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Back in the US-SR: Unlimited Sampling and Sparse
Super-Resolution with its Hardware Validation

Ayush Bhandari

Abstract

The Unlimited Sensing Framework (USF) is a digital acquisition protocol that allows for sampling and reconstruction of
high dynamic range signals. By acquiring modulo samples, the USF circumvents the clipping or saturation problem that is
a fundamental bottleneck in conventional analog-to-digital converters (ADCs). In the context of the USF, several works have
focused on bandlimited function classes and recently, a hardware validation of the modulo sampling approach has been presented.
In a different direction, in this paper we focus on non-bandlimited function classes and consider the well-known super-resolution
problem; we study the recovery of sparse signals (Dirac impulses) from low-pass filtered, modulo samples. Taking an end-to-end
approach to USF based super-resolution, we present a novel recovery algorithm (US-SR) that leverages a doubly sparse structure
of the modulo samples. We derive a sampling criterion for the US-SR method. A hardware experiment with the modulo ADC
demonstrates the empirical robustness of our method in a realistic, noisy setting, thus validating its practical utility.

Index Terms

Analog-to-digital, modulo sampling, Shannon sampling, spectral estimation, Prony’s method, super-resolution.

I. INTRODUCTION

HE Unlimited Sensing Framework (USF) [1]-[9] has been recently proposed in the literature to circumvent signal clipping
T or saturation problem in digital acquisition. Conventional analog-to-digital converters (ADCs) have a fixed dynamic range
(DR). This poses a fundamental limitation; in real-world scenarios when an input signal, say g (¢),t € R, exceeds the ADC’s
DR (), the resulting samples are clipped or saturated [10]-[12]. The USF goes beyond the sequential capture first, process
later pipeline by capitalizing on a joint design of hardware and algorithms, which is the very essence of computational sensing
[13]. A joint design is achieved by,

e Hardware Based Modulo Encoding. Modulo folding before sampling ensures that the high dynamic range (HDR) input
does not exceed the ADC’s DR. This is accomplished by injecting a centered modulo non-linearity defined by,
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where [g] def g — |g| and |g] = sup{m € Z| m < g} (floor function). To bridge the gap between theory and practice,
we have developed a modulo ADC [7], viz. the US-ADC, providing the first hardware validation of the USF approach. In
particular, we have shown that signals as large as 24\ can be recovered in practice. The output of the US-ADC is shown
in Fig. 1. Clearly, |.#\(g)| < .

e Algorithm Based Decoding. Given folded samples y [n] = .#\(g (nT)),T > 0, algorithmic decoding is performed to
solve the inverse problem of recovering v [n] = ¢g (nT") using mathematically guaranteed recovery algorithms.

For a finite-energy function with maximum frequency §2 (rad/s) denoted by g € Bq, we have proved a Shannon-Nyquist like
principle; a constant factor oversampling i.e. T' < 1/2qe, e ~ 2.718 (Euler’s constant), independent of (), suffices recovery [1],
[4], [6]. Conventional wisdom is that bandlimited signals can not be recovered if the spectrum is aliased. Counter-intuitively,
despite .Z\(g) € Bq leading to aliased spectrum, bounded time-bandwidth product QT < 1/2¢ guarantees inversion of .Z) ().
A similar inversion method applies to non-bandlimited functions, e.g. spline spaces [15]. With the knowledge of finitely many
unfolded samples, recovery based on Nyquist rate sampling has been demonstrated in [16]. For other USF related recovery
approaches, we refer to [17]-[21].

Motivation. Sparse signal recovery from low-pass filtered samples is an important topic backed by decades of interdisciplinary
progress. Related topics include, a) Tauberian approximation [22], b) Time-delay estimation [23]-[25], ¢) Super-resolution
[26]-[28], d) Sparse deconvolution [29], and e) Finite-rate-of-innovation sampling [30], [31].

Beyond the wide applicability of the SR model (cf. various hardware experiments [32]-[34]), in certain applications, physical
limits of the hardware impose a sampling time that is much larger than the time-scale of features to be resolved. This is
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Fig. 1: Oscilloscope screenshot of filtered spikes measured using a time-resolved imaging sensor [14] and the corresponding
modulo signal obtained via our prototype modulo ADC [7]. For recovery, see Section IV and Fig. 4.

particularly the case with time-resolved imaging [14], [32], [33], [35], see Fig. 1. This is the setup considered in Section IV,
where recovering echoes of light at their time-scale is impractical and necessitates SR. At the same time, HDR scene reflectivity
may lead to demanding DR considerations, as is the case with imaging [15].

