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SUMMARY6

This note derives analytic approximations to exceedance probabilities for order statistics7

from two heterogeneous populations. A limitation of this approach is that it entails a special8

condition that needs to be checked or justified on a case by case basis.9
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1 Introduction12

Suppose that X1, . . . , XNX
are NX independent copies of the random variable X, whose13

distribution function is FX , and Z1, . . . , ZNZ
are NZ copies of Z, whose distribution function14

is FZ . Both FX and FZ are assumed continuous. It is not known which of the NX + NZ15

realizations of these random variables are from the X and Z populations. The following16

quantities arise in diverse contexts:17

(i) the probability that the set of largest s ≥ NX observations contains all NX observa-18

tions from the X population;19

(ii) the probability that the minimum of the X population exceeds the rth largest obser-20

vation from the Z population;21

(iii) the probability that the maximum of the NX + NZ observations belongs to the X22

population.23

Exact solutions for such probabilities are rarely available, so that reliance is often on nu-24

merical approximations, making dependence on key aspects inexplicit.25
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The first two questions emerge naturally in screening-type problems. Suppose the X26

population represents individuals with a particular disease, which can be assessed accurately27

by a costly, or otherwise inconvenient, procedure. To better target this resource, an initial28

screening is performed. Thus in this context X and Z may represent, for instance, systolic29

blood pressure, concentrations of toxins or solutes in the blood, etc. for individuals in the30

diseased and healthy group. The first question above indicates the likely success of the31

screening at detecting all individuals in the diseased group. The second quantifies the32

number of false positives entailed in the identification of all NX cases. Similar issues arise33

in statistical contexts, where it is often desirable to screen a large number of potentially34

explanatory variables, sometimes with a view to assessing causality more rigorously through35

a full factorial or other designed experiment.36

A key unifying observation for addressing these questions is that there is no loss of37

generality by treating one of the two distributions as standard uniform. This is because the38

transformed random variable Ui , 1 − FZ(Zi) is uniformly distributed on [0, 1]. Here and39

henceforth , means equality by definition. On defining Vi , 1−FZ(Xi) and modelling the40

density function of this random variable by (1 − γ)v−γ for γ < 1, 0 ≤ v ≤ 1, an approach41

that would require careful justification in any particular context, probability calculations42

of the nature outlined above can be expressed in terms of beta integrals, approximable in43

terms of elementary functions using Stirling’s formula.44

In the expression (1 − γ)v−γ , γ = 0 recovers the uniform density function and γ → 145

and γ → −∞ represent strong departure from the uniform distribution in both directions.46

Of course, 1 − FZ(Zi) is not the only transformation that delivers uniform random47

variables and there are settings in which one of the other three possibilities, FZ(Zi), 1 −48

FX(Xi), FX(Xi), may be more fruitful. We discuss this choice in the context of the examples49

given.50

A referee has pointed out work by Bairamov and Parsi (2011) and Bayramoglu and51

Eryilmaz (2015), who study a very similar problem. Their results apply under weaker con-52

ditions than in the present paper, at the expense of more complicated analytic expressions.53

In particular, X1, . . . , XNX
and Z1, . . . , ZNZ

are treated as exchangeable random variables,54

independent of one another in the first paper and dependent in the second. While these55
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two papers are the most closely related to the present work, there is an extensive literature56

studying the exact and asymptotic distributions of the number of exceedances based on57

order statistics. Notable early examples are Gumbel and von Schelling (1950) and Sarkadi58

(1957) who consider exceedence probabilities of order statistics from two samples of poten-59

tially different sizes drawn from the same population (i.e. FX = FZ). Certain special cases60

are recoverable both from their calculations and ours, as indicated below.61

2 Exceedance probability formulae: examples62

2.1 Competing maxima63

We first address the most challenging of the questions specified in §1. This serves as an64

exemplar for the other cases. The probability that the maximum of NX +NZ observations65

belongs to the X population is the probability that Xmax , max{X1, . . . , XNX
} exceeds66

Zmax , max{Z1, . . . , ZNZ
}. Since distribution functions are monotonically increasing,67

p = pr(Xmax > Zmax) = pr(Vmin < Umin),

where Vmin , min{V1, . . . , VNX
} and Umin , min{U1, . . . , UNZ

}. Note that the density68

function of Umin at u is NZ(1−u)NZ−1. Thus consider initially the event Ai , {Vi < Umin},69

with associated probability70

pr(Ai) = NZ

∫ 1

0
v1−γ(1− v)NZ−1dv.

