
 

Abstract— Extracting the charging load pattern of residential 
electric vehicle (REV) will help grid operators make informed 
decisions in terms of scheduling and demand-side response 
management. Due to the multi-state and high-frequency 
characteristics of integrated residential appliances from the 
residential perspective, it is difficult to achieve accurate extraction 
of the charging load pattern. To deal with that, this paper presents 
a novel charging load extraction method based on residential 
smart meter data to noninvasively extract REV charging load 
pattern. The proposed algorithm harnesses the low-frequency 
characteristics of the charging load pattern and applies a 
two-stage decomposition technique to extract the characteristics 
of the charging load. The two-stage decomposition technique 
mainly includes: the trend component of the charging load being 
decomposed by seasonal and trend decomposition using loess 
(STL) method, and the low-frequency approximate component 
being decomposed by discrete wavelet technology (DWT). 
Furthermore, based on the extracted characteristics, event 
monitoring, and dynamic time warping (DTW) is applied to 
estimate the closest charging interval and amplitude. The key 
features of the proposed algorithm include (1) significant 
improvement in extraction accuracy; (2) strong noise immunity; 
(3) online implementation of extraction. Experiments based on 
ground truth data validate the superiority of the proposed method 
compared to the existing ones.  

Index Terms—Residential electric vehicle, non-intrusive load 
extracting, two-stage decomposition, ant-identification analysis, 
smart meter 

NOMENCLATURE 
Abbreviations 
REV   Residential electric vehicle 
EV   Electric vehicle 
AC   Air conditioner 
ILE   Intrusive load extracting 
NILE  Non-intrusive load extracting 
STL   Seasonal and trend decomposition using loess 
DWT  Discrete wavelet technology 
DTW  Dynamic time warping 
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EACL  Exploratory analysis of charging load 
FP   False positive 
TP   Ture positive 
FN   False negative 
PRE   Precision 
REC   Recall rate 
SNR   Signal to noise ratio 
Indices 
t    Time 
m    Index for extracted charging load patterns 
j    Index for residential appliances 
α    Index for layers in DWT 
k    Index for any path in DTW 
Parameters 
D    Dictionary library related to REV 
xEV   Extracted EV charging load pattern 
xL    Low-frequency component related to REV 
xH    High-frequency component related to REV 
xO    Residual component 
x    Smart meter data 
xap   Residential appliances without EV 
xtr    Trend component 
xse    Seasonal component 
xre    Residual component 
xL,α   Low-frequency component of layer α 
xH, α   High-frequency component of layer α 
S    Rated power vector of charging load 
M    Total number of selectable related power 
xopt   Selectable charging load patterns 
wt    Robustness weight at time t 
η    Minimum difference value 
ε    Threshold to determine charging event 
Durmin  Minimum charging duration 
Durmax  Maximum charging duration 
Einterval  Charging interval vector from start time to end time 
Θ   Maximum number of the charging duration 
O    Similarity distance matrix by DTW 

I.  INTRODUCTION 
T present, the depletion of fossil energy and 
environmental problems are becoming increasingly 

challenging. As a means of transportation using clean energy, 
EVs are bound to achieve rapid development and large-scale 
applications [1]. The electric industry expects the penetration 
rate of EVs in the US will reach 29% by 2030 [2]. However, the 
large-scale roll-out of EVs will have a significant impact on 
power grid reliability and stable operation [3]. These negative 
effects mainly depend on charging behaviors [4], [5]. Thus, the 
effective identification of possible EV charging load pattern 
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would be a crucial part before significantly dealing with the 
potential “negative” impacts and “positively” utilization of 
large-scale EV energy resources from the demand side.  
 An intrusive load extracting method (ILE) that captures EV 
charging behaviors by installing monitoring devices at home is 
often unrealistic [6], due to the additional hardware installation 
costs and the leakage of residential energy privacy. Therefore, 
the non-intrusive load extracting (NILE) methods that extract 
the residential charging load patterns from smart meter have 
attracted growing interest [7]. The key idea for NILE is to 
capture the characteristics related to the charging load from the 
smart meter, and further realize the extraction of the charging 
load pattern. Currently, the methods for non-intrusive load 
monitoring include mainly signal processing and machine 
learning [8], [9]: 

Signal processing: Some methods for extracting the 
characteristics from smart meter data to achieve load 
decomposition, such as factorial hidden Markov model 
(FHMM) [10], [11], independent principal component analysis 
(ICA) [12], and non-negative matrix factorization [13], have 
been widely investigated. With the rapid development of image 
recognition techniques, new load decomposition algorithms 
have appeared, such as sparse decomposition, and dictionary 
learning [14]. A common feature of the above algorithms is to 
learn a library for each charging load pattern and adopt the 
learned dictionary as a basis in the process of NILE [15]. 
However, due to the difference in charging power and charging 
behavior of EVs for different drivers, it is difficult to select a 
suitable charging load dictionary from the library. 

Machine learning: The load pattern of a specific electrical 
appliance could be non-intrusively identified through enough 
data from the smart meter database. At present, lots of machine 
learning algorithms have been applied in NILE, such as 
convolutional neural networks [16], support vector machines 
[17], decision trees [18], and deep learning [19]. However, 
building a machine learning model requires a large amount of 
labeled training data (the charging load data cannot be obtained 
in practice) and the sensitive hyperparameter adjustments. 

