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A B S T R A C T

This paper presents an analytic expression for the high-temperature limit of Breit–Wheeler pair production in
a black-body field to lowest order in perturbation theory, of interest in early-universe cosmology. The limit
is found to be a good approximation for temperatures above about three times the electron rest energy. It is
also found that coupling to low-energy processes remains important at arbitrarily high temperatures, due to
the exchange of a low-energy virtual fermion near the mass shell. This appears mathematically in the rate as
a logarithmic factor of the photon temperature divided by the electron rest mass.
Weaver [1] expressed the rate of pair production by the Breit–
Wheeler process in a Black-Body field as a sum of single integrals
over special functions in 1976, which reduced to a simple expression
in the low-temperature limit 𝑘𝐵𝑇𝛾 ≪ 𝑚𝑐2, where 𝑇𝛾 is the photon
temperature and 𝑚 is the electron rest mass. Such a quantity, and
Weaver’s limit, was developed for examining high-energy astrophysical
phenomena, such as supernovas [2] and galactic nuclei [3], and has
also more recently found application in the study of potential burning
plasmas in the laboratory [4–6]. The physical situation assumed here
is that the photon field is in equilibrium, while the electron/positron
field is not. In the small temperature limit this is clearly a common
physical situation, but a sufficiently rapid heating of the photon field
can produce it even in the high-temperature limit, where 𝑘𝐵𝑇𝛾 ≫ 𝑚𝑐2,
which has relevance in early universe cosmology. The pair production
rate can then be used to study the process of equilibration between
the fields. It would also be useful in situations where disequilibrium is
maintained by some other mechanism, such as by the imposition of an
external field that sweeps created pairs away.

In this paper we present the Breit–Wheeler pair production rate in
this high-temperature limit. Weaver [1] gives the rate of two-photon
interaction for a black-body radiation field as
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where 𝐾𝑛 is the modified Bessel function of the second kind and

𝜉 = 𝑝∗𝛾 𝑐∕(𝑘𝐵𝑇𝛾 ), (2)

where 𝑝∗𝛾 is the centre-of-momentum energy of the colliding photons.
The expression originates from an integration over two black-body
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photon distributions in momentum space, with the sum over 𝑛, 𝑙 corre-
sponding to a sum over the photon occupation numbers of each mode.
Jauch & Rohlich [7] give the Breit–Wheeler cross-section as
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(5)

𝜎1 ∶= 𝜎 − 𝜎0. (6)

𝜎 ∼ 𝜎0 in the high-energy limit, and we will show that 𝜎0 acts as
the effective cross-section in the high-temperature limit. 𝜎1 obeys

𝜎1(𝜙) = (𝜙4 log(𝜙)), 𝜙 → 0+. (7)

We can write the dimensionless integral we need to approximate as
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where 𝜌 ∶=
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We have, first,
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where we have used the substitution 𝑦 = 2𝜌𝜉. Using
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where we know Max𝜙∈(0,1)
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is finite from Eq. (7). Therefore
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and defining
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where 𝐴 is the Glaisher–Kinkelin constant, this can be written
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This approximation is plotted against a numerical calculation of
the exact rate (1) in Fig. 1, where it can be seen to be good for
𝑘𝐵𝑇 > 3𝑚𝑐2. Assuming a constant rate of pair production, no backwards
rate, and free-field equilibrium density [8], this predicts equilibration
of the fermion field in ∼ 2 × 104 ℏ∕(𝑘𝐵𝑇𝛾 [log

(

𝑚𝑐2∕(𝑘𝐵𝑇𝛾 )
)

+ 𝜒]) . Since
𝑘𝐵𝑇 ∕ℏ is the frequency scale of most particle reactants, this predicts
equilibration over long timescales compared to the quantum processes.

The logarithmic term might be surprising. The naïve expectation, on
dimensional grounds, is that the thermally averaged cross-section for a
two-particle collision at 𝑘𝐵𝑇 ≫ 𝑚𝑐2 obeys ⟨𝜎⟩ ∝ 𝑇 −2 [8], which would
give 𝑅𝛾𝛾′ ∝ 𝑇 4. This is based on the logic that, at temperature scales
where the mass becomes irrelevant, temperature is the only appropriate
energy-scale that can be chosen. But instead, as 𝑚 → 0+, the rate
diverges logarithmically. The high-energy process remains irrevocably
coupled to the low-energy regime. To understand why, consider that
the logarithmic divergence is inherited directly from the two-photon
2

