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This paper studies intertemporal asset pricing in network economies when distress shocks can propagate

through the network, similarly to epidemic outbreaks. Two classes of equilibria exist. In the first, idiosyn-

cratic shocks are diversifiable and don’t affect valuations: CCAPM applies. In the second, idiosyncratic

shocks generate non-diversifiable long-run cascades of shocks (financial pandemics) that introduce a new

risk premium component unexplained by traditional systematic factors. We derive closed-solutions for asset

prices as a function of the network properties and discuss their properties. After a structural break (1984),

we find evidence of a network risk premium that is statistically and economically significant.
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A central tenet of the macro-finance literature builds on the Lucas (1977) diversification argu-

ment. As firm-specific shocks average out in aggregate, they have negligible effects on asset risk

premia. This argument plays an important role in the Ross (1976) asset pricing theory (APT), in

the Consumption Capital Asset Pricing Model (CCAPM), and in many macro dynamic stochastic

general equilibrium (DSGE) models that focus on economies with a representative firm.1 In this

paper, we reconsider this argument in an endowment economy where several firms are connected

in a network and their distress shocks can propagate in time and in the cross-section giving rise

to a process of economic contagion. Firms’ dividend stream is a stochastic process with two com-

ponents. The first is driven by an exogenous aggregate shock, which is common to all firms; the

second is firm-specific and follows a Markov chain whose intensities depend on the state of other

(connected) firms. This allows us to study the externality that the state of distress of a firm gen-

erates on others in an otherwise traditional DSGE model. The global nature of our network allows

1 Acemoglu et al. (2012) depart from this tradition and investigate the role of networks in production economies by
assuming input-output linkages among firms. Gabaix (2011) emphasizes that granular idiosyncratic shocks of a few
large firms can explain aggregate fluctuations because they cannot be fully diversified due to power-law distribution.
They prove that sectorial shocks may generate aggregate macroeconomic output fluctuations.
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both for propagation and feedback effects in the transmission of shocks. Contagion may emerge,

for instance, when a real cash-flow shock to borrowing firms affects the balance sheet of lenders

that may, in turn, reduce their ability to extend additional credit to other borrowers.

The key contribution of this paper is the derivation of a new set of asset pricing and risk premia

implications that depends on the global properties of the network. We show the existence of two

classes of distinct dynamics. In the first class, Lucas’ classical diversification argument holds: firm-

specific shocks can be diversified away and only aggregate shocks are priced. When preferences are

time separable, network topology and firm-to-firm direct interaction are irrelevant for asset prices.

We call this class of dynamics subcritical. In the second class, however, firm-specific shocks can give

rise to aggregate cascades of distress. We call this class of dynamics supercritical. They are similar to

epidemic states of virus spreading in which a single infected individual can spread the virus through

the network connections. In these states, the initially firm-specific risk has the potential to become

endemic in the sense that there exists a positive probability that even in the long-run a positive

fraction of firms will be infected, irrespective of their initial health. In these supercritical states,

diversification of firm-specific shocks cannot be achieved: the chain of firm-to-firm interactions and

feedbacks is sufficiently strong that firm-specific distress can give rise to aggregate fluctuations

with strictly positive probability, a ‘cascade’. These risks are not diversifiable and the mean time

of return to steady state diverges as the number of firms in the network increase.2

A common challenge in the network literature is the curse of dimensionality that often makes

models complex and opaque. Accordingly, after deriving general implications, in Section 2, we

propose a modeling approach that captures the first-order properties of the network dynamics

and still allows us to obtain closed-form solutions. This rank-one model builds on an optimal

approximation of the directed network based on two firm-specific measures, vulnerability and

systemicness. A firm is said to be vulnerable if its dynamics depend on the state of distress of

other firms in the network. Similarly, a firm is said to be systemic if its distress causes distress of

other firms. Vulnerability and systemicness are the solution of a joint system of linear equations

and correspond to the elements of principal right and left singular vectors of the Singular Value

Decomposition of the network matrix. Their recursive nature captures the externalities induced by

each firm on the global propagation of distress through the network. Using this rank-one approach,

we derive closed-form solutions for both the threshold that separates supercritical and subcritical

dynamics and the long-term probability of distress.

2 This channel is related to the description of macroeconomic fluctuations discussed by Scheinkman and Woodford
(1994) who describe a long-term state where economic fundamentals spontaneously approach a critical level such that
micro-fluctuations trigger dynamic fluctuations at the aggregate level.
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Three set of empirical implications emerge. Section 3 shows that in supercritical states equilib-

rium risk premia are affected by two separate components. The first component is the traditional

CCAPM risk premium term, which captures conditionally linear exposure to instantaneous market

risk (β); the second one is a risk premium proportional to firms’ exposure to cascades of dis-

tress shocks. In contrast to the traditional CCAPM economy, in supercritical equilibria market β

does not fully capture this second exposure. The reason is intuitive. In a supercritical equilibrium,

firm-specific events give rise to undiversifiable cascades of distress shocks that lead to an endemic

state with lower expected aggregate consumption. The increase in firms’ risk premia depends both

on their own vulnerability and on the systemicness of the firms currently in distress. These two

quantities depend on the global characteristics of the network structure and not just on the local

instantaneous exposure of the firm to aggregate endowment. The risk premium is provided in

Theorem 2 and it helps to rationalize some empirical difficulties of the CCAPM. Indeed, heteroge-

neous exposure to systemic network risk generates a cross-section of expected excess return which

depends on the firms’ vulnerability. This additional premium helps also to explain Campbell et al.

(2008)’s distress puzzle. They show that financially distressed firms have delivered low abnormal

returns compared to their high standard deviations and betas. In our model, network risk premia

are the sum of two components: a distress risk premium, which is positive, and a recovery risk

premium, which is negative. For firms with low frequency of firm-specific distress the first term

dominates and the systemic network risk premium is positive. However, for firms that spent more

time in distress, the recovery risk premium dominates and expected excess returns can be negative,

consistent with Campbell et al. (2008).

A second prediction of the model is that, in a super-critical equilibrium, the network risk premium

is state-dependent and is a function of both the current state of the firm and the level of conditional

systemic network risk which depends on the systemicness of those firms who are in distress. Above

the tipping point, firms’ risk premia are time-varying and correlated with the dividend-price ratio.

In supercritical equilibria greater values of network distress correlate both with greater spreads

in the dividend-price ratios spread of cheap (vulnerable) versus expensive (resilient) stocks and

larger spreads in risk premia between vulnerable and resilient firms. Asness et al. (2018) refers

to episodes of elevated dividend-price ratio spreads as “Deep Value” states and document that in

these periods equity risk premia of high dividend-price ratio (value) firms are greater. They find

that this additional positive excess return is unexplained by traditional factors. On the other hand,

this additional positive excess return is consistent with our model.

Finally, the model generates endogenous economic and financial skewness. In supercritical equi-

libria, the propagation and amplification of firm-specific shocks shift the left tail of the cross-

sectional distribution of firms cash flows as contagions give rise to clusters of distress. This manifests
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in an increase in cross-sectional skewness, which is greater for more vulnerable firms and sectors.

This prediction relates to an important literature in economics that investigates the business cycle

dynamics of the distribution of firm-level variables such as sales, profit, inventories, and employ-

ment. Salgado et al. (2019) report strong evidence of negative skewness in firm-level economic

variables during recessions but not during expansions.

In the second part of the paper, we investigate an empirical application of the model. We consider

a panel formed by the CRSP-Compustat universe of firms over the period 1970-2019. We match

this panel with the Input-Output Accounts Data available at the sectorial level and provided by

the U.S. Bureau of Economic Analysis. This sequence of input-output matrices are used to obtain

the singular decomposition of the network to estimate firm systemicness and vulnerability. These

measures are used to compute network distress risk as the weighted average of firms’ distress. Firm

specific probabilities of distress are obtained estimating a logit model as in Campbell et al. (2008);

the aggregation weights are proportional to the firm systemicness.

The dynamics of network systemic risk reveals a transition from a subcritical to a supercritical

equilibrium in June 1984. After this transition, the state of the economy remains in the vicinity

of the tipping point, in the region characterized by the so called self-organized critical behavior,

a notion introduced by Scheinkman and Woodford (1994) whose signature is cascades dynamics.