Extensive training and computation to capture the 
characteristics related to the charging load are the main limits 
of the aforementioned methods [20]. Besides, microelectronics 
and high-frequency switching loads from residential appliances 
e.g., microwave oven, laptop, and inverter air conditioners, will 
mask the characteristics of the charging pattern. The signal of 
the EV charging load has its strong characteristics that can be 
used to facilitate NILE. The charging load has two-state (on/off) 
and the switching frequency between the two states is very low. 
Therefore, the extraction of the REV charging load can be 
divided into three steps: 1) the signal rising point, 2) the signal 
steady-state interval, and 3) the signal falling point [20]. In [21], 
step 1) and step 3) are extracted by the skipping power 
difference, and a boundary box fitting algorithm is proposed 
further to extract step 2). However, other power events that can 
interfere with the charging load in step 2). In [5] and [22], a 
novel algorithm was designed to extract step 2), but the signals 
containing noise or multi-power appliances cannot be 
decomposed accurately [23]. The novel NILE algorithms are 

needed to be designed or improved to overcome the sample 
data bottleneck, eliminate high-frequency interference, and 
promote computational efficiency. 

 To deal with the limitation in the above studies, a novel 
non-intrusive charging load extraction algorithm would be 
proposed. A two-stage decomposition technology would be 
built in the method to extract the characteristics related to the 
charging load for effectively filtering out the high-frequency 
components, in which the trend component of the charging load 
being decomposed by STL, and the low-frequency approximate 
component being decomposed by DWT would be investigated. 
Then, the skipping power difference would be considered to be 
adopted to extract the rising and falling points of charging 
behavior. Besides, DTW is used to calculate the closest 
charging amplitude. To accommodate the requirements of 
NILE, probabilistic statistical results of charging behavior 
(charging interval, amplitude) will be introduced as boundary 
constraints for personalized extraction.  

Compared with existing ones, the proposed method in this 
paper not only maintains the advantages of signal processing 
algorithm, including a low computational complexity and 
online extraction capabilities without explicit training step but 
also being expected with higher estimation accuracy when 
dealing with high-frequency, multi-state components with 
smart meter data due to the designed training-free algorithm, 
which could contribute to the charging pattern extraction of 
REV with stronger noise immunity, low computational cost 
capability.  

The rest of the paper is organized as follows: Section Ⅱ 
exploratively analyzes the characteristics of the charging load, 
the time-frequency characteristics, and the correlation with 
other electrical appliances. The proposed non-intrusive 
extraction method is established in Section III. Section IV 
verifies the effectiveness of the proposed algorithm with actual 
data. Finally, Section V concludes the paper. 

II.  EXPLORATORY ANALYSIS OF REV CHARGING LOAD 
Residential smart meter data consists of energy consumption 

of various appliances, as shown in Fig. 1. Before designing the 
extraction algorithm, an exploratory analysis of the charging 
load (EACL) is performed. Thus, the charging behavior of REV 
and the time-frequency characteristics of other electric 
appliances are analyzed as follows.  



 

 
Fig. 1. Schematic diagram of residential electricity appliances 

A. REV charging power and statistical features 
The selected 1-min resolution smart meter data is derived 

from the Pecan Street demonstration data port [24]. There are 
five main types of REVs in this block, and their rated charging 
power ranges from 3 kW to 10 kW as shown in Table Ⅰ. 
Furthermore, the profile shape of the charging load is 
approximately rectangular.  

TABLE Ⅰ 
SELECTED REV TYPE AND CHARGING POWER 
EV model Charging power (kW) 
Category Ⅰ 3, 3.4, 3.6 
Category Ⅱ 6, 6.6, 6.8, 7.0, 7.2, 7.5 
Category Ⅲ 9.3, 10 

Furthermore, the statistical analysis of residential charging 
load data from the same data port could indicate the statistical 
information of charging patterns’ basic features, such as 
charging duration, the interval of adjacent charging events, and 
the number of charging events. The majority of charging 
durations of residential charging durations are more than 30 
min while charging behavior rarely lasts more than 300 min. 
Moreover, the residents are unlikely to charge greater than 
three times a day, and the interval between two adjacent 
charging events is often greater than two hours. The above 
conclusions are consistent with the results using different data 
sources [25]. 

B. Power behavior analysis of residential appliances 
Combined with the analysis of the REV charging durations 

in Section A, the power patterns of residential appliances and 
REV are analyzed to better extract the REV charging load 
pattern. The time-frequency characteristics of residential power 
devices for one day are shown in Fig. 2, while the resolution of 
the data is 1 min.  

 
Fig. 2. Load profile of residential appliances 

In Fig. 2, the rated charging power of AC is close to REV, 
and there could be an overlap with the pattern of AC during a 
small charging time (less than 30 min). Similar power patterns 
will interfere and increase the difficulty of non-intrusively 
extracting the target REV charging load pattern from the smart 
meter data. The furnace and AC have higher spike frequencies, 
and the interval between two adjacent peaks is small. Moreover, 
based on the duration of power behavior, it can be assumed that 
REV belong to the low-frequency signal. In contrast, it can be 
defined as the high-frequency signals for the furnace and AC. 
Besides, low-power consumption, such as refrigerators, can be 
defined as a steady-state signal. It is worth noting that the 
high-frequency and steady-state here are compared to the EV 
profile. For extracting the REV charging load patterns, it can be 
regarded as a process of denoising, which should filter out 
high-frequency noise signals, and combine the event 
exploration to further extract the charging load patterns. 
However, the superposition of power signals with different 
frequencies has become a bottleneck for extracting 
characteristics related to the charging load. To solve the 
above-mentioned problem, we design a two-stage 
decomposition algorithm in section III. 