Fig. 1. Approximation of thermal Breit–Wheeler pair creation rate plotting against
numerical calculation, with 𝑛, 𝑙 in Eq. (1) summed from 1 to 20, at which there is
numerical convergence to precision visible on the graph. The approximation is seen to
rapidly approach the exact result from below for 𝑘𝐵𝑇 > 3𝑚𝑐2.

cross section, where it appears as a divergence in the virtual fermion
propagator [7]. Specifically, the divergence is due to the possibility of
Breit–Wheeler being mediated by the exchange of a real fermion of
vanishing energy and momentum. The physics behind this is intuitive:
in the zero-mass limit, a photon transforming into an electron of the
same energy and momentum does not violate energy or momentum
conservation. Therefore Breit–Wheeler needs involve only the exchange
of a virtual fermion of vanishing energy and momentum. But in the
zero-mass limit, this virtual fermion will be on the mass shell. Pro-
cesses being mediated by real particles correspond to physical processes
that can occur between widely-separated particles. We therefore have
a clear physical picture for how the mass-scale remains relevant at
high temperatures: photons in the thermal gas can interact to create
electron–positron pairs which are separated by the length-scale of the
inverse of the electron mass. This is in contrast to the ‘‘hard thermal
loop’’ (HTL) paradigm [9,10], where the dominant contribution to
thermal quantities comes from the exchange of excitations with ‘‘hard’’
momenta 𝑝 ∼ 𝑘𝐵𝑇𝛾∕𝑐. This is because we are dealing with hard external
momenta, while HTL assumes external momenta are soft, and because
our virtual fermion propagator is not a thermal propagator, since we are
formally examining a situation in which there is not a thermal fermion
background.

This absence of a fermion background is a major approximation
made by Eq. (18) as a calculation of the physical pair production rate.
If we are concerned with the equilibration of the fermion field with
a rapidly heated photon field, then it will only hold good for a finite
period of time. The other major approximation is that it is a lowest-
order perturbative process. This could be problematic because we know
that in a thermal context the perturbation expansion might not produce
adequate results [9]. In general, in the theory of linear excitations about
thermal equilibrium, we expect the perturbative expansion to produce
reasonable approximations in the regime of hard external momenta.
Since the dominant contributions to the total Breit–Wheeler rate are the
production of hard fermions by hard photons, we have some reason to
think of it as a meaningful quantity, though it might well underestimate
the production of soft fermions.

This is complicated, though, by the fact that we have just shown that
the Breit–Wheeler is peculiarly coupled to the low-energy regime. To
get a qualitative idea of the impact of the effects neglected, consider
that one of the most important non-perturbative effects of a thermal
background is to introduce a ‘‘thermal mass’’ to the constituent par-
ticles, 𝑚 ∶= 𝜇𝑘 𝑇 ∕𝑐2, where 𝜇 ∼

√

𝛼 [9,11,12]. (Taking this to
th 𝐵 𝛾
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be the only thermal adjustment of the dispersion relations becomes a
good approximation in the hard momentum regime.) Introducing this
thermal mass as a correction to the fermion mass would induce us to
replace Eq. (18) as 𝜇𝑘𝐵𝑇 ≫ 𝑚𝑐2 with

𝑅𝛾𝛾′ =
𝜋𝛼2𝑐
18
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As could be appreciated physically, it is the logarithm, which cou-
les the process to the low-energy regime, which makes the thermal
ass a leading-order effect. Corrections to external fermion propagators

re sub-leading, as we would expect the corrections to the external
hoton propagators to be also. It is possible that the effects of a growing
hermal fermion background in the process of equilibration could be
ncluded naturally in this formalism, by making the fermion thermal
ass dependent on the background fermion density. Of course a much
ore substantial treatment would be needed both to rigorously justify

his expression, since it is unclear whether the introduction of a thermal
ass is really adequate to handle the interaction between the virtual

ermion and the thermal background, and to use it, since the literature
esults for dispersion relations in a thermal background are restricted
o the case of the fermion and photon field in equilibrium, where the
otion of a particle creation rate has little meaning.

Quantities of a similar form have been found by other authors
or similar quantities in high-temperature limits: the reverse process,
.e. the rate of pair annihilation in electrons and positrons in Maxwell–
üttner distributions [13–15]; the rate of positron production in a
lasma from electron and ion collisions [15]; the mean path of a
igh-energy non-thermal photon in a thermal bath [16]; and various
uantities in an optically-thin relativistic plasma of finite size [17].
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