These above aspects clearly motivate the problem of super-resolution from modulo samples; For practical scenarios motivating
this problem cf. Fig. 1 in [2]. The initial approach in [2] adopts a sequential recovery method; (a) modulo samples are first
unfolded yielding the usual samples, and then, (b) existing SR methods can be used. The recovery in [2] imposes practical
limitations. Firstly, sparse priors are not exploited for unfolding, this results in highly demanding oversampling factors. Secondly,
the reconstruction relies on inversion of higher order differences and this is highly sensitive to noise. Here, we present a novel
method that does not suffer with such limitations and its utility as validated via the US-ADC.

Contributions. Our main contribution is a novel SR method for USF, viz. US-SR, and its hardware validation via time-resolved
imaging based experiment where the super-resolution model arises naturally. Key features of our work include,

» US-SR is direct (hence efficient) in the sense that unfolding step in [2] is not needed. Also, US-SR is agnostic to .

» US-SR is backed by theoretical guarantees that enable recovery at potentially lower sampling rates (than [2]).

» We use the US-ADC [7] to validate our method on real experiments based on time-resolved imaging sensor data [14],
[35], in Section IV. This is motivated by two reasons,

i) Time-resolved imaging is a significant research area. Our work gives a sense about realistic performance of
US-SR with a clear SR application [33] in mind.

i) The experiment also establishes the empirical robustness of US-SR in the presence of system noise
e.g. quantization errors and additive Gaussian noise.

II. PROBLEM SETUP
We define our K-sparse signal to be super-resolved as,

K-1
sk E Y adt—t), > |l < oo )
k=0

k
Conventional, pointwise samples arising from low-pass projections of the K -spikes with kernel ¢ are given by,
g(nT) = (sk, @ (- =nT)) = (sk * @) ()] i—pr 3)

where ¢ € Bg is known, @ (t) = ¢ (—t) and (a,b) = [a(z)b* (z) dz denotes the L? inner-product. We will assume that the
kernel ¢ is 7-periodic [27], [30] with {tk}kK;Ol € [0, 7). Our goal is to recover sk given the modulo samples,

yn] = Ax(g(®)|_ 1 n=20,...,N—1. “)
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In [2], it is shown that,
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suffices recovery, which is based on the inversion of finite-differences of order L = [log (*/8,) /log (T'Q2e)]. This creates a
practical challenge—higher order differences are unstable in the presence of perturbations. Even for nominal values of L, the
reconstruction is highly ill-posed.

By 2 l|9lloo

ITI. RECOVERY VIA DOUBLE SPARSITY
Simplifying Measurements. Since ¢ (t) is 7-periodic, it admits a Fourier Series (FS) expansion, ¢ (t) = 3> PpeIPeot,
wo = 27/ where 3, = 7 (") , €707 ;) are the FS coefficients. With ¢ € Bg, we have ¢, = 0, |p| > P = [%/uw]
(bandlimitedness). We can now simplify g (¢) using,

3 L
g) = > crp(t—tx) (5)
k=0
K—1
= (PpSp) P01, Sp = Z cpe  IPLots,
p<|P| k=0
In vector-matrix notation, the samples v [n] = g (nT') read,
72 UDgs, O

—e v € RNX1 is the vector of samples with [v],, = g (nT).

—e U € CN*(P+D s the Discrete Fourier Transform (DFT) matrix with element [U],, = = e #“o"T with complex-
conjugate denoted by U] .

—e Dg ¢ CEP+X(2P+1) g 3 diagonal matrix with FS coefficients of the kernel on the diagonal,

[Ds] :{@n nel0,PJU[N — PN —1]

0 ne[P+1,N—-P-1]
—e 5 CPHDX1 jg a vector of exponentials parameterized by the unknown K -sparse signal s, i.e. [8] = Sp.