III.  PROPOSED NON-INTRUSIVE EXTRACTION METHOD 

A. Extraction problem formulation 
For the smart meter data, it is assumed x=[xt,..,xT], t=1,…, T, 

which related to the non-intrusive extraction of REV charging 
load patterns. Thus, the process of extracting can be expressed 
as: 

                                  (1) 

                                        (2) 
where N denotes the number of residential appliances without 
EVs; xap,j represents the jth residential appliance; xEV,m denotes 
the mth charging load pattern that extracted from x, and xEV,m is 
a subset of xEV. 
 Considering the low-frequency characteristics and high 
charging power amplitude of the REV charging load, the 
extraction problem can be transformed and formulated as: 

                                  (3) 
                                      (4) 
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where F denotes the corresponding extraction function.  

B. Two-stage decomposition 
For smart meter data containing multiple pulses and 

high-frequency noise, such as microwave ovens, laptops, and 
inverter AC. Therefore, the purpose of the two-stage is to 
eliminate interference (noise component, local abrupt), and the 
characteristic (xL) that has the highest correlation with the 
charging load pattern can be obtained. How to obtain xL is key 
to capture the charging load patterns. In this section, a 
two-stage decomposition technique will be introduced to obtain 
xL, which is closely correlated with the charging load. In stage I, 
the STL method is first adopted to extract the trend component. 
In stage II, the DWT method is used to match the characteristic 
component related to the charging load.  
 1) Extracting the low-frequency trend component (stage I):  

In this illustration, by adopting the STL method to extract 
trend component xtr=[xtr,t,…, xtr, T] from smart meter data, it is 
possible to explore the impact of the charging load on the trend 
of overall residential power consumption. STL technology is a 
signal decomposition method that uses robust local weighted 
regression as a smoother to decompose the smart meter data 
into a low-frequency trend, high-frequency residual, and 
seasonal component [26]. The advantage of STL is that it can 
robustly estimate the trend component without being distorted 
by the abnormal behavior in the data, which can help keep the 
particularity of the charging load during extraction.  The 
formula of STL is: 

              (5) 
For smart meter readings, xtr  is often the low-frequency 
patterns (charging load), xse describes the periodic character of 
the signal, such as refrigerator, xre is more related to the 
high-frequency component of the signal, such as switching 
appliances, etc. 
 The process of STL includes two recursive parts: the inner 
loop and outer loop. The inner loop is mainly adopted to extract 
and update xtr, and xse, the outer loop is used to adjust the 
weights from the inner loop, which can reduce the impact of 
abnormal data on xtr, xse. When all weights are 1, the initial 
traversal of the outer loop is executed, and then k-th traversal of 
the outer loop is executed. For inner loop, let xtr(k) and xse(k) be 
the trend, seasonal components after the k-th loops, and sets 
xtr(1)=0. The inner loop to update xtr(k), xse(k) can be divided 
into six steps: 

Step 1: Remove trend component from smart meter data, 
xdt=x-xtr(k). If the value of x(t) is missing, then xdt(t) should be 
lost at time t. 

Step 2: Perform LOESS smoothing on the periodic 
subsequence in xdt(the period of the subsequence is Tdt). When 
all subsequences are smoothed, the sequence c(k+1) of length 
(T+2Tdt) can be obtained. 

Step 3: Perform low-pass filtering of length Tdt, Tdt, 3 on 
c(k+1), and adopt LOESS smoothing to obtain sequence l(k+1). 

Step 4: Remove the trend and seasonal component of c(k+1) 
at (k+1) iteration to reduce the interference of low-frequency 
components to xse, xse(k+1) =c(k+1)-l(k+1).   

Step 5: Adopt LOESS regression for xsd(k+1)=x-xse(k+1) to 
obtain xtr(k+1).  

Step 6: Perform LOESS smoothing on xsd to extract xtr, and 
the smoothed sequence has no missing values. When xsd is in 
the k+1 iteration, xtr(k+1) is the smoothed value. 

In STL, the LOESS function is a local polynomial regression, 
which is essentially a process of smoothing the extracted trend 
component from smart meter data, and the specific 
mathematical derivation can be seen in [27].  To eliminate the 
influence of outliers on the LOESS regression results in the 
inner loop, it is necessary to define a robustness weight for each 
sampling point of x in the outer loop. This robustness weight 
can represent the maximum of xre. When the outlier |xre| is very 
large, the corresponding weight value is close to 0. At time t, 
the robustness weight wt can be expressed as: 

                 (6) 

                    (7) 

                 (8) 
where, f(xt) donates trend component obtained due to outlier 
value of xt; g presents the coefficient related to robustness 
weight, usually sets to 6. Based on the value of the outlier 
|f(xt)-xtr,t| at xt, the robustness weight (6) can be assigned. 