The result is consistent with the findings of Giesecke et al. (2011) who document an increase in

default frequencies following the Bankruptcy Reform Act of 1978.3 After June 1984, we find four

additional spikes in network systemic risk with the emergence of cascades that change distributional

properties of firm distress.

We test the cross-sectional asset pricing implication of the model by estimating a Fama-MacBeth

two pass regression including as factors both the market beta and the exposure to network systemic

risk. Test assets include 5x5 portfolio sorted with respect to firm size and book-to-value character-

istics and decile portfolios sorted with respect to the probability of distress using Campbell et al.

(2008) methodology. Consistent with the prediction of the model, we find that the price of sys-

temic network risk prior to the transition is zero and it becomes positive and significant after the

transition. This result is robust after controlling for different combinations of the 5 Fama-French

traded factors. The size of the systemic network risk premium is economically significant and about

twice that of the CAPM market risk premium. We also find that exposures to systemic network

risk of the 25 quintile portfolios are decreasing with respect to the size and increasing with respect

to the value characteristics, supporting the early conjecture by Fama and French (1993) and Chan

and Chen (1991) who argued that these anomalies could partially be compensation for exposure to

3 See figure 1 in Giesecke et al. (2011).
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distress risk. Finally, we find evidence of non-linearity in firms exposure to the systemic network

risk premium in a way that is consistent with Campbell et al. (2008) distress premium puzzle.

We study the second implication of the model which relates to Asness et al. (2018)’s “Deep Value”

by sorting firms according to their vulnerability and computing the spread in the sales-to-price

ratio between high and low vulnerability firms (V mR). Two results emerge. First, consistent with

the model, the spread V mRt is increasing in the level of systemic network risk, with a correlation

coefficient equal to 0.51. Second, in supercritical equilibria spikes in V mRt help predict the future

value premium. We interpret this finding as the confirmation that in a supercritical state cascades

of distress are priced by investors and that vulnerability, our measure of distress risk exposure,

drives also variation in the valuation ratios. Within our framework, the “Deep Value” predictability

relationship is a rational signal, which anticipates the recovery effect.

The third implication of the model relates to the link between firm cash-flow skewness and its

vulnerability. To test this prediction, we consider economic periods characterized by a large level of

network systemic risk. During these periods, we compute the cross-sectional skewness at the sector

level using log-sales growth and study the link between cross-sectional skewness and vulnerability.

Consistent with the model, we find that in supercritical states sectors with the greatest vulnerability

also display the most negative Kelley Skewness. We also test the counterfactual prediction that in

subcritical states this link is not present. We cannot reject this null hypothesis. This confirms the

importance of both distinguishing the nature of the equilibrium and the role played by the global

network structure, which ultimately determines firms’ vulnerabilities.

Related Literature. The paper relates to three streams of the literature.

The first stream studies credit risk pricing in the presence of default contagion effects in inter-

acting intensity models (Jarrow et al. (2005), Bai et al. (2015), and Bo and Capponi (2016)). In

an influential paper, Bai et al. (2015) argue that credit risk premia cannot be explained by firm

specific credit events (jump-to-default). They calibrate a model with a reduced-form contagion

channel and show that, because firm-specific credit events can be diversified, contagion risk is a

dominant component in credit risk premia. Capponi and Frei (2017) develop a novel calibration

procedure and find that systemic dependencies are statistically significant and play an important

role to explain the time series of equity and CDS data. Recently, Chen et al. (2020) propose a

structural industry equilibrium model with long-term defaultable debt where strategic competi-

tion drives feedback effects and contagion. They argue that when distressed firms tend to compete

more aggressively, they can also drive competitors to default. Their structural approach provides

an important empirical and theoretical microfoundation of the model considered in our framework.

In both models, firm interaction is driven by the (left-tail) idiosyncratic jump shocks and this

interaction generates novel asset price dynamics. The key contribution of our paper is to propose
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a structural model in which priced credit contagion can emerge endogenously because of the net-

work connectivity. The propagation of firms’ specific shocks produces endogenously countercyclical

dynamics for risk prices consistent with the one, assumed exogenously, in Chen et al. (2020). We

derive the link between aggregate fluctuations and two structural properties of the network: the

vectors of systemicness and vulnerabilities, which are determined by the principal singular vector

of the network adjacency matrix and show that in general equilibrium the cross-section of firm risk

premia depends on these two properties.

The second stream relates to macroeconomic studies of how firm and/or sectorial specific shocks

can give rise to aggregate fluctuations in production, trade, and banking networks. Kiyotaki and

Moore (1997) suggests that ‘a small, temporary shock to the liquidity of some firms may cause a

chain reaction in which other firms get into financial difficulties, thus generating a large, persistent

fall in aggregate activity’. Important contributions include Long Jr and Plosser (1983), Horvath

(1998), Horvath (2000), Acemoglu et al. (2012), Barrot and Sauvagnat (2016) and Kramarz et al.

(2020). Dupor (1999) discuss conditions under which the second moment properties of aggregates in

multi-sector models are the same as their single-sector counterparts and shows broad class of input–

output structures that generate aggregates with identical second moment properties. However,

Herskovic et al. (2020) show that network effects are essential to explaining the joint evolution of

the empirical firm size and firm volatility distributions. They use customers-suppliers information

obtained from Compustat (see also Cohen and Frazzini (2008)), estimate a network model of firm

volatility in which shocks to customers influence their suppliers, and document implications on the

distributions of firm volatility, size, and customer concentration. In our empirical application, we

follow Herskovic (2018) and explore transmission of shock using input-output matrices aggregated

at sectorial level to estimate the network structure and discuss the equilibrium properties. A rank-

one description of the network contagion risk shows that it may and does generate aggregate

fluctuations that affect idiosyncratic variances and cross-sectional skewness. In the terminology of

Scheinkman and Woodford (1994) and Nirei and Scheinkman (2021) we find empirical evidence of a

region characterized by “self-organized criticality” and cascades. The emerging cash-flow dynamics

provide a potential microfoundation to the sectorial left skewed business cycle dynamics discussed

in Salgado et al. (2019) and highlights the relevance of higher order moment in the analysis of

macro-financial fluctuations.

Finally, our work relates to the general equilibrium literature that studies asset pricing implica-

tions of multiple firms (orchards), e.g. Cochrane et al. (2007) and Martin (2013). In these models,

however, direct economic interaction among firms is missing and cross-sectional heterogeneity in

asset prices is driven by trees’ share relative sizes. In our economy, each firm is infinitesimal and

trees share sizes are individually irrelevant. However, firms interact in an economic network and we
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study the asymptotic diversification properties of seemingly firm-specific shocks for N →+∞. As

in Lucas (1977) and Ross (1976), equilibrium asset price are determined only by fluctuations that

survive in the large economy limit. In our model, the properties of the network structure determine

the extent to which seemingly firm-specific distress shocks give rise to undiversifiable aggregate

fluctuations because of contagion. An important related paper is Jarrow et al. (2005) who discuss

conditions for the existence of an equivalent martingale measure in economies with asymptotically

large number of defaultable securities. To derive their existence result, they assume conditional

diversifiability of individual default events. As a consequence, defaults events do not give rise to

aggregate risk. We contribute to this literature by considering more general (see Assumption 2)

network structures that explicitly allow for propagation of credit events and contagion. Herskovic

(2018) is the first study that analyses the asset pricing implications of a multi-sector economy

in which sectors are connected to each other through an input-output network. Changes in the

structure of the network are sources of systematic risk reflected in equilibrium asset prices. In our

framework, equilibrium prices depend only on the properties of the network that survive in the

large economy limit that are described by the systemicness and vulnerability vectors.