Towards the Doubly Sparse Structure of Modulo Samples. Modulo decomposition yields g = .#\(g) + %4 [1] where
te[0,7],%,(t) = Z%;gl umdp, (t), pim € 2MAZ is the residue, 1p (t) = 1,¢t € D and 0 elsewhere, with disjoint union
WD = [0, 7], and M), is the total number of folds induced by .#)(-). The non-ideal case [7] when pu,, € R is also covered
here. The decomposition applies to samples, v =y +r, [r], = %, (nT). For any a € RV*1, let us define its first difference,
an] o (Aa)[n) = an+1] —an] & a= Aa where A € RW=UXN g the difference matrix. Then, we have, y =y — r
and the residue simplifies to, -
My—1
rn] = Z Wm0 [nT — 7], Tm € (TZ)N [0, T) (7
m=0

an unknown sparse signal characterized by 2M)y unknowns, {fim, 7} 225" and where §[-] is the Kronecker delta. Finally,

modulo samples are encoded as a doubly sparse representation,

y=Ay=A(r-1 2 (AUD )51 ®)
where r = Ar is a M -sparse residual and sk is the K-sparse signal encoded as [s], = ZkK:_Ol cre 0Pt By mapping (8)
into Fourier Domain, we can encode r as a trigonometric polynomial, thig is similar in spirit to how sy is encoded via 8. Let
us define the DFT of a vector a € RV—1x1 py 3 = Va, V], = e In=1" () < n < N — 2. Then we have,

My—1
y=VAU*Ds -, [f], = Z umeﬂ(szl)%ﬂn. 9)
m=0

In the above, Dy def VAU*Dg; is a spectrum shaping filter arising from the first difference of the kernel ¢ and 4 = Dgs.

Leveraging Double Sparsity for Super-resolution. Given (9), our goal is to isolate S so that the unknowns {cy, tk}kK:_O1 can
be estimated via spectral estimation methods [36]. Given i = i — T, the presence of g € Bq (cf. (5),(6)) implies that only
(2P +1) out of (N — 1) values of 4 are non-zero while T contributes to all of the (/N — 1) values. Hence, we will first isolate
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Fig. 2: Fourier domain partitioning of modulo samples as given by (10).

T. A similar insight was leveraged in our very recent work [7] but the key difference here is that our goal is to recover a
non-bandlimited signal, s in (2) instead of g € Bg. Below, we list the steps of our recovery method.

Step 1: Fourier Domain Partitioning. |

Let Epn = [0, P]U [N — P,N — 1] be the set on which 4 = VU*Dgs is supported with [Epn| = 2P + 1, the
bandwidth of ¢ encoded in Dg. Since g € B, as shown in Fig. 2, we can partition the (N — 1) Fourier coefficients of
Ay ie. g e CN=Dx1 o the circle as follows,

o Jly—r], teépna
M”{—m D e (0N -2\ Epn) (10

| Step 2: Recovering Residue Samples via T. |

Having isolated [],, £ € £, = ([0, N — 2]\ Ep.n_1), We obtain {im, T } 025" (9) using Prony’s method [22]. Given
[b], = Z%;Ol ame7"m*, the symbolic representation PRONY (b) provides both {cv,, vy, }M =1 and h € CM+DX1 ] the
filter that annihilates b € CE*1 [31] i.e. (R b)[(] =0 or h € ker(T) via the matrix,

[b]o [bL1 U [bLM
gM : ; ; e CMx(M+1),

Bly oy Blys - bl

Note that rank(Ty) = M (¥n,m, vy, # v,,) because when the same is constructed via [Wn], = e, its rank is one.
We compute h € ker(TP) = T¥h = 0 whenever L > 2M. Similarly, with |£,| = (N — 2P — 2) > 2M,, we obtain
({ttm T 20" 1) <—PRONY (F).

| Step 3: Recovering Fourier Samples of A~y on Ep v_1. |

| Having estimated T from above, we obtain the Fourier samples, [j] .= @ .t [r], at indices £ € Ep n_1.

| Step 4: Fourier Deconvolution. |

With 2P 4+ 1 values of j = VAU*Da/s\ known from above, it remains to estimate sy (2). First, we obtain,
§=DJ5, Dg=VAUD; (11

where fD% is the pseudo-inverse of Dg. This operation reshapes or deconvolves |y . ¢ € Ep n—1 (cf. Fig. 2) provided
that @, [p| < P = [?/w,] do not vanish.
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Algorithm 1: Super-resolution from Modulo Samples (US-SR)
Input: {y [n],.#Z\(¢ (nT))}\Z}, 7, and P.

n=0 ">

Result: K -sparse signal sy (1).
1) Compute i = Vy (DFT) as in (9) where y = Ay (8).
2) Define [z], = — [¥],, £ € L, = ([0, N = 2]\ Epn—1).
3) Estimate M) by forming a Toeplitz or Hankel matrix from [z], (cf. [7]) and then thresholding using second order
statistic of eigenvalues [39].
Estimate folds using PRONY (z) — <{um, T} h).
Construct [r], in (9) for £ € [0, N —2].
Estimate [¥], = @]é +[t],, L € Epnoi.