2) Extracting the characteristics related to the REV (stage II) 
Based on the trend component xtr=[xtr,t,…,xtr,T] obtained in 

stage I, DWT [28] is used to extract the characteristics of REV. 
The signal of different scales can be discretely decomposed by 
DWT, to capture the local time-domain characteristics. 

The principle of DWT is to design low-pass and high-pass 
filters to decompose the original signal into features of different 
frequencies, as shown in Fig. 3. 

 
Fig. 3. The hierarchical structure of the DWT 

where, g[t], h[t] represents the low-pass and high-pass filters, 
respectively. For the α-th architecture: 

                       (9) 

               (10) 

where K=T/2α. The key to extracting the characteristics related 
to the charging load is to determine the g[k], h[k], and α. The 
scale function Harr in discrete wavelet is similar to the charging 
behavior of REV, hence Harr scale function is adopted as the 
mother wavelet (base) to extract charging characteristics, which 
is shown in the formula [28]: 

                   (11) 

                          (12) 
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Therefore, Eq. (11) can be further transformed into: 
                (13) 

In (10), t can be replaced with 2α-t-k, and the (10) can be 
transformed into: 

                     (14) 

where: 

                      (15) 

 DWT is used to decompose the time-series components from 
the stage I, which can extract the characteristic component xα,L 
directly related to REV. If the correlation between xL,α and the 
charging load is highest, then xL,α can be considered as the 
component that is required in the proposed algorithm.  

C. Monitoring and matching of REV charging event 
Based on the extracted characteristic xL,α related to the 

charging load, the charging start, and end time can be 
determined by monitoring the signal edge. Besides, the 
amplitude of the charging load could be matched by the DTW 
method. For the proposed method, the implementation process 
monitoring and matching of REV charging events do not rely 
on actual charging data, and not require training data, which is 
training-free. 
1) Edge monitoring of REV charging event 
  According to xL,α extracted by the two-stage decomposition, 
we further extract the charging load pattern. And the complete 
charging behavior is symmetrical at the center point between 
the initial charging point t+ and the end charging point t-. 
Therefore, the edge [t+, t-] can be identified according to the 
high-order difference of the power sampling point. 

               (16) 
where, Δt represents the order, which is greater than 1. The 
mathematical meaning of Eq.(16) is the difference value 
between t+Δt and t. When other behaviors of residential 
appliances occur during the charging duration, it is difficult to 
extract the start and end time. Therefore, how to set the value of 
Δt and ensure that identifying high-order difference points 
satisfy the constraints is the key to detect the edge of the 
charging behaviors. 
 Due to the high amplitude characteristic of the charging load, 
the point t can be regarded as the charging edge for ΔxL,α(t) 
exceeding a certain interval. In order to prevent certain 
high-power electrical appliances (such as AC) being 
mis-detected, it is necessary to introduce certain constraints for 
the charging load. 

                               (17) 
                              (18) 

                       (19) 

                          (20) 

where, t+, t- respectively represent rising edge and falling edge 

in xL,α; η donates the minimum difference, ε is the maximum 
asymmetry value. Eqs. (17-19) are the differential amplitude 
constraints, the symmetry constraints of the start and end edges 
of the charging event, and the interval constraints of the 
charging event, respectively. Eq. (20) is the constraint for the 
total number of charging events during T. 

 
Fig. 4. Flowchart of the DTW algorithm 

2) Matching the magnitude of the charging event 
 DTW is used to calculate the similarity between time series 
of different scales [29], which is mainly used for the charging 
load patterns matching. It describes the time corresponding 
relationship between the charging load template and the REV 
charging characteristic through the time warping function. 
Specifically, two unequal-length sequences are matched by 
solving the warping function corresponding to the smallest 
cumulative distance.  
 As can be seen from Section II, REV is mainly selected from 
M selectable patterns, where S=[s1,…,sM] represents the rated 
power vectors of M charging loads. Einterval=[t+, t-] is the start 
and end time points identified in 1), so the total selectable 
charging load patterns xopt can be expressed as: 

                          (21) 
where N donates the scale of Einterval, E is [1, N] row vector of all 
Einterval. Therefore, the xL,α=[a1,..,at,…,aT]1xT of REV extracted 
in two-stage, xopt,i=[sei,1,…,sei,j,…,sei,N] represents i-th charging 
load pattern from S, so the similarity distance matrix 
O=[d1,1,…,dt,j,…,dT,N] in DTW between xL,α and xopt,i can be 
expressed as: 

                         (22) 
where, dt, j represents the distance between point j in xopt,i and 
point t in xL,α. The similarity matrix O can build all pairwise 
distance between at and sei,j (such as Euclidean distance, 
Mahalanobis distance). Therefore, the goal of the DTW 
algorithm is to find an optimal path W=[w1,…,wτ,…,wk] from O, 
which ensures xL,α matches xopt,i to the maximum, and k should 
satisfy boundary constraint: 

                  (23) 
where, wτ=(tτ, jτ)∈{1,2,…tτ…, t}x{1,2,…jτ…, j} donates that 
at matches sei,j, which can be considered that the jth amplitude 
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template of charging load is closest to xL,α at time t. Eq. (23) 
donates the length of W should not be greater than the 
dimension of O.The accumulated cost of DTW path W can be 
donated as: 