1. The Network Economy

We consider an infinite-horizon, pure exchange Lucas economy. The investment opportunity set

consists of a locally risk-less security in zero net supply, with a rate of return rt, and N risky

securities in positive net supply, each paying a stochastic dividend stream Ytx
i
t, i= 1, . . . ,N . We

refer to each i as a ‘firm’. The process Yt plays the role of a common permanent systematic shock

dYt
Yt

= µdt+σdWt (1)

and xit is a two-state process with states xi (0) and xi (1), xi (0)> xi (1)> 0 . We label xi (1) the

‘distress’ state. In the benchmark specification, all firms are identical in terms of their risk exposure

to the common log-normal factor Yt, namely β = 1. The cash-flow term xit depends on the indicator

variable H i
t by the simple linear relation xit = xi (0) (1−H i

t) + xi (1)H i
t . An innovation dH i

t = 1

denotes a transition to a distress state of firm i, while dH i
t = −1 denotes a recovery event. The

vector H = (H1, . . . ,HN)′ specifies the distress state of all firms and identifies uniquely each of the

2N possible configurations of the economy’s state, ranging from the case where no firm is in distress,

H i = 0, to one where all firms are in distress, H i = 1, i= 1,2, . . . ,N . The set of all configurations

will be denoted by C. Let S denote the subset of vertices of the network corresponding to the

cluster of firms that are in distress at time t = 0. Then the vector describing the initial distress

configuration is denoted by HS
0 and its elements are H i

0 = 1, for i∈ S, and H i
0 = 0 , for i /∈ S. Our

goal is to explore how the characteristics of the network economy affect the probability and duration
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of the contagion process HS
t originated from HS

0 . The evolution of HS
t is described by a regular

continuous-time Markov chain whose properties are given by the elements of the 2N ×2N transition

rate matrix A that are uniquely determined4 by the firm-specific distress and recovery intensities

λi (H) and ηi (H); that is, the probability of a negative (positive) dividend jump during the next

time instant, provided the firm is not (the firm is) in distress. To model network connectivity in a

parsimonious way, we allow for the likelihood of distress during the next infinitesimal time interval

to be positively affected by the state of distress of directly connected firms. For this reason, we

introduce an adjacency matrix ∆ (the network matrix, thereafter), with positive elements ∆ij > 0

if firm i is connected to firm j, ∆ij = 0 otherwise. The network matrix ∆ij enters in the definition

of firm i conditional distress intensity:

λi(H) = λi +λ
N∑
j=1

∆ijH
j. (2)

The parameter λi > 0 represents the firm-specific distress transition rate, while the term ∆ijH
j is

the contagion term, which captures the increase in the probability of distress of firm i due to a

distress of firm j. This modeling choice is motivated by the work of Jacobson and Von Schedvin

(2015) who show that the transition to distress of a trade credit counterparty raises by almost

50% the probability of firm distress. Moreover, Herskovic et al. (2020) show that customer-supplier

linkages drive heteroskedasticity of firm-specific volatilities and Chen et al. (2020) incorporate

dynamic strategic competition into an industry equilibrium model with distress.

While the idiosyncratic shocks dH i
t are by definition instantaneously independent across firms,

the intensities depend on the state of distress Hj

t− , j 6= i, of other firms. For simplicity, we set

recovery intensity rates to be constant and state-independent:

ηi(H) = η > 0. (3)

Consistent with the macroeconomic literature that investigates how the distribution of the growth

rate of firm-level variables (sales, profit, inventories, and employment) changes over the business

cycle, we focus on modelling the externality in the transmission of negative shocks.5 Salgado et al.

(2019) find that the cross-sectional skewness becomes more negative during recessions and is close

to zero during periods of sustained expansion. Without loss of generality, it is possible to set η= 1

and rescale the distress transition rates per unit of η. Then, defining υi := λi/η:

λi(H)

η
= υi +

λ

η

N∑
j=1

∆ijH
j (4)

4 Its exact expression is reported for completeness in Definition EC.1 in the Appendix.

5 The model can be easily generalized to allow for network dependence η(∆) in the transmisison of (positive) produc-
tivity shocks.
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Contagion dynamics are uniquely identified in terms of (i) the firm-specific distress-to-recovery

transition rates {υi}i=1,...N , υi > 0 and (ii) the contagion intensity ratios λ/η. Unless otherwise

stated, we will assume υi > 0 and υ will denote υ := supi=1,...N {υi}. For λ/η= 0, firm-specific transi-

tion rates {υi}i=1,...N drive independent idiosyncratic fluctuations that by the law of large numbers,

in the large N limit, can be diversified away in a large portfolio. For λ/η > 0 the possibility of direct

inter-firm distress propagation renders single firm fluctuations interdependent, making the tradi-

tional Law of Large Numbers argument inapplicable. Diversifiability of firm-specific fluctuations

depend on the specific nature and intensity of these interactions.6 While the model formulation

is flexible enough to accommodate several extensions, it is worth observing that the benchmark

dynamics that are selected by equations (3) and (4) is convenient both for its simplicity and for

its empirical relevance. Salgado et al. (2019) observe that the drop in profits is more significant in

recessions compared to the growth in expansions. Following this empirical observation, we delib-

erately allow for asymmetric transition rates, with cascades only arising in recessions. We set the

recovery rate independent and homogeneous across firms. This is motivated by the empirical obser-

vation that the characteristic time of distress resolution, Tη = η−1 depends mainly on the regulatory

and legal framework and is not firm-specific. Note also that we model propagation of firms distress,

as opposed to default. For distress we mean the temporary inability of a firm to produce cash

flows sufficient to service existing debt. It can be resolved through a restructuring process without

necessarily resulting in the liquidation or default of the firm. Consistently, firms do not disappear

from the network as this would lead the network topology to become time-varying and stochastic.

1.1. Network Topologies

The specification of the network matrix ∆ allows us to study alternative network topologies. A

directed network G is defined by the pair of sets (V G,EG) and by an adjacency matrix of

weights ∆Gij ≥ 0. V G is the set of its vertices, N will denote their number, and EG is the set of

edges, ∆Gij > 0 is the positive weight assigned to each edge (j, i) ∈EG . The degree of a node j is

the number of outgoing edges (j, i) ∈ EG. A network is said to be (weakly) connected if for

any two vertices i, j there exists a (un)directed path formed by edges in EG joining i and j. The

degree of a vertex i is the number of edges (i, j) such that ∆Gij > 0. It is said that there is non-zero

feedback along an edge joining i and j if ∆Gij > 0 implies ∆Gji > 0.

Assumption 1. Consider a network G that is connected, with feedback along each edge, bounded

edge weights, and maximum degree.

6 Although we gear the specification to study distress dynamics, one can see that the model can be adapted to study
innovation adoption and narrative diffusion.
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Assumption 1 impose a minimal set of conditions on the class of network matrices to guarantee

that the contagion dynamics does not have a trivial behavior. Indeed, connectedness and feedback

along the edges avoid that different regions of the networks behave like ‘islands’, structurally

protected from the propagation of contagion. Boundedness of the network contact matrix and the

finite degree avoid that in the large N limit a small number of firms can cluster mechanically

generating a ‘systemic’ firm whose shocks would trivially generate aggregate fluctuations.

Example 1. Figure 1-Panel A shows a simple example of how a directed network topology

is conveniently summarized by the specification of ∆. This network describes an economy where

Firm 1 is the center of a star and is connected to satellite firms through directed connections with

heterogeneous intensities. Firm 6 is connected to the economy only through a directed connection

to Firm 4. The specification of the network matrix can be used to describe the intensity of firms

interlinkages in the transfer of distress shocks. This network does not satisfy Assumption 1 since

it is not weakly connected.

Example 2. Rank One Networks are identified by a network matrix that can be written as:

∆Comp
ij := nRi n

L
j for arbitrary nRi ≥ 0, nLj ≥ 0 and i, j = 1, ..,N . We can distinguish two types of rank

one networks. Figure 1-Panel B represents an N = 8 star directed network. The star directed

network is assumed to describe a situation where the only relevant source of network risk distress

is the central firm. If the coordinates of the central node are set equal to i, j = 1, then the elements

of the adjacency matrix are: ∆SN
i1 = 1 for i= 2, ...,8 and ∆SN

ij = 0 otherwise. In the special case of

nL = nR, ∆ij = ∆ji for any i, j = 1, ...,N one obtains a complete undirected network. Figure

1-Panel C represents a complete undirected network with N = 8 nodes connected by interactions

with uniform intensity ∆CN
ij = 1 for any i, j = 1, ...,N .