4)
)
)
7) Using [y],,, = (¢ (nT)) implement Steps 1) — 6) giving [ﬂz = [@[ Construct matrix Dg in (11).
)
)
)

(=20

8) Estimate [s],,¢ € Ep n—1 via (11). Solve for {cpc, h} via h[€] * (5 — cpcd) [€] = 0 and define [s], = ([s], — coc)-
9) Using [s], estimate K following Step 3).
10) Estimate sk using PRONY (8) — <{ck,tk}f=_01, h).
The (K + 1) tap filter h is available via Step 8).

| Step 5: Recovering the Unknown DC or O Frequency. |

Note that @é: 0= 0 (due to Ay in (11)) creating a blow-up in @g at ¢ = 0. Hence [As?o remains unknown. To estimate it,
we assign [8], an arbitrary value, e.g. [S], = [s]; and model 5, =5, + ¢pcd [¢] where Sy is defined in (5). Since h*§ =0
(cf. Step 2, above), we estimate cpc via the eigenvalue problem Tsh = cpch where Tz € CE+DX(K+1) (one extra row in
‘J’{y*) and the solution exists whenever 2K + 1 contiguous values of s are known, or P > K.

| Step 6: Recovering Sparse Signal via s. |

| Defining [s], = ([s], — ¢oc), we use PRONY (S) to obtain ({ck, [ T h) in (2) where h is given in Step 5.

Recovery Condition. Due to the parametric form of the underlying signals, there is an interplay of sampling time (7") and the
sample size (N). Step 2 requires N > 2 (P + M, + 1) while Step 5 enforces P > K. With 7 = NT, the recovery condition
is, T < 7/2(P+Mx+1) with P = [®/w,]| > K. Our result is formalized in the following theorem.

Theorem 1. Suppose that we are given N modulo samples y[n| = #\(g(nT)), T > 0 folded at most M) times, where

g = (s *x ) and where sk (t) = ZkK:Ol ck0 (t — tg) is an unknown K-sparse signal and ¢ € Bq, is a known, T-periodic,
kernel. Then, a sufficient condition for recovery of sy from {y [n]} =\ is that T < 7/N and N > 2 (K + M) + 1).

Practical Aspects.

(a) Noisy Scenario. Real data may bear quantization and system noise, e.g. Gaussian sources, see Fig. 1. We resort to
oversampling [6] to tackle such adversarial effects. Prony’s method is notoriously unstable with moderate noise [31],
[37], specially for high values of M. Therefore, we recommend using the matrix pencil method (MPM) [38] which is
quite effective in practice; in [7] we have shown that with real data, as many as M) = 161 folds can be estimated.

(b) Estimating the Number of Folds. In our discussion we have assumed that M) is known. When -y is accessible, indeed
M)y is the sparsity of r = A (v —y) [7]. In the absence of ~, and in particular, when working with noisy data,
estimating M may turn out to be a difficult task. For the parametric form, [b], = Z%:_Ol ame ?mt  the case with
T and S, M manifests as the rank of the Toeplitz or Hankel matrix constructed from b [22], [31]. Rank thresholding
based on the second order statistic of the eigenvalues [39] is a reliable measure in that case. We use the same for
estimating K from data. Hence, our recovery method does not rely on the knowledge of A\, K or M). Incorporating

these practical aspects, we summarize the recovery approach in Alg. 1.