                       (24) 

where τ∈{1,2,…,k}, and r(t, j) represents the path length. 
Moreover, wτ should satisfy the following constraints: 

                         (25) 

             (26) 

Eqs. (25) and (26) are boundary constraint and monotonicity 
constraint for the wτ, respectively. Besides, the continuity 
should be promised for any paths, that is, if the path has passed 
(t, j), then the next point can only be selected from (t+1, j), (t, 
j+1), (t+1, j+1). Therefore, the DTW path is the shortest path 
that the wτ satisfies the constraints of Eqs. (25-26), then the 
optimization goal of the DTW algorithm can be expressed as 
follows: 

             (27) 

 The search for the optimal path is achieved through dynamic 
programming in term of the recursive process, and the specific 
process can be found in [30]. Besides, the shortest path is 
recorded by defining the accumulation matrix R=[r(t, j)]TxN, 
which can be expressed: 

            (28) 

where, r(0, 0)=0; for t greater than 0, r(t, 0)=∞; for j greater 
than 0, r(0, j)= ∞. After the accumulation matrix R is calculated 
by  Eq. (28), the shortest distance and shortest path can be 
calculated according to Eq.(27). Anyway, the DTW algorithm 
finds the optimal (minimum distance) matching path while 
aligning two unequal length sequences, and the calculation 
process the DTW can be shown in Fig.4. 

 
Fig. 5. Flowchart of the proposed algorithm 

D. Flowchart and process illustration 
The flowchart of the proposed method is presented in Fig. 5. 

First, the collected smart meter readings are decomposed into 
two stages. Smart meter data is decomposed into low-frequency 
trend components xtr by STL decomposition in stage I. This 
process can eliminate the interference of high-frequency, 
residual, and periodic components. In stage II, the DWT 
algorithm is used to decompose xtr into xL,α related to the 
charging load profile. Stage II can effectively eliminate the 
interference of local noise components. Then, with the obtained 
xL,α , the edge monitoring (high-order difference) is adopted to 
extract the start and end time of the charging even t. 
Furthermore, combining the extracted charging time point and 
the REV amplitude template library, the DTW algorithm is 
used to calculate the optimal matching path between the 
amplitude template and xL,α, for determining the optimal 
charging amplitude.  
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(b) Two-stage decomposition 

 
(c) Event detection and matching 

Fig. 6. Process illustration 
To further illustrate the effects achieved at each step in the 

flowchart, the smart meter data of household #1 in [7] (a day's 
household energy consumption) is used to show the effect of 
simple step decomposition. The smart meter data and actual EV 
power data of household #1  are shown in Fig. 6(a). The results 
of stage I (STL decomposition) and stage II (DWT) 
respectively in the two-stage decomposition are shown in Fig. 
6(b). In Fig. 6(b), the high-frequency pulse components can be 
effectively eliminated after stage I, and there is a certain degree 
of agreement with the actual EV profile. The main reason is that 
STL decomposition can eliminate high-frequency cycles and 
random residual components. The local noise component of the 
trend component in stage I can be eliminated in stage II to a 
certain extent and the correlation with the actual EV profile is 
improved. Based on the results of stage II, the profile in Fig. 6(c) 
is the result of the edge monitoring and DTW matching 
respectively. In Fig. 6(c), multiple signal mutation points can 
be monitored through edge monitoring, but due to the 
constraints (17)-(20), the mutation points of the charging events 
can be only extracted. Furthermore, combining the DTW 
matching algorithm can match the amplitude power closest to 
the actual EV charging behavior.  

E. Performance Evaluation 
To evaluate the performance of the extraction algorithm and 

its corresponding results, some indexes are introduced. 
1) Evar (Explained Variance Score): 

Evar is the degree of dispersion of the variance between the 
extracted results and the actual samples, which can fully 

quantify the error between the extracted charging load pattern 
and the actual EV charging load data.  

       (29) 

where, xave,t represents the average of the actual charging load 
power, and A donates the function of the average. The closer 
Evar is to 1, the closer between the extracted results and the 
actual data is. 
2) R2 (R-squared): 

R2-squared indicates the degree of correlation between the 
extracted results and actual samples, which is suitable for the 
charging load with obvious characteristics (charging interval, 
amplitude, etc). The closer R2 is to 1, the closer the extraction 
results are to the actual samples. 

                       (30) 

                   (31) 

where, mse donates the means a square error, which measures 
the deviation between the sample and the extracted value, n 
represents the total sample points. 
3) F1 (F1 Score): 

F1 can evaluate the accuracy of the NILE algorithm for 
identifying the ON/OFF appliances, while the charging load 
can be approximated as the binary appliances [5], [31]. 
Therefore, the extracted results can be evaluated using F1.  

                        (32) 

                              (33) 

                              (34) 

where, PRE and REC are measured for the performance of the 
NILE algorithm to extract positive charging events; FP 
represents the number of samples that were incorrectly 
extracted as charging events; TP represents the number of 
samples that were correctly extracted as charging events, and 
FN represents the number of samples that were incorrectly 
extracted as non-charging events. Besides, the closer F1 is to 1, 
the better the performance of the NILE algorithm.  