The network ∆CN in Figure 1 Panel C satisfies Assumption 1. On the other hand, both networks

in Panel A and B are examples that do not satisfy the condition. Notice, however, that networks

that can be approximated as linear combinations of the economy in Panel A and C (i.e. ε∆SN +

(1− ε)∆CN , with ε > 0) satisfy the Assumption 1.

2. Systemicness and Vulnerability.

In this section, we introduce a reduced-rank specification of the network structure introducing two

quantities to capture in a tractable way the individual role played by each institution on the global

network propagation of distress and the collective nature of these dynamics. We refer to these

two quantities of firm interaction as vulnerability and systemicness. The systemicness of a firm j
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Figure 1 Examples of Network Topologies.60 UNDER REVIEW UNDER REVIEW 2018

Panel A

Kleinberg Hub and Authority Scores:
α0 = 7.433

vL = [0.98 0 0 0 0 0.15]

vR = [0 0.27 0.40 0.57 0.66 0]

Eigenvector Centralities:
α0 = 0

C= [1 0 0 0 0 0]

Directed Star Network 
Firm 1 is at the centre of the network; firm 6 is a firm at the periphery 
connected to firm 4. Values in square brackets define the strength of the 
connection. The only firm with positive “eigenvalue centrality” is firm 1; 
however, firm 6 has positive Authority score. Similarly, firm 2,3,4, and 5 have 
zero centrality score; however, they have positive Hub score. 

[2]

[3]

[4]

[5]

[2]

1

2

3

4

5

6

Panel B

Panel C

∆ =




0 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 2
5 0 0 0 0 0
0 0 0 0 0 0




Kleinberg Hub and Authority:

αG = 7.0433

νL = [0.98, 0, 0, 0, 0, 0.15] ,

νR = [0, 0.27, 0.40, 0.57, 0.66, 0] .

Eigenvector Centrality:

α0 = 0

C = [1, 0, 0, 0, 0, 0] .

∆SN = αG
(
νR
)T
· νL =




0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0




αG = 1, νL = [1, 0, ..., 0] , νR = [0, 1, ..., 1] ,

∆CN = αG
(
νR
)T
· νL =




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




αG = 1, νL = νR = [1, 1, ..., 1] .

Note. Panel A: Generic directed network: Firm 1 is at the centre of the network; firm 6 is a firm at the

periphery connected to firm 4. Values in square brackets define the strength of the connection. Panel B: Star

directed network. Panel C: Complete undirected network. [νR, νL, αG ] denote respectively the right and left

singular vectors and the principal singular value of ∆G.
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describes the extent to which its state affects the state of all other firms i; this differs from their

vulnerability, which instead relates to the extent to which its state depends on the state of all

other firms. Notice that in a network the two concepts are jointly linked to each other: a firm is

more vulnerable if it is strongly linked to systemic ones and a firm is more systemic if it can more

strongly influence vulnerable ones.

Definition 1. Consider the network matrix ∆ = {∆k,l}k,l=1,...,N
, the vulnerability νRi (systemic-

ness νLi ) of firm i with respect to the network of interactions ∆ is given by the (nonnegative) i− th

component of the right (left) singular vector associated to the highest singular value of the matrix

∆.7

Let us define νL and νR the (N × 1) systemicness and vulnerability vectors. We borrow the

concepts of “hub” and “authority” introduced by Kleinberg (1999) in graph theory to extend the

notion of centrality to directed networks. To formalize the definitions, one can require that firm j

systemicness νLj increases if
∑

i ν
R
i ∆i,j increases and, at the same time, that firm i vulnerability

νRi increases if
∑

j ∆i,jν
L
j increases. If one restricts the increase to be linear with scale factors c1

and c2, we can write νR = c1∆ν
L and νL = c2∆

′νR. Therefore, after substitution, νR and νL must

solve the following system of equations:

vR = (c1c2)∆∆′vR and vL = (c1c2)∆
′∆vL.

This implies that νR and νL are the eigenvectors of the symmetric matrices ∆∆′ and ∆′∆, respec-

tively, also known as the singular values of the non-symmetric matrix ∆ (Definition 1).8 Notice

that the vulnerability and systemicness depend on the overall topological network structure and

exhibit a mutually reinforcing relationship. In contrast to conventional measures of risk expo-

sure, such as CAPM β, that measure the conditional linear degree of co-movement between single

firm cash-flows or prices and aggregate variables, vulnerability measures the exposure to systemic

chains of idiosyncratic distress events that propagate through network linkages. Suppose we want

to approximate ∆G with a lower rank network matrix ∆̂G. Let [νRi , ν
L
j , α

G] be the right and left

singular vectors and principal singular values of ∆G, respectively.9 Eckart-Young’s Theorem shows

7 Singular components are defined up to a normalization. Unless otherwise stated, we will assume that the vectors
νR (νL) are normalized in such a way that νL ·1 = νR ·1 = 1

8 In MatLab, one can compute the vectors of vulnerabilities and systemicness computing the singular value decom-
position using the routine SV D(∆) and the selecting only the principal right and left singular vectors, i.e. those that
correspond to the largest singular value.

9 Singular value decomposition extends standard spectral analysis and is used to provide optimal low rank approxi-
mations to network matrix, see e.g. (Golub and Van Loan (2012)). Notice that after the rank reduction the singular
components coincide with the principal right and left eigenvectors of the resulting reduced network matrix. The
corresponding principal eigenvalue is equal to: αG

(
νL · νR

)
. Higher order factor representations may be relevant to

analyze more in detail the community structure generated by the network topology. It is also easy to show that αG

is linked to c1 and c2 by the relationship
(
αG
)2

= 1/(c1c2)
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that the optimal ∆̂G that minimizes the Frobenius norm of the difference between ∆G and ∆̂G can

be obtained from the singular value decomposition of ∆G. In the unit rank case, this is given by

αGνRi ν
L
j , so that

∆̂Gi,j = αGνRi ν
L
j i, j = 1, ..,N. (5)

It is important to notice that the vulnerability and systemicness of each firm i is the same in

∆G and ∆̂G, so that the economic interpretation is preserved in ∆̂G. Moreover, introducing this

reduced form representation relying on 2N +1 components of [νRi , ν
L
j , α

G] provides an approximate

description of the N 2 elements of the adjacency matrix ∆G of a generic network. The following

two examples illustrate the role of systemicness and vulnerability scores in the network examples

previously introduced.

Example 1 (Continued). Figure 1-Panel A shows a generic directed network: firm 1 is at the

centre of a star and can propagate distress to other firms. The adjacency matrix ∆ contains values

that are proportional to the strength of the connection. In this economy, the authority of the

central firm is νL1 = 0.9880 while νLi = 0 for i = 2, 3, 4, 5. Satellite firms have a different level

of exposure to shocks propagated from the centre depending on the intensity of the connection.

These exposure levels are quantified by the vulnerability scores. Firm 1 has zero vulnerability score

(νR1 = 0 ) since the central firm is not affected by distress events affecting satellite firms; firms 2, 3,

and 4 have increasing vulnerabilities, due to their increasing level of connectivity (νR2 < ... < νR5 ).

Consider now firm 6. This firm can spread shocks to firm 4. For this reason, it has the second

largest systemicness, νL6 = 0.1542. Nonetheless, it has zero eigenvector centrality. This highlights the

limitations of eigenvector centrality to fully capture the roles of nodes outside strongly connected

components directed networks. This is particularly important for asset pricing purposes.

Example 2 (Continued). It is easy to verify that for the star directed network, represented

in Figure 1-Panel B, the decomposition ∆star
ij = αGνRi ν

L
j holds exactly for any N . Indeed, in this

network notice that:

αG = 1, νL = [1,0, ...,0] , νR = [0,1, ...,1] .

The first element of the left singular vector νL is equal to 1, while all other terms are equal to

0. Only firm 1, which is the core one, can propagate its shocks to the rest of the network. At the

same time, the right singular vector νR shows that periphery firms 2− 8 are the most vulnerable.

Figure 1-Panel C shows the example of a Complete directed network with N = 8 nodes. In

this case, we have:

αG = 1, νL = νR = [1,1, ...,1] .
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In the uniform complete network, the distance between the left and right singular value reaches

its minimum value, ‖νL− νR‖ = 0: no firm is more systemic or vulnerable than any other, due

to the existence of perfect feedback effects. The opposite is true for a star network. The role and

economic interpretability of these two indicators in relation to the directionality of distress in net-

work dynamics is particularly useful to study contagion across financial and production networks.