IV. HARDWARE BASED EXPERIMENTAL VALIDATION

The US-SR method in Alg. 1 performs up to machine precision with computer simulations. To demonstrate the practical
effectivity of our method, specially in the presence of quantization and system noise, we setup the acquisition pipeline shown
in Fig. 3. Samples of K = 2 sparse signal are obtained via a time-of-flight (ToF) imaging sensor (also cf. Fig. 7, [14]). In
particular, objects with albedo ¢ o Iy at depths ¢, = 2dy /v (cf. Fig. 3) where v = 3 x 10® m/s (speed of light), result in
s2 (t) (2). The ToF imager measures [33], [35] low-pass projections of sq (t) via ¢ (t) which can be calibrated. We convert ToF
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< N
do N
ToF Data (S * ) 9(t) Ax\(9(1))
TTi T65011 US-ADC l—) pso-x > y[n]
(DAC) 3024A |—>y[n]

Fig. 3: Pipeline for hardware experiment, data is plotted in Fig. 4.
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Fig. 4: Hardware Experiment for Sparse Super-resolution. (a) Conventional and modulo samples of the kernel ¢ (¢). (b) Single-
pixel data (7 [n]) from ToF sensor [14], corresponding modulo samples (y [n]) and recovered spikes {ci,t;} via 7y [n] (ground

truth) and {¢, %} via y [n] (Alg. 1), respectively.

and pulse () samples into a continuous-time (CT) signal using TTi TG5011 waveform generator (cf. Fig. 3). The CT output
is split into 2 channels fed to the DSO-X 3024A oscilloscope with inbuilt ADC, thus yielding (a) y [n], US-ADC based modulo
samples and (b) v [n], the conventional samples (our ground truth). With A\ = 202/100 and 7' = 50 us we obtain N = 1000
samples of y [n] and ~ [n], corresponding to ¢ (t) (cf. Fig. 4(a)) and g (¢) (cf. Fig. 4(b)), respectively. This gives 7 = 50 ms
and we estimate P = 23 from {¢ (nT')},. However, for Step 8) in Alg. 1, we use [s], =5, [p| < P’ = 20 as the samples on
the extreme |p| > 20 are deemed noisy. Kernel Calibration and Reconstruction. Note that max ¢ (nT') | &~ 9.52\. Using
Step 3) of Alg. 1, we estimate M) ,, = 10 which is consistent with the sparsity of r = A (v — y). Since the data in Fig. 4(a)
can be interpreted as filtering with K = 1 spike, we can use Step 7) in Alg. 1 to estimate ¢ from y,, [n] = .#\(¢ (nT)) (also
see [7]). Although not required, the reconstructed signal ¢ is shown in Fig. 4(a) and the resulting mean-squared error (MSE),
ie. £(3,¢) = £ N o (nT) — @ (nT) |? is 9.09 x 10~2. Spike Recovery. The data is plotted in Fig. 4(b). Given v [n], we
observe max |g (nT) | ~ 9.46). Using Step 3) of Alg. 1, we estimate M), , = 10. Using {y [n]}2=} we estimate {c,?)} using
conventional super-resolution methods [14], [32], [33] rounding {ck}x and {¢x}x to 2 and 6 decimals, respectively. Because
these values are consistent with the ToF imaging experimental parameters [14], [32], this serves as our ground truth for s, ().
Thereon, we use Alg. 1 to estimate the spikes via modulo samples. The results are tabulated below.

co c1 to (ms) t1 (ms)

Ground Truth via v [n] 4.54 18.96 377.431 379.769
Using y [n] and Alg. 1  4.54 1852 377.411 379.748

The output of US-SR is shown with the ground truth in Fig. 4(b). The worst case absolute error, maxy, (|cx — ¢x|) o< x 1072
and maxy, (|tk — tk|) o x107* (sec), respectively, demonstrates the effectivity of US-SR in a realistic setting.
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V. CONCLUSIONS

We considered the problem of recovering sparse signals from low-pass filtered, modulo samples. By leveraging that modulo
folds and the sparse signal result in an intertwined, doubly sparse structure and observing that they map to trigonometric
polynomials in the Fourier domain, we developed an exact super-resolution approach, namely US-SR. Our recovery guarantee
purely depends on the input signal sparsity and the number of folds, thus offering a practically amenable bound compared to
[2]. The US-SR approach is agnostic to the ADC threshold (A) and relies only on first order difference; this latter aspect avoids
instabilities arising from higher order differences [2], thus offering a practically attractive solution. Hardware experiments with
our modulo ADC validate the performance of US-SR. In the context of the USF, development of robust SR algorithms and
performance analysis in the presence of noise remain interesting topics for future exploration.

Acknowledgment. The author thanks the reviewers for their encouraging remarks, in particular, one of the reviewers who
alluded to “Back in the U.S.S.R.” from The Beatles which was unknown to the author and inspired the title of this paper.
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