IV.  VERIFICATIONS AND DISCUSSIONS 

A. Data Description 
To verify the effectiveness and advantage of the proposed 

method, two sets of actual smart meter data from [24] are 
adopted for testing. Dataset#1 consists of the power 
consumption data of all electrical appliances of 23 households 
within a certain day in 2016, in which the household #4, #5, #13, 
and, #23 did not have to charge loads; Dataset#2 consists of 
daily aggregated power measurements for 5 households that 
have EVs for a period of six months (May. 2017- Oct. 2017) in 
New York, which corresponds to about 460 daily load patterns. 
Dataset#1 and #2 have a resolution of 1min and 10 mins, 
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respectively. Then the charging load pattern would be extracted 
from the smart meter data of each household and the actual 
measured REV data of each household will be used to evaluate 
the performance of the proposed method in the following tests. 

In the case study, some parameters of the proposed algorithm 
are restricted within a certain range. η can be set between 
[1000,1500], while Durmin is set as 30 mins, and Durmax is set as 
180 mins, which can be adopted from the conclusion in EACL. 
The determination of the minimum range (30 min) and the 
maximum range (180 min) of the charging interval is the 
probability statistics of residential charging behavior. 

 
(a) Comparison of actual EV profile and extracted EV profile 

 
(b) Extraction by the proposed algorithm with the optimal parameters 

Fig. 7. Extraction result analysis of household #15. 

B. Testing and sensitivity analysis  
The proposed method is tested on the selected dataset case 

and impacts of algorithm parameters on the extraction results 
are also investigated as a sensitivity analysis. Meanwhile, the 
optimal parameter set for the proposed algorithm will be 
selected with the best extraction performance. 

Firstly, Dataset#1 is used to test the proposed algorithm with 
different parameters. The smart meter readings in Dataset#1 
contain the superposition of various electrical appliances in a 
day, such as air conditioner, washing machine, and dryer. The 
key parameters that may affect the performance of the 
extraction are STL sampling frequency freq, DWT’s 
architecture layers α, difference steps Δt, and η.  

The sensitivity study aims to explore the impact of parameter 
settings on the performance of the proposed algorithm and 
explore the optimal parameter set as well. Table II shows the 
performance comparison of the proposed algorithm with 

different parameter settings. With different Δt, the values of 
Evar, R2, and F1 do not change significantly, which indicates 
that changing Δt has a limited effect on the extracted results. 
With the same η, the algorithm achieves the best performance 
when α=4 or 5. Besides, higher w leads to a better performance 
of the proposed algorithm.  

TABLE Ⅱ 
PERFORMANCE COMPARISON WITH DIFFERENT PARAMETERS 

Δt(mins) η freq α Evar R2 F1 

1 

1000 24 3 0.755 0.804 0.790 
1000 24 4 0.884 0.907 0.931 
1000 24 5 0.884 0.907 0.931 
1000 24 6 0.667 0.725 0.780 

2 

1500 24 3 0.761 0.811 0.793 
1500 24 4 0.893 0.918 0.935 
1500 24 5 0.893 0.918 0.935 
1500 24 6 0.672 0.731 0.784 

Moreover, the extraction results of household #15 based on 
the optimal parameters are shown in Fig. 7. The rectangular 
area (charging behavior) of charging load extraction in Fig.7 is 
similar to the actual charging load. Besides, we also conducted 
tuning experiments for other residents and found that the 
optimal parameter sets are consistent. Therefore, no extensive 
training or tuning process is required for the application of the 
proposed algorithm. 

C. Comparative analysis using data in Dataset #1 
The proposed algorithm is tested and compared with the 

pattern recognition and machine learning methods, e.g., 
FHMM [11], ASM[22], CNN[16]. 

 
Fig. 8. Comparison with [11, 16],  proposed algorithm in household #19 

The charging load of all households in Dataset#1 are 
extracted by using the proposed algorithm and the algorithms in 
[11], [16], [22] and the performance results are shown in Table 
Ⅲ. We find that the overall extracted performance of the 
proposed algorithm is better than those in [11] and [16], [22] for 
all households. We also illustrate the effectiveness of the 
proposed algorithm based on household #19 in Fig. 8, since the 
overlap between the charging load pattern and the power profile 
of the air conditioner, makes the charging load extraction 
extremely challenging. It is clear that the interval of charging 
behavior in household #19 is underestimated by the FHMM in 
[11], and an incorrect interval of the charging behavior is 
identified, which leads to low accuracy of extraction. When 
there is interference from high-frequency electrical appliances, 
the interval of charging behavior is overestimated by FHMM. 
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The main reason is that the high-frequency amplitude near the 
charging interval is mistaken as part of the charging load. The 
extracted results based on CNN in [16] are similar to the 
proposed algorithm because of the strong nonlinear fitting 
ability of CNN. However, since the CNN in [16] belongs to 
supervised learning, the training accuracy is directly linked to 
the amount of available data. In practice, it is difficult to obtain 
a large number of labelled sets (historical electric vehicle 
charging power data). For CNN, the convolution kernel is used 
to extract spatial feature, but the autocorrelation of timeseries is 
ignored. 