This is of the form of a beta integral of indices 2− γ and NZ . Using xΓ(x) = Γ(x+ 1) and71

Stirling’s formula in the form Γ(x)/Γ(x+ a) ' x−a for large x and fixed a, we obtain72

pr(Vi < Umin) ' Γ(2− γ)Γ(NZ + 1)
Γ{NZ + 1 + (1− γ)} '

Γ(2− γ)
(NZ + 1)(1−γ) , (NZ →∞).

Since V1, . . . , VNX
are independent and identically distributed, for any fixed v,73

pr(Vi1 < v, . . . , Vik < v) = vk(1−γ)
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for an arbitrary set of k indices i1, . . . , ik. It follows that there are similar approximations74

to the probabilities of all combinations of joint events, specifically75

pr(Ai1 , . . . , Aik) ' Γ{k(1− γ) + 1}
(NZ + 1)k(1−γ) , (NZ →∞).

We conclude that76

p = pr
(NX⋃
i=1

Ai
)
'

NX∑
k=1

(−1)k−1
(
NX

k

)
Γ{k(1− γ) + 1}
(NZ + 1)k(1−γ) , (NZ →∞). (1)

An analysis of convergence is given in the supplementary material. The approximation is77

essentially exact, the only error coming from the use of Stirling’s formula. Indeed, Stirling’s78

approximation to Γ(x), while derived under the notional limiting operation x→∞ provides79

a remarkably accurate approximation even for small values of x. It is therefore reasonable80

to apply Stirling’s formula to the numerators, giving the following approximation in terms81

of elementary functions:82

p ≈
√

2π
e

NX∑
k=1

(−1)k−1
(
NX

k

)
{k(1− γ) + 1}k(1−γ)+ 1

2

ek(1−γ)(NZ + 1)k(1−γ) . (2)

Note that while the random variables V1, . . . , VNX
are independent, I1{V1 < Umin}, . . . , I1{VNX

<83

Umin} are not, due to their mutual dependence on Umin. It is for this reason that the full84

inclusion-exclusion formula is needed in (1) rather than the simplification85

pr
(

n⋃
i=1

Ei

)
=

n∑
i=1

(−1)i−1
(
n

i

)
ηi = 1− (1− η)n,

applying to independent events Ei with probabilities η = pr(Ei) for all i.86

Reversing the roles of Xi and Zi in the construction of the uniform random variables87

leads to a simpler formula. Let Ũi , FX(Xi) and Wi , FX(Zi) so that Ũ1, . . . , ŨNX
are88

independent uniformly distributed random variables. On modelling the density function89

of the random variables W1, . . . ,WNZ
as (1 − γ)w−γ , the probability p is now pr(Ũmax >90

Wmax), where Ũmax , max{Ũ1, . . . , ŨNX
} with density functionNXu

NX−1 at u, andWmax ,91

4



max{W1, . . . ,WNZ
}. The required probability is92

p = pr
( n⋂
i=1
{ Wi < Ũmax}

)
= NX

∫ 1

0
wNZ(1−γ)+NX−1dw = NX

NX +NZ(1− γ) . (3)

The choice between which transformation to use, leading to either (1) or (3) depends on93

which of FZ and FX is known, or for which of the populations V1, . . . , VNX
or W1, . . . ,WNZ

94

the density parameterization (1− γ)v−γ is most reasonable.95

If γ is set to zero in equation (1) and the binomial coefficient is written in terms of gamma96

functions and simplified using Stirling’s approximation, the right hand side of equation (1)97

is, for NZ > NX ,98

NX∑
k=1

(−1)k−1
(
NX + 1
NZ + 1

)k
= NX + 1

(NX + 1) + (NZ + 1)

{
1 + (−1)NX+1

(
NX + 1
NZ + 1

)NX+1
}
.