As observed by Acemoglu et al. (2015), the global effects of institutions in complex networks go

above and beyond those to/from their immediate creditors. Therefore, even in the rank-one net-

work reduction, these indicators provide additional information with respect to more traditional

measures of factor risk exposure. In a supply-chain, disruption of a producer will reduce produc-

tion efficiency for the overall chain. A reduction in the degree of vulnerability of peripheral (low

systemicness) suppliers also lowers the level of systemicness of core (high degree of systemicness)

producers. 10

2.1. Distress Dynamics in the Rank-one model

One major advantage of the rank-one model is to provide a simple representation of distress

transition rates in a generic network. This is best understood recalling first the expression of the

transition rate probabilities of a periphery firm in the star directed network considered in Example

2. Let firm 1 be the ‘systemic firm’ at the center of the star - this information is encoded in the

left singular vector νL = [1,0, ...,0] - whose dynamics are regulated on the distress state process

H1
t that is independent of the state of any other firm. The remaining i= 2, .., N firms, as revealed

by νR = [0,1, ...,1], are identical ‘satellite’ firms that are vulnerable to the distress of the central

systemic firm i= 1. For each of these firms, the transition rate matrix conditional on the state of

the firm is given by:

A
(i)

ν,H1
t

=

[
−λi−λH1

t λi + ηλH1
t

η −η

]
i= 2, ...,N.

A similar representation extends to a generic network.

Let us aggregate firm-specific distress to obtain the network systemic risk Hν
t , which is defined

as the weighted average of firm-specific distress H i
t :

Hν
t :=

∑N

i=1 ν
L
i H

i
t∑N

i=1 ν
L
i

.

Importantly, Hν
t accounts for the level systemicness νLi of each firm. Thus, the greater Hν

t , the

greater the conditional probability of distress of healthy firms due to the negative externality of

firms currently in distress. Substituting the rank-one representation of the network matrix provided

10 A major limitation of the rank one description of the network is the impossibility to capture multiple layer recursive
tree-like topologies that determine a recursive block structure of the network matrix. We leave the treatment of this
relevant case to future research.
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in equation (5) in the general expression of the transition rate matrix leads to a closed-form

representation:

A
(i)

νR,Hνt
=

[
−λi−λανRi Hν

t λi +λανRi H
ν
t

η −η

]
.

where α := αG
N∑
i=1

νLi . Then the inter-firm rank-one transition rate matrix of any firm i equals

λανRi H
ν
t and is proportional to the vulnerability of firm i, νRi , multiplied by the level of distress

of the representative systemic firm Hν
t .11 The transition rate depends also on the product αλ. An

increase in αλ is equivalent to an increase of the overall interconnectivity parameter λ by the same

amount.

2.2. Supercritical Dynamics and the Tipping point: A Closed-form Solution

The class of rank-one networks introduced in subsection 2.1 allows us to derive a closed-form

solution for the tipping point. We follow a procedure proposed in Graham et al. (2009) and consider

a sequence of networks that satisfy the following minimal properties:

Assumption 2. Consider a sequence of connected networks GN indexed by the number of firms

N ∈N satisfying Assumption 1 and the following properties:

(i) [Normalization] For any network GN , the product αGNN is equal to a constant finite value L;

then α= αGN
(∑N

i=1 ν
L
i

)
=L 1

N

(∑N

i=1 ν
L
i

)
.

(ii) [Heterogeneity] Any network GN is populated by K classes of firms with different finite vul-

nerability νRk and systemicness νLk . Each class Ck is populated by Nk firms distributing a dividend

xk (H i
t), with k = 1, ..,K. We assume that each class is not empty asymptotically in the sense

that each class Ck contains a strictly positive fraction pk > 0 of firms: limN→+∞
Nk
N

= pk ∈ (0,1] ,

k= 1, ...,K with
∑K

k=1 pk = 1.

(iii) [Zero firm-specific rates] Firm-specific transition rates are set to zero, υi = 0, i= 1, ..,N.

The normalization condition in (i) avoids the possibility of divergence of the principal singular

value in large networks. This condition is equivalent to assume a normalization such that L is

the amount of liabilities per firm. Correspondingly, we introduce the following normalized scalar

product to x ·y : = 1
N

∑N

i=1 xiyi, so that α=L (νL ·1). Assumption (ii) assures that the network is

not trivially dominated by a unique class of firms in the limit. Assumption (iii) is introduced to

simplify the discussion focusing on network contagion effects only. Overall, these assumptions have

a financial interpretation: it is possible to aggregate firms in groups having homogeneous network

characteristics, namely vulnerability and systemicness.

11 At first sight, the expressions of the generators for a generic and star network are similar. A crucial difference,
however, is that the evolution of the state of distress for the central firm H1

t in the star network example is exogenously
determined, while Hν

t depends on the dynamics of all the variables Hi
t , hence it is endogenously determined.
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2.2.1. Contagion dynamics When firms interaction is sufficiently strong, the long term

dynamics may include the emergence of cascades of firm-specific shocks. A cascade is defined as

a sequence of distress shocks whose effects are so persistent to alter the long-term behavior even

when the initial shock is small:

Definition 2 (Cascade). Consider a large economy satisfying Assumptions 1 and 2.

Let hkt for k = 1, ...,K be the fraction of firms in distress in a large network: hkt :=

limN→+∞ (pkN)
−1
(∑

i∈Ck
H i
t

)
and let hk∞ := limt→+∞ h

k
t be the long term fraction of distressed

firms in class Ck. A cascade is a process HS
t such that, for some k, hk∞ 6= 0. The endowment

dynamics is said to be supercritical if there’s a non-zero probability that a cascade takes place.

This definition of cascades and of supercritical dynamics parallels the definition of an endemic

infection in epidemiology. In that literature, an infection is said to be endemic if a finite fraction of

the population is expected to be infected even in the long-time limit. In the language of epidemics,

a cascade corresponds to an outbreak whose duration is increasing with the size of the population

being affected. In the context of our network economy, it is possible to show that duration of

outbreak depends on the spectral properties (eigenvalues) of the generator A of the Markov process

Ht.
12

The following Theorem shows the conditions under which there exists a tipping point K(∆)

above which the long-term dynamics includes cascades and endemic distress.

Theorem 1 (Criticality and Cascades: The Threshold Representation). Consider a

large economy satisfying Assumptions 1 and 2. There exists a finite Tipping Point 0≤K(∆)<+∞

separating two distinct dynamics:

• Subcritical Dynamics. When λ
η
<K(∆) the probability of occurrence of a cascade is zero and

the long term fraction hk∞ := limt→+∞ h
k
t = 0 (No Endemic Distress)

12 Drawing on the early contributions of Kemeny and Snell (1976) for ergodic discrete time Markov chains and of
Cui and Mao (2010) for the transitory, continuous time case, the mean duration of a contagion process depends on
the spectral properties of the generator A. A properly defined time to reach steady state T A is independent of the
initial condition S and is equal to:

T A =

2N∑
n=2

1

λA
n

, (6)

where
{
λA
n

}
n=1,...,2N

are the eigenvalues of the transition rate matrix −A (of the process HS
t ). In particular, since

λ1 = 0, a sufficient condition for the emergence of a cascade, i.e. T A → +∞, is that in the large economy limit

N→+∞ the spectral gap is vanishing (λ2−λ1) = λ2
N→+∞→ 0. Based on Assumptions 1 and 2, a sufficient condition

for the presence of cascades in the large N limit is that the expected time E [τH=0], is diverging as N→+∞. Indeed,

it is well known, see e.g. Draief and Massoulie (2010), that λ2 = E [τH=0]−1, hence E [τH=0]
N→+∞→ +∞ implies

λ2 = E [τH=0]−1 N→+∞→ 0 and a fortiori T A N→+∞→ +∞. Thus the existence of a stable stationary point such that
hk∞ > 0 for some k is a sufficient condition to prove that the dynamics is supercritical and cascades may occur.
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• Supercritical Dynamics. When λ
η
>K(∆), the distress of any arbitrary small set of firms will

trigger cascades. Correspondingly hk∞ > 0 and they are determined by:13

hk∞ (hν∞) =
αλ
η
νRk

1 +αλ
η
hν∞ν

R
k

hν∞, (7)

where hν∞ > 0 is the unique positive solution to the equation

1 =
K∑
k=1

pk
νLk ν

R
k
Lλ
η

Lλ
η
νRk h

ν
∞ (νL ·1) + 1

. (8)

• The Tipping Point is given by:

K(∆) =
1

L (νL · νR)
. (9)

The existence of a Tipping Point and of cascades is a general property of all networks satisfying

Assumptions 1 and 2.

Theorem 1 generates several interesting testable empirical implications. First, the emergence of

a tipping point implies that, close to it, an infinitesimal variation in the intensity of inter-firm

connection alters the qualitative nature of inter-firm contagion and generates an instability giving

rise to cascades of distress shocks that investors are unable to diversify. Second, the exact location

of the tipping point depends on the network structure which becomes therefore relevant for macro-

financial stability. Indeed, equation (9) shows that the tipping point is determined by the inverse of

the inner product between the vulnerability and the systemicness, namely (νL · νR)
−1

. The intuition

is simple: the emergence of cascades relies on the existence of feed-back effects. In order to have

cascades, a sufficient number of vulnerable firms needs to be either closely connected to systemic

firm in distressed or systemic themselves. The larger the overlap (νL · νR) between more vulnerable

and more systemic firms in the economy, the greater the amplification and, in turn, the lower the

tipping point K(∆) above which local shocks induce aggregate fluctuations. In the limit of an

economy where vulnerable firms have zero systemicness and viceversa, namely (νL · νR)→+0, the

tipping point K(∆)→+∞ simply disappears.

The existence of a supercritical dynamics has an impact on aggregate consumption. The results

in Theorem 1, imply the following:

Corollary 1. Under the same assumptions of Theorem 1, below the tipping point the aggregate

consumption CLT
t follows a standard ‘Lucas Tree’ lognormal dynamics determined uniquely by Yt.

13 With a slight abuse of notation, we denote with α also its limiting expression for N→+∞: α := limN→+∞ α
G
0

N∑
i=1

νLi .

In light of Assumption 2, it is also equal to: α=L
(
νL ·1

)
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Above the tipping point, for any initial condition hν0 > 0 the presence of distress contagion reduces

the level of aggregate consumption by a factor:

CSuper
t

CLT
t

N→+∞→
K∑
k=1

pk

((
1−

(
1− x

k (1)

xk (0)

)
hkt

))
In addition, above the tipping point, the aggregate consumption dynamics includes an additional

drift component:

lim
N→+∞

1

N

N∑
i=1

dxi (Ht)

x (0)
=

K∑
k=1

pk

(
1− x (1)

x (0)

)([
(−1)

(
1− νRk αλhνt

)
νRk αλh

ν
t + ηνRk αλh

ν
t

]
dt
)

The corresponding expression for higher consumption moments is reported together with the proof

in the Appendix.

Above the tipping point, distress contagion reduces aggregate consumption. The size of the drop

depends on the cross-section of firm vulnerabilities νRk and the level of aggregate distress hνt through

hkt , k = 1, ..,K. For a supercritical economy close to the tipping point, i.e. λ/η = Kc (1 + ε) with

ε << 1, the drop in aggregate consumption is equal to:

CSuper
t

CLT
t

ε<<1'
K∑
k=1

pk

(
1−

(
1− x

k (1)

xk (0)

)
νRk α

λ

η
hνt

)
︸ ︷︷ ︸

drop dividends class k

< 1.

The impact on aggregate consumption is not diversifiable and is equal to the weighted sum of the

dividend drop of firms suffering distress in the endemic state. The weight is given by pk, the fraction

of firms in class k, and the expected drop is proportional to the vulnerability level νRk of firms in

class k. The greater the λ
η
hνt ratio, the greater the expected consumption loss in the supercritical

equilibrium. Notice that hνt depends in the global topological properties of the network, captured

by νL. Although the Corollary provide a result for the first moment, all higher odd moments are

affected in the supercritical equilibrium, including skewness (see Appendix). We now turn to the

investigation of their equilibrium asset pricing implications.

3. Valuation in a network economy
3.1. Stochastic discounting

Since the focus of our interest is to model cash-flow risks, we assume the simplest preference struc-

ture for the representative agent, who maximize a time additive Constant Relative Risk Aversion

utility of intertemporal consumption

U0 =E
[∫ ∞

0

e−δs
C1−γ
s

1− γ
ds

]
,

where γ and δ are the relative risk aversion and subjective discount rate coefficients, respectively. In

order to focus on the network implications, we explicitly avoid more general preference assumptions.



Title: Financial Contagion in Network Economies
Preprint 19

In the benchmark specification all firms are identical and produce a fraction 1/N of the total

aggregate dividend. This ensures that the β exposure of each firm to the aggregate risk factor is

identical and equal to 1. In equilibrium aggregate consumption is equal to total dividends Ct =

YtX
(N)
t , where X

(N)
t =

∑N

i=1 x
i
t (Ht). Hence marginal utility of consumption in each state of nature

is given by:

ξt = e−δt
(
YtX

(N)
t

)−γ
.

The corresponding dynamic evolution can be written as:14

dξt
ξt

=−rt (Ht)dt−κdWt +
N∑
j=1

(
θj (Ht)− 1

)
dM j

t ,

The parameters rt and θj define the equilibrium risk free rate, the purely diffusive and Sharpe ratio

components, respectively. Their explicit expressions are provided in the Appendix (see equations

(EC.8, EC.9). It should be noticed that each contribution θj (Ht)− 1, is of order O (N−1) and is

vanishing as N →+∞; however, the number of these contributions is also diverging as N →+∞.

Thus, since Theorem 1 shows that firm-specific shocks may generate aggregate fluctuations, the

asset pricing implications may be non-trivial. To investigate these properties, first we compute

asset prices for a finite N , then we derive the implications for N →+∞ relying on the results of

Theorem 1. The results are summarized by the following:

Theorem 2 (Network Relevance in Supercritical Economies and Long-Run Risks).

Consider a large economy satisfying Assumptions 1, 2 and assume15 a := δ−µ (1− γ)− σ2γ(1−γ)
2

> 0

. The risk premium of firm i, conditional on its state H i
t and hνt is:

• (Subcritical equilibrium). When λ
η
< K(∆), as N → +∞ the risk premium converges to a

constant CCAPM risk premium term:

rpi
(
H i
t , h

ν
t

)
= κσ︸︷︷︸

CCAPM Term

where κ= γσ.

• (Supercritical equilibrium). When λ
η
>K(∆), as N →+∞ the instantaneous risk premium of

firm i converges to16

rpi
(
H i
t , h

ν
t

)
: = κσ︸︷︷︸

CCAPM Term

+
(
1−H i

t

)
rpiλ (hνt ) +H i

trp
i
η (hνt )︸ ︷︷ ︸

NRPi(hνt )

,

14 the process dM j
t is the martingale component of dHj

t and is explicitly defined in eq.(EC.4)

15 The constant a is equal to the equilibrium dividend-price ratio in a CCAPM economy with a single Lucas Tree
driven by the lognormal shock Yt.

16 The exact expressions of rpiλ (hνt ) and rpiη for any value of the ratio xi (1)/xi (0) are given in the Appendix.
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rpiλ (hνt ) : = νRi

(
1− x

i (1)

xi (0)

)
hνt

a

a+ η
αλ+O

(
xi (1)

xi (0)

)
,

rpiη : =−
(

1− x
i (1)

xi (0)

)
ηa+O

(
xi (1)

xi (0)

)
.

In subcritical equilibria, firm-specific distress shocks have marginal contributions of order 1/N

to the stochastic discount factor. Long-run fluctuations do not arise, namely hi∞ = hν∞ = 0, so that

firm specific shocks do not affect the marginal utility as N →+∞. Valuations are observationally

equivalent to those emerging in a classical CCAPM.

In a supercritical state the long-term stable equilibrium levels hi∞ and hν∞ are strictly positive

(Theorem 1) hence conditional risk premia are affected by a second term, the Network Risk Pre-

mium. Since firm-specific distress shocks can give rise to cascades, i.e. clusters of distress transitions

changing the level of hνt , prices at time t need to adjust accordingly and risk premia are modified

in a permanent way.

NRP i (hνt ) is given by the sum of two terms. The first term is non-zero conditional on the firm not

being in distress already, namely H i
t = 0, NRP i (hνt ) is positive and proportional to vulnerability

νRi , to the dividend lost conditional on distress xi(1)

xi(0)
, and to the level of network systemic risk

hνt , that depends on which firms are currently in distress and on their systemicness νLi . Indeed,

in presence of a network structure, the degree of systemicness defines the potential role of a firm

in spreading long-run distress hν∞. For instance, a firm which is a specialized supplier of many

customers may have high systemicness, so that its distress may disrupt production of downstream

producers and amplify the propagation of distress along a supply chain.17 The second term in

NRP i (hνt ) is a recovery premium and is negative conditional on firm i being in distress, i.e. H i
t = 1.

Once a firm is already in distress, the expected recovery acts as a positive externality on other

firms since it reduces their probability of distress, thus reducing the aggregate quantity of risk.

The Theorem implies that cross-sectional differences in firm vulnerability νRi to network systemic

risk hνt predict cross-sectional differences in expected excess returns. Notice also that firm-i vul-

nerability νRi may depend on both individual firm characteristics and also on the characteristics of

connectivity of the firm within the network, since νRi is an element of the (right) principal singular

component of the global adjacency matrix ∆.18 As a Corollary to the previous theorem, one can

derive the average risk premium of a firm in class Ck, conditional on the state of average distress

hkt of firms in this class and of the systemic network risk hνt :

17 Notice that in this framework systemicness of a firm can large even in the case of a firm whose size is vanishing
in the large N limit. It is worth stressing that this amplification channel is not driven by covariation with aggregate
consumption. Hence the mechanics of this channel is distinct from the idiosyncratic small size limit considered in the
analysis of the two asset Lucas orchard economy by Martin (2013).

18 At the same time, firm-j authority νLj depends on the entire vector of other firms exposures νRi according to the
relation νLj = 1

αG
∑
i: (i,j)∈EG ν

R
i ∆Gi,j
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Corollary 2. In supercritical equilibria, the average risk premium of firms belonging to class

Ck is given by:

κσ+NRPk (hνt ) , k= 1, ...K (10)

where19

NRPk (hνt ) : =
(
1−hkt

)
rpkλ (hνt ) +

(
hkt
)
rpkη (11)

= rpkλ (hνt )︸ ︷︷ ︸
>0

+hkt [rp
k
η − rpkλ (hνt )]︸ ︷︷ ︸

<0

Furthermore, the drift of the dividend component distributed by firms belonging to class k equals

−NRPk (hνt ).

This Corollary provides a consumption-based interpretation of the network risk premium. At

time t, the conditional risk premium is equal to the sum of two terms:

RPkt = βMkt
k ×MRP +NRPkt (hνt )

The first term is the traditional beta exposure to the market risk premium that corresponds in

our economy to MRP = κσ (in this economy, all the firms have unit market risk exposure). The

second term is the network risk premium NRPkt (hνt ), which depends on two terms. The first term

is positive and proportional to the firm’s network exposure νRk to the network systemic risk hνt .

The second is a recovery network discount. Since hkt (hνt ) · rpkη (hνt ) in equation (11) is negative, the

sign of NRPkt (hνt ) is positive (negative) when the first (second) term is dominating. This occurs

when hkt is large, which corresponds to states when large distress has already occurred and firms

face the possibility of recovering. The recovery discount is proportional to η, which controls the

speed of recovery from distress.

It is convenient to notice that, in the limit of xi (1)/xi (0)→ 0 when hkt
∼= αλνRk h

ν
t , the risk

premium is a quadratic function of hkt and hνt . Let h∗ ≡ (1− ηa− η2), then:

NRPkt =
[
h∗−hkt

]
hkt

(
1− x

k (1)

xk (0)

)
a

a+ η

which shows that NRPkt can be expressed as a concave quadratic function reaching its maximum

value when hkt = h∗
2

. When hkt is in the interval [0, h∗
2

], NRPkt is increasing w.r.t. hkt . However,

for levels of exposure to network distress risk hkt >
h∗
2

, NRPkt starts decreasing with hkt due to the

positive recovery expectation and finally for hkt >h
∗ the risk premium turns to negative values.

19 The functional forms of the two terms rpkλ (hνt ) and rpkη are the same as in Theorem 2.
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This Corollary generates a number of empirical testable implications. The first relates to the

potential resolution of Campbell’s “Distress Risk Puzzle”. Indeed, NRPkt is consistent, at the

same time, with (a) lower unconditional expected excess returns of firms with larger probability of

distress and (b) a positive price of distress risk. To appreciate this result, it is convenient to consider

a local linearization of the risk exposure NRPkt with respect to hνt , so that NRPk (hν)' βhνk ×hν :

βh
ν

k '
∂NRPk (hν)

∂hνt
= νRk αλ

[
h∗− 2hk (hν)

](
1− x

k (1)

xk (0)

)
a

a+ η
,

The model predicts that the conditional βh
ν

k switches sign from positive to negative for values of

hk (hν) crossing the threshold level h∗
2

. Below this threshold, the portfolio beta and the network

risk premium are positive and increasing in the vulnerability νRk . However, for large levels of

hk (hν) the exposure of the most vulnerable firms turns negative. The economic intuition is that

when firms have already experience large levels of distress, the expected dividend growth turns

positive and they face the (negative) risk of recovery. This occurs precisely when the level of

distress in the economy is the largest. The negative relationship between NRPkt and the level of

individual firms probability of distress hk has been documented by Campbell et al. (2008) and is

generated by the model’s procyclical risk exposure and countercyclical price of risk. When taken

together, these two facts can also rationalize the emergence of an unconditional CAPM αk which

is negatively covarying hk. This is consistent with the empirical results of Jagannathan and Wang

(1996) Lewellen and Nagel (2006), who find that when the conditional CAPM model is tested

using an unconditional linear regression specification, the model misspecification bias manifests in

a value of αk proportional to the covariance of the firm’s beta with the market risk premium. In

the context of our model, the model misspecification is due to the endogenous negative correlation

between conditional βh
ν

k and distress shocks hk.

3.2. Predictability

In this section we study the extent to which the information about NRP it is rationally revealed by

valuation ratios such as the dividend-to-price ratio. The following Theorem summarizes the link

between NRP it and D(Hi)

P i(Hi,hν)
.

Theorem 3 (Cross-Sectional Predictability). Consider a large economy limit of networks

satisfying Assumptions 1 and 2. The cross-section of expected risk premium of firms i is given by:

rpi(H i
t , h

ν
t ) =

{
κσ Subcritical Equilibrium

κσ+
[

D(Hit)

P i(Hit ,h
ν
t )
− a
]
. Supercritical Equilibrium

(12)

In subcritical equilibria, risk premia are constant both in the time-series and cross-section. In a

supercritical equilibrium, equation (12) shows that the cross-section of expected returns is predicted
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by the cross-section of dividend-price ratios. The parameter a is the reference dividend-price ratio

in a conventional Lucas tree economy driven by a purely diffusive aggregate lognormal shock and

satisfies the continuous-time Gordon growth formula:

a︸︷︷︸
d/p

= κσ+ rf︸ ︷︷ ︸
rp+rf

− µ︸︷︷︸
g

. (13)

where rf = δ+ γµ− 1
2
γ(γ + 1)σ2 is the risk free rate in the standard Lucas Tree economy driven

by the log-normal shock.

In the supercritical state, the dividend-price ratio and the risk premium component become state

dependent:20

D(H i
t)

P i(H i
t , h

ν
t )

= rpi(H i
t , h

ν
t ) + rf −µ. (14)

Taking the difference between equations (13) and (14) one obtains (12). Hence, when hνt > 0

deviations of risk premia from the standard Lucas tree value are predictable and proportional to

the spread between the observable dividend price ratio D(Hi)

P i(Hi,hν)
and its subcritical level a. The

economic intuition is that both the dividend price and the risk premium are a function of the

vulnerability νRi and the network systemic risk hνt .