TABLE Ⅲ 
PERFORMANCE COMPARISON OF THE ALGORITHM IN OVERALL DATASET#1 

ID 
Proposed 
 algorithm 

[11]’s  
algorithm 

[16]’s 
algorithm 

[22]’s  
algorithm 

F1 Evar F1 Evar F1 Evar F1 Evar 
1 0.771 0.644 0.651 0.738 0.765 0.883 0.667 0.739 
2 0.916 0.852 0.875 0.800 0.851 0.899 0.842 0.824 
3 0.945 0.921 0.771 0.812 0.915 0.904 0.667 0.670 
4 - - - - - - - - 
5 - - - - - - - - 
6 0.948 0.892 0.892 0.834 0.92 0.902 0.834 0.795 
7 0.954 0.943 0.861 0.686 0.898 0.9 0.663 0.671 
8 0.886 0.744 0.641 0.811 0.856 0.861 0.869 0.828 
9 0.861 0.857 0.802 0.803 0.87 0.857 0.695 0.640 

10 0.960 0.890 0.775 0.875 0.891 0.887 0.649 0.675 
11 0.843 0.841 0.911 0.905 0.924 0.924 0.775 0.721 
12 0.982 0.971 0.906 0.853 0.924 0.875 0.732 0.771 
13 - - - - - - - - 
14 0.878 0.742 0.755 0.905 0.925 0.866 0.839 0.814 
15 0.930 0.895 0.856 0.706 0.924 0.907 0.766 0.725 
16 0.874 0.706 0.675 0.833 0.886 0.868 0.755 0.801 
17 0.884 0.691 0.645 0.679 0.911 0.888 0.865 0.814 
18 0.895 0.611 0.735 0.757 0.859 0.903 0.676 0.667 
19 0.923 0.817 0.854 0.817 0.881 0.918 0.817 0.795 
20 0.962 0.932 0.809 0.876 0.92 0.924 0.816 0.790 
21 0.901 0.974 0.611 0.897 0.911 0.891 0.705 0.751 
22 0.909 0.832 0.872 0.731 0.924 0.859 0.612 0.636 
23 - - - - - - - - 

D. Spatial-temporal impacts on performance results 
To further illustrate the performance of the proposed 

algorithm in dealing with seasonal data, the smart meter data of 
household #27 in Dataset#2 for 5 months (184 days) are 
considered for testing. The 2D kernel density map of the error 
value (1-R2) and the performance index (R2, Evar) of each 
month are shown in Fig.9, respectively. 

The results in Fig. 9 show that the errors are concentrated 
around 0.2, demonstrating a consistent performance of the 
algorithm. However, in the worst case, the error value can get 
as large as 0.4. Besides, the performance in July and Aug tends 
to be worse than in other months. Owing to the power pattern of 
the air conditioner is similar to the charging load, which 
interferes with the extraction result. On the other hand, the best 
performance is achieved in Oct and May. In short, as the 
charging behavior and utilization of other appliances are 
affected by temperature in different seasons, the performance 
of the proposed algorithm may vary. 

 
(a) Error’s kernel density for 5 months 

 
(b) Performance results for 5 months. 

Fig. 9 The evaluation indexes result of household #27 in Dataset#2 

 
(a) Daily extracted EV patterns 

 
(b) Fitting of actual EVs profile in one day 

Fig. 10. Extracted charging load patterns from Dataset#2 
To further verify the performance of the proposed algorithm 

on different charging load profiles, the data for 5 households in 
Dataset#2 that have EV behavior for three months (May 
2017-July 2017), which corresponding to about 460 (92 days*5 
households) daily load patterns are considered. Besides, the 
460 daily load patterns are investigated to avoid the sparseness 
of the charging load patterns by the 5 households in Dataset#2 
for 3 months (May 2017-July 2017). 

The daily extracted REV charging load patterns using the 
proposed algorithm are shown in Fig. 10(a). By accumulating 
all the daily charging load patterns extracted in Fig. 10(a) to one 
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day, and comparing it with the actual charging load profiles, the 
result can be as shown in Fig. 10(b) (accumulate 460 daily 
charging load patterns). For the charging load pattern extraction 
of those households, the purpose of Fig. 10(b) is to analyze the 
calculation error of the proposed algorithm for the application 
of aggregated EV charging load. The mean absolute error 
between the charging load pattern extracted by the algorithm 
and the actual charging load is only 2.513%.  

E. The impact of noise on the proposed algorithm 
The ability of noise immunity is an important issue in 

non-intrusive charging load extraction. Generally, noise exists 
throughout the life of data, and the main reasons include 
abnormal working conditions of electrical equipment, 
measurement errors, and privacy preservation mechanisms. 
Besides, microelectronics and high-frequency switching loads 
will mask the characteristics of the charging load pattern, which 
also could be considered as the noise. Existing research defaults 
that there is no noise interference in the smart meter data, so the 
robustness of the algorithm is not verified. In this case, the 
extraction results of the proposed algorithm, [11]’s, [16]’s, and 
[22]’s algorithm are compared after adding the noise signals of 
different sizes and shapes.  

 
Fig. 11. Comparison of adding noise on household #1 

 
Fig. 12. Comparison of adding different SNR to household #1 

The SNR is adopted to characterize the index of the size of 
the noise, and SNR = 10log(x/xnoise), where x and xnoise 
respectively represent the effective power of the smart meter 
and the noise signal. In general, the larger the SNR, the less the 
noise component mixed in the original signal. For the noise 
shape, we adopt Gaussian noise, Rayleigh noise, gamma noise, 
uniform noise, and impulse noise to analyze the effect of 
different types of noise on the results. 