For large NZ this is approximately NX/(NX + NZ) which is what one would obtain from99

direct calculation, noting that Vi and Ui are both uniformly distributed when γ = 0. This100

is equation (1.6) of Gumbel and von Schilling (1950). The formula (3) similarly becomes101

NX/(NX +NZ) when γ = 0. Also intuitively, for γ = 1, formula (1) reduces to102

NX∑
k=1

(−1)k−1
(
NZ

k

)
= −


NX∑
k=0

(
NZ

k

)
− 1

 = 1.

while for γ → −∞, it tends to zero. Similarly for formula (3).103

2.2 Probabilities quantifying screening properties104

As noted in §1, probabilities (i) and (ii) are relevant for assessing the properties of physical105

or abstract screening procedures. These questions lead to simpler calculations than that of106

§2.1 once the transformation to Ui = 1− FZ(Zi) and Vi = 1− FZ(Xi) has been made.107

We start by considering the probability that all members of the X population are dis-108

covered before the first falsely detected individual from the Z population. This is109

pr(Umin > Vmax) = pr
(NX⋂
i=1
{Vi < Umin}

)
= NZ

∫ 1

0
vNX(1−γ)(1− v)NZ−1dv ' Γ{NX(1− γ) + 1}

(NZ + 1)NX(1−γ) , (NX →∞).
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The rth smallest order statistic U(r) constructed from U1, . . . , UNZ
is distributed as a110

beta random variable with indices r and NZ − r+ 1 so that its density function is given by111

NZ !
(r − 1)!(NZ − r)!

vr−1(1− v)NZ−r.

Probability (ii) is therefore addressed by112

pr(U(r) > Vmax) = NZ !
(r − 1)!(NZ − r)!

∫ 1

0
vNX(1−γ)+r−1(1− v)NZ−rdv

= NZ !
(r − 1)!

Γ{NX(1− γ) + r}
Γ{NX(1− γ) +NZ + 1} ,

which can be further simplified using Stirling’s formula. There are no technical difficulties113

in considering the generalization pr(U(r) > V(s)) for 1 ≤ r ≤ NZ , 1 ≤ s ≤ NX .114

3 Comparison to approximations based on limit theorems115

In highly influential work, Fisher and Tippett (1928) characterized the set of probability116

laws L such that, for independently distributed random variablesX1, . . . , Xn with a common117

but arbitrary distribution function F , there exist sequences aX(n) and bX(n) such that118

lim
n→∞

pr
(max{X1, . . . , Xn} − bX(n)

aX(n)

)
= lim

n→∞
Fn{aX(n)x+ bX(n)} = L(x), L ∈ L. (4)

When equation (4) holds, the random variable X is said to be in the domain of attraction119

of L. The set L has just three elements. These are, in the notation of Fisher and Tippett120

(1928), for α > 0:121

Type I : L(x) = exp(−e−x), x ∈ R;

Type II : L(x) = Lα(x) =

 0, x ≤ 0,

exp(−x−α), x > 0;

Type III : L(x) = Lα(x) =

 exp{−(−x)α}, x < 0

1, x ≥ 0.

6



Gnedenko (1943) proved that these are the only three types that can arise as limit laws. The122

scaling sequence aX(n) can be taken as 1 when X1, . . . , Xn are in the domain of attraction123

of the Type I limit law.124

These limit laws are plausible approximations for the context of §2.1 provided that125

both NX and NZ are large. In the context of §2.1, suppose that both types of random126

variables X1, . . . , XNX
and Z1, . . . , ZNZ

, are in the domain of attraction of the Type I limit127

law so that aZ(NZ) = aX(NX) = 1. The following calculation can be straightforwardly128

adapted for the eight other possible combinations. Let GZ(NZ) , Zmax − bZ(NZ) and129

GX(NX) , Xmax − bX(NX) with density and distribution functions fGZ
, fGX

, FGZ
and130

FGX
. We will, for notational convenience, drop the arguments NZ and NZ . On writing G131

for a random variable with the standard Type I distribution, having density and distribution132

functions fG and FG, we have133

p = pr(Zmax ≤ Xmax) =
∫ ∞
−∞

pr(GZ ≤ v + bX − bZ)fGX
(v)dv

=
∫ ∞
−∞
{pr(GZ ≤ v + bX − bZ)− pr(G ≤ v + bX − bZ)}fGX

(v)dv

+
∫ ∞
−∞

pr(G ≤ v + bX − bZ){fGX
(v)− fG(v)}dv

+
∫ ∞
−∞

pr(G ≤ v + bX − bZ)fG(v)dv , I1 + I2 + I3. (5)

This illustrates that if the extreme value limit laws are used to approximate the probability134

p = pr(Zmax ≤ Xmax), then the error incurred is given by the sum of the integrals I1 + I2.135

The relevant form of convergence for this type of problem is therefore an appropriately136

weighted L1(Leb) norm of the density and distribution functions. This is stronger than137

uniform convergence of distribution functions, which has been studied for several starting138

distributions FX . Notably, Hall (1979) showed that for the maxima of standard normally139

distributed random variables, the uniform convergence rate in (4) to the Type I limit is no140

better than (log logn)2/ logn.141

The conclusion is that, while these limiting approximations are appealing in that they142

deliver simple easily interpretable solutions, their adequacy in the present context, partic-143

ularly for small NX or NZ is not guaranteed and depends heavily on the the distributions144

of X and Z. The proposal discussed in §2 provides a compromise between simplicity and145
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adequacy of the resulting analytic approximation.146

4 An idealized case147

For an example in which the density function of Vi = 1 − FZ(Xi) is exactly of the form148

(1−γ)v−γ used above, let Xi be exponentially distributed of rate ξ and Zi be exponentially149

distributed of rate λ. Then F−1
Z (z) = − log(1− z)/λ so that150

pr(Vi ≤ v) = 1− FX{F−1
Z (1− v)} = vξ/λ, 0 < v < 1.

It follows that the density function of each Vi is given by (1 − γ)v−γ , where γ = 1 − ξ/λ.151

Thus the probability p is approximated by formulae 1 or 2, or a truncated version thereof,152

with γ = 1− ξ/λ.153

A direct calculation for the exponentials would entail solving the integral154

p = NXξ

∫ ∞
0
{1− exp(−λm)}NZ{1− exp(−ξm)}NX−1dm,

which does not appear to have an exact analytic solution. An alternative is to approximate155

p using the Fisher and Tippett Type I limiting form of the rescaled exponential maxima.156

This is term I3 in equation (5) and thus incurs the error I1 + I2. The scaling constants are157

bZ = bZ(NZ) = F−1
Z (1−N−1

Z ) = − log{1− (1−N−1
Z )}

λ
= logNZ

λ

and similarly for bX . Thus, on letting B = ξ−1 log(NX)− λ−1 log(NZ),158

I3 =
∫ ∞
−∞

exp{−e−(v+B)} exp{−(v + e−v)}dv = eB

1 + eB
= N

1/ξ
X

N
1/λ
Z +N

1/ξ
X

. (6)

The simulations in §5.1 show that this approximation is considerably less accurate than159

formula (1) even for very large values of NX and NZ , suggesting that at least one of the two160

error terms I1 and I2 from equation (5) decays slowly for exponentially distributed random161

variables. The simpler formula (3) fails because the representation (1 − γ)w−γ does not162

hold even as an approximation for the density function of Wi , FX(Zi) in this example.163
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5 Numerical assessment164

5.1 Empirical analysis of an idealized case165

In each of 10000 Monte Carlo replications we generated NZ = 100 random variables166

Z1, . . . , ZNZ
from an exponential distribution of rate λ ∈ {1.1, 1.2, . . . , 2} and NX = 20167

random variables X1, . . . , XNX
from an exponential distribution of rate ξ = 1. The maxima168

of these two sets of random variables, Zmax and Xmax were recorded. The simulated prob-169

ability that Xmax exceeds Zmax was obtained by averaging the indicator random variables170

I1(Xmax > Zmax) over the Monte Carlo replications. The maximum likelihood estimate γ̂ was171

also obtained in each simulation by fitting a density of the form (1−γ)v−γ to Vi = 1−FZ(Xi)172

for i = 1, . . . , NX . These maximum likelihood estimates were then averaged over Monte173

Carlo replications and used in the formula (1). These are plotted against λ in the left174

panel of Figure 1 along with the version that uses the exact value γ = 1− ξ/λ. The latter175

approximation is essentially exact.176

The experiment was repeated for NX = 50 and the results are shown in the right panel177

of Figure 1. As expected, the quality of the analytic approximation is unaffected but the178

quality of the approximation based on the maximum likelihood estimate of γ is improved179

because the bias in the maximum likelihood estimates decreases with increasing NX .180

We also report the approximation (6) based on on Fisher’s and Tippett’s (1928) limit181

laws. These are evidently inaccurate for the sample sizes under consideration, even though182

the true values of ξ and λ are used. Further simulations (not reported) indicate that the183

approximation (6) becomes more accurate as NX and NZ increase, but remains rather poor184

even when NX = NZ = 105.185

Figure 2 illustrates the sensitivity of approximation (1) to NZ for two different values of186