The results summarized in Theorems 2 and 3 can be related to the ‘deep value anomaly’ emerging

during period of significant economic and financial distress, as documented by Asness et al. (2018).

They show that the average risk premium increases when the spread between value versus growth

premia deepens (‘deep value states’). In our network economy, the widening of this spread naturally

occurs in super-critical states, when λ
η
>K (∆) and network systemic risk increases. Thus, it is a

rational equilibrium valuation property.

In the context of our model, one can define the Vulnerability Spread (V mR) as the difference

between the mean dividend yield of high vulnerability firms and low vulnerability (i.e. resilient)

firms:

V mR (hνt ) := Yt

[
x (0)

P V (0, hνt )
− x (0)

PG (0, hνt )

]
.

Indeed, value (growth) stocks can be interpreted as firms that are not yet in distress (H i
t = 0) but

have high (low) vulnerability νkR. In subcritical equilibria, dividend price ratios are constant and

homogeneous. In these equilibria, the vulnerability spread V mR(hνt ) = 0 and the cross-section of

expected returns is degenerate. No predictability exists either in the cross-section or time-series. In

supercritical equilibria, however, hνt > 0 and the dividend-price ratio becomes state-dependent and

20 Expected dividend growth and risk free rate are not affected by the transitory component. Let µ be the mean
long-term expected dividend growth:

limh→+∞
1
h
Et0

[∫ t0+h

t0

d(Ytxi(Ht))
Ytxi(Ht)

]
= limh→+∞

1
h
Et0

[∫ t0+h

t0

dYt
Yt

]
= µ
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increasing in firm’s vulnerability: dVmR(hν)

dhν
> 0. As a consequence, a transition to a supercritical

equilibrium with hνt > 0 can be revealed by the broadening of V mR(hνt ).

Since in supercritical equilibria firm-specific conditional risk premia are both increasing in vul-

nerability, drpi(0,hνt )

dνRi
> 0 and increasing in hνt , i.e. drpi(0,hνt )

dhνt
> 0, an implication of Theorem 2 is that

in supercritical equilibria the expected excess return (HmL) of a portfolio long value firms and

short growth firm earns a positive risk premium. Moreover, Theorem 3 implies that dHmL

dVmR(hνt )
> 0:

the spread in risk premia is increasing in the Vulnerability Spread V mR(hνt ). Indeed, equation (12)

implies

HmL∝ rpV
(
H i
t , h

ν
t

)
− rpG

(
H i
t , h

ν
t

)
= V mR (hνt ) . (15)

This lends support to the observation by Asness et al. (2018) that deep value states with large

V mR(hν) also have larger HmL expected excess returns.

An additional implication of Theorem 3 is that the dividend-price ratio is positively correlated

with expected returns and uncorrelated with expected dividend growth. This is consistent with

dividend-price predictability tests discussed in Cochrane (2011) who argues that most of the vari-

ability of the dividend-price ratio is linked to changes in expected returns as opposed to future

dividend growth.

The model produces also the additional prediction that V mR is increasing in hνt , which relates

to conditional tests of the Fama and French factor model showing that long-short value strategies

become profitable mainly when the V mR spread is very large (Deep Value states).

4. Empirical Results

In this section we study the empirical implications of the model. We use a monthly panel data-set

of firms from Jan 1970 to Dec 2019, which are part of the CRSP-COMPUSTAT dataset restricted

to firms with CRSP code 10,11 and 12. We consider firms with at least five years of sales data

available. We notice that in our model cash-flows dynamics can be factored as a product Ytx
i
t

where Yt denotes the systematic component and a single idiosyncratic component xit. Empirical

reliability of this reduced form modeling approach is supported by the findings of Herskovic et al.

(2016) who show that the sales-growth and return firm-specific volatilities are driven by a common,

single component. We replicate and confirm their findings in our extended sample.21

We determine time varying measures of vulnerability and systemicness reconstructing the net-

work information from the input-output BEA industry tables. Since 1947, the BEA has provided

IO accounts of dollar flows between all producers and purchasers in the U.S. economy. The IO

tables are based primarily on data from the Economic Census and are updated every five years with

21 Results are available upon request
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a five-year lag. BEA provides Make-Use tables and we compute the corresponding IO table repeat-

ing the construction that Ahern and Harford (2014) use to compute the matrix that is referred as

REVSHARE. Hence, we set ∆
(t)
ij = IO

(t)
ij /IO

(t)
ii as the revenue share that is produced by industry i

and consumed by industry j 6= i at year t. Note that statistical reliability of our modeling approach

requires the verification of Assumption 1 and, in light of Assumption 2, it is expected to increase

with the size of the population of firms with homogeneous levels of vulnerability and systemicness.

In light of these modeling assumptions, we consider IO tables aggregated at the coarsest level and

isolate 15 groups of firms as defined in Table 1 so that in the application it is possible to associate

an industry sector to each class k= 1, ...,15 of firms with homogeneous degree of vulnerability and

systemicness. Note that the Fig. 2 provides a graphical illustration of the network connecting these

15 groups as determined by the first 1970 IO-Table and by the last 2015 IO-Table.

Singular value decomposition of the mean Input-Output matrix determines a first singular value

that accounts for 85% percent of the total Frobenius norm22; the second and third singular value

account for 13% and 1%, respectively. In light of this evidence, we restrict the rest of our empirical

analysis to the rank one version of the model. For each network matrix ∆(t), we compute its right

and left singular vectors νR and νL normalized so that the sum of the elements of each vector is

one. We recompute these two vectors every 5 years and use their beginning of period value to avoid

any look-ahead bias. We thus obtain empirical (sector based) proxies for νRi and νLi for each firm

which is associated to its group relying on SIC (prior to 1997) NAICS (post 1997) classification

codes.

Considering the sample mean values, we find that “Manufacturing” is the sector with the highest

systemicness and lowest vulnerability, with νLi = 0.36 and νRi = 0.01. As one may expect, “Educa-

tional services, health care, and social assistance” and “Agriculture, forestry, fishing, and hunting”

have low systemicness and high vulnerability, with νLi = 0.006, 0.007, and νRi = 0.08, 0.07, respec-

tively. The financial sector is the second most systemic sector with νLi = 0.14.

Empirical vulnerability and systemicness parameters show substantial time-variation driven by

the variation in time of the relative IO-Tables. For example, it is apparent from Fig. 2 that systemic-

ness of group 10, Finance Insurance and Real Estate (FIRE hereafter) firms have dramatically risen

over the period 1970-2015. Its initial value determined by the 1970 IO-Table is 0.105, it reaches

0.225 prior to the 2007 crisis then it decreases to the value 0.202 as determined by the last 2015

IO-Table. In turn, vulnerability of this group of firms has remained low and essentially constant

across the whole sample. On the contrary, group 5, Manufacturing, has progressively reduced its

systemicness from 0.440 down to 0.259 while its vulnerability has tripled raising from 0.0067 up to

0.0200.

22 Recall that the square of the Frobenius norm equals the sum of the squares of the singular values.
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4.1. Network risk dynamics and tipping point

For each firm i and at each time t, we proxy hit with the one-month ex-ante expected probability

of distress by estimating a logit model as in Campbell et al. (2008). Details are summarized in the

Appendix. We follow the model construction and define a sample proxy of the network systemic

risk as the weighted average of hit with weights given by the elements of the vector of systemicness

νLi :

hνt :=

∑N

i=1 ν
L
i h

i
t∑N

i=1 ν
L
i

. (16)

Figure 3 summarizes the time series properties of hνt . In the model, the dynamics of hνt are deter-

mined by Theorem 1. Below the tipping point Kc, the dynamics is subcritical with hνt = 0; above

the tipping point hνt > 0. In the earlier part of the sample, we find that hνt is insignificantly different

from zero, suggesting a subcritical dynamics. We also find five episodes in which hνt has spiked to

significantly high levels (1985-1992, 1999, 2000-2002, 2008-2009, 2017). We run a Sup-Wald test

that identifies a structural break in the dynamics of hνt in June 1984. The Chow test-statistics exe-

cuