.000828 2.1 35 350
0.72 3.8784 0.010997 9.10 × 10−5 0.00272 0.003992 2.1 35 350
0.76 3.9211 0.010774 0.000356 0.002739 0.003176 2.1 35 350
0.8 3.9629 0.010782 0.000419 0.002656 0.005652 2.1 35 350

0.84 4.0061 0.010869 0.000314 0.003693 0.004532 2.1 35 350
0.9 4.0736 0.010869 0.000324 0.003642 0.005104 2.1 35 350

0.92 4.0966 0.010869 0.000491 0.009964 0.022232 2.1 35 350
0.94 4.1199 0.010095 0.001508 0.002207 0.000808 2.1 35 350
0.96 4.1434 0.010326 0.001334 0.001932 0.004348 2.1 35 350
0.98 4.1675 0.012926 0.000922 0.006324 0.045332 2.1 35 350

1 4.1917 0.012926 0.001576 0.002926 0.14491 2.1 35 350
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Table A6. ECM results from AMPP in the ICP at 25 ◦C.

SoC
Fraction OCV [V] R0 [Ohm] R1 [Ohm] R2 [Ohm] R3 [Ohm] Tau 1 [s] Tau 2 [s] Tau 3 [s]

0.16 3.482 0.010987 0.000156 0.001118 0.0423 2.1 35 350
0.18 3.5007 0.010877 0.000249 0.001396 0.018332 2.1 35 350
0.2 3.5194 0.010521 0.000266 0.001841 0.002775 2.1 35 350
0.24 3.5521 0.010118 0.000462 0.001764 0.002666 2.1 35 350
0.28 3.5789 0.010012 0.000227 0.001816 0.003232 2.1 35 350
0.32 3.5972 0.009914 0.000212 0.001791 0.00469 2.1 35 350
0.36 3.6121 0.009721 0.000204 0.00158 0.003682 2.1 35 350
0.4 3.6261 0.009471 0.000303 0.001988 0.002044 2.1 35 350
0.44 3.6406 0.009259 0.000474 0.001869 0.000774 2.1 35 350
0.48 3.6573 0.009369 0.000216 0.001848 0.001556 2.1 35 350
0.52 3.678 0.009 0.000483 0.001893 0.001984 2.1 35 350
0.56 3.7042 0.009129 0.000196 0.002019 0.001945 2.1 35 350
0.6 3.7367 0.008922 0.000302 0.002095 0.001247 2.1 35 350
0.64 3.7758 0.008797 0.000444 0.001828 0.001518 2.1 35 350
0.68 3.8272 0.008883 0.000271 0.001997 0.004159 2.1 35 350
0.72 3.8784 0.008656 0.000487 0.002161 0.001445 2.1 35 350
0.76 3.9211 0.008793 0.000354 0.002173 0.004858 2.1 35 350
0.8 3.9629 0.008568 0.000683 0.001989 0.002537 2.1 35 350
0.84 4.0061 0.008569 0.000545 0.002071 0.003489 2.1 35 350
0.9 4.0736 0.008569 0.000496 0.002331 0.002812 2.1 35 350
0.92 4.0966 0.008546 0.000441 0.001331 0.005019 2.1 35 350
0.94 4.1199 0.008399 0.000664 0.001863 0.001328 2.1 35 350
0.96 4.1434 0.008564 0.000479 0.00197 0.00155 2.1 35 350
0.98 4.1675 0.009163 3.02 × 10−7 0.00164 0.004176 2.1 35 350

1 4.1917 0.009163 5.79 × 10−6 0.001796 0.002301 2.1 35 350
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