The extraction results after adding SNR = 5 (dB) white noise 

to household #1 can be shown in Fig. 11. The comparison of the 
F1 with different SNRs is shown in Fig. 12. The change of SNR 
has less influence on the extraction accuracy of the algorithm 
proposed in this paper. In particular, when SNR = 5dB, F1 is 
greater than 0.65, and when SNR = 30dB, the F1 is equal to the 
extraction result without added noise.  

Since the two-stage decomposition method is adopted in the 
algorithm to extract characteristics related to the charging load, 
it is essentially a denoising process. Therefore, the training-free 
algorithm can accurate extraction of the charging load by 
adopting the frequency characteristics of different signals 
(low-frequency characteristics of charging load, random 
high-frequency characteristics of noise signals, etc.). On the 
contrary, the algorithms in [11] and [22] have a poor effect on 
charging loads with noise. When SNR = 5dB, the F1 value of 
the two is less than 0.45. For the FHMM in [11], the dictionary 
of noise signals is not considered when constructing the 
dictionary of base signals, which results in the extracted pattern 
containing noise components. As for the adaptive algorithm in 
[22], because the random signal and the smart meter data are 
superimposed, it is easy to generate an approximate charging 
interval, which is mistakenly judged as the charging load. The 
CNN in [16] has a powerful feature extraction function, which     
make the overall accuracy greater than [11], and [22]. However, 
the charging load characteristics are over-masked as the SNR 
decreases, resulting in the accuracy of CNN to decreases. 

Due to the impacts of different shapes of noise on the results, 
the consistency of the basic parameters of different noise needs 
to be met. Therefore, the random functions in Python are 
adopted to generate Gaussian, uniform, erlang, rayleigh, and 
salt & pepper noise with values [-3000,3000], and variance is 
0.5.  The test results for different noise shapes can be seen in 
Fig.13. 

 
Fig. 13. Comparison of adding different shapes to household #1 

In Fig. 13, the noise of different shapes has a small effect on 
the proposed algorithm, and the F1 value maintains at around 
0.7. For different types of noise, which are essentially 
high-frequency components, and all can be filtered out by the 
algorithm. When the noise is salt & pepper noise, the F1 value 
of the algorithm in [22] is the smallest. The reason is that salt & 
pepper noise is similar to a pulse signal, and the algorithm in 
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[22] can misjudge it as a charging load. But for the algorithm in 
[11], salt&pepper noise can be approximated with the 
dictionary of other electrical appliances (switches), resulting in 
being extracted as the pattern of other electrical appliances. 
Due to the different overlapping effects of the charging load 
and the noise profiles, the amplitude of the charging load 
extracted by CNN in [16] is different. 

F. The impact of data resolution on the proposed algorithm 
In order to verify the performance of the proposed algorithm 

in terms of time resolution, Dataset#1 with a resolution of f=5, 
10, and 15 minutes is considered. Note that the original 
resolution of Dataset#1 here is 1 minute, the household #4, #5, 
#13, and, #23 did not have to charge loads. The Evar index  
results of the proposed algorithm are shown in Table IV. In 
Table IV, the extraction accuracy of all households can be 
maintained at a high level, and as the sampling resolution f 
increases, the accuracy of the proposed algorithm in extracting 
the charging load pattern degrades. As the resolution f increases, 
the time complexity is reduced, and the charging load 
characteristics are lost. As a result, more accurate trend 
components cannot be obtained in the two-stage decomposition 
of the proposed algorithm. Since the proposed algorithm is 
designed based on the difference characteristics between the 
charging load and other electrical appliances, it has the ability 
of online identification and can extract the charging load 
pattern in a short time (less than 5s). 

TABLE Ⅳ 
RESULTS UNDER DIFFERENT SAMPLING RATES WITH PROPOSED ALGORITHM 

ON DATASET#1 
ID 1 2 3 6 7 8 9 
f=5 0.846 0.733 0.818 0.827 0.825 0.787 0.815 

f=10 0.815 0.71 0.726 0.748 0.778 0.697 0.714 
f=15 0.750 0.653 0.709 0.665 0.709 0.664 0.717 
ID 10 11 12 14 15 16 17 
f=5 0.821 0.834 0.820 0.848 0.792 0.786 0.827 

f=10 0.815 0.796 0.762 0.757 0.74 0.765 0.765 
f=15 0.672 0.66 0.665 0.71 0.691 0.688 0.717 
ID 18 19 20 21 22 

 f=5 0.831 0.846 0.806 0.829 0.802 
f=10 0.808 0.689 0.781 0.749 0.801 
f=15 0.667 0.704 0.704 0.675 0.689 

V.  CONCLUSION 
This paper introduces a novel NILE method to extract REV 

charging load patterns from the smart meter data. The proposed 
method adopts the low-frequency characteristics of the 
charging load and combines the feature extraction technology 
to reconstruct the REV charging load usage profiles. Data 
experiments show that compared with the existing NILE 
methods, the proposed method has the advantages of high 
accuracy and strong noise immunity. The parameter tuning of 
the proposed algorithm is simple, and the optimal parameters 
are universal. In future work, the robust of the algorithm could 
be investigated and aims to be improved with different 
resolutions of data. 
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