NX . Thus, although the formula uses the notional limiting operation NZ →∞ in Stirling’s187

formula, the approximation (1) is accurate even for small NZ . This is expected in view of188

the remarkable accuracy of Stirling’s approximation to Γ(x) even for small x.189

5.2 Violation of the main assumption190

If the model (1− γ)v−γ for the density function of the random variables Vi = 1−FZ(Xi) is191

not satisfied to an adequate order of approximation, formula (1) is likely to give inaccurate192
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Figure 1: Simulated exceedance probabilities and the near-exact formula based on equation
(1) for NZ = 100, ξ = 1 and different values of λ, and for NX = 20 (left) and NX = 50
(right). Also depicted is formula (1) with ξ and λ replaced by the average of their maximum
likelihood estimates over the 105 Monte Carlo replications and the limiting approximation
(6) using the true values of ξ and λ.
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Figure 2: Simulated exceedance probabilities and the exact formula based on equation (1)
for ξ = 1, λ = 1.5 and different values of NZ , and for NX = 20 (left) and NX = 50 (right).
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Figure 3: Left: simulated exceedance probabilities and the formula based on equation (1)
for an example in which the key assumption is violated, for NZ = 20 and NX = 60.
Also displayed is the approximation based on Fisher’s and Tippett’s limit laws. Right:
probability plot of − log V 1−γ̂

i against the unit exponential order statistics.

conclusions. The quality of the approximation can be assessed statistically for large NX at193

a suitable confidence level α by fitting the density (1− γ)v−γ by maximum likelihood and194

comparing the realization of 2(1− γ̂)
∑n
i=1 log Vi to the α upper quantile of a χ2 distribution195

with 2NX degrees of freedom. For an informal indication the order statistics of−(1−γ̂) log Vi196

can be plotted against the unit exponential order statistics. This is illustrated in Figure 3.197

The experiment is as described in the previous section except that Z1, . . . , ZNZ
are198

standard normally distributed and X1, . . . , XNX
are normally distributed of unit variance199

and means µ as displayed on the axis of Figure 3 (left). The values of NZ and NX are200

20 and 60. The parameter γ of the representation (1 − γ)v−γ is estimated by maximum201

likelihood and used in the formula (1). Also depicted is the limiting approximation I3202

from equation (5). As in equation (6) this approximation is eB(1 + eB)−1 but with B =203

µ+Φ−1(1−N−1
X )−Φ−1(1−N−1

Z ), where Φ is the standard normal distribution function. The204

true value of µ is used in this latter approximation, yet the approximation I3 is poor. This205

is unsurprising because, even for the weaker uniform convergence of distribution functions,206

convergence rates are extremely slow for normal distributions, as discussed in §3. The207

approximation (1) is less inaccurate and qualitatively successful, in spite of considerable208

violation of the assumption used in the calculation, as indicated by the right hand panel of209

Figure 3. This is a plot of the order statistics of −(1− γ̂) log Vi against the unit exponential210
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order statistics.211

6 Conclusion212

We have illustrated how the transformation to Ui = 1 − FZ(Zi) and Vi = 1 − FZ(Xi)213

facilitates probability calculations involving order statistics for the two populations. The214

accuracy of the ensuing approximations hinges of the plausibility of the (1−γ)v−γ assump-215

tion for the probability density function of each Vi. This can be assessed as in §5.2.216

We have not discussed statistical aspects associated with the various complicating sce-217

narios that could be envisaged, for instance if FZ needs to be estimated. If there was an218

auxiliary sample in which the class labels were known, the simplest nonparametric estimator219

is F̂Z(z) = n−1∑NZ
i=1 I1{Xi ≤ z}, leading to220

Ûi , 1− F̂Z(Zi) = Ui + FZ(Zi)− F̂Z(Zi).

The final term is bounded in absolute value by supz∈R |F̂Z(z)− FZ(z)|. We have221

pr(sup
z∈R
|F̂Z(z)− FZ(z)| < ε) ≥ 1− 2e−2NZε

2

(Dvoretzky, Kiefer and Wolfowitz, 1956; Massart, 1990) implying (see §3.8 of Barndorff-222

Nielsen and Cox, 1989) that Ûi = Ui + Op(N−1/2
Z ). The same argument applies for the223

V1, . . . , VNX
components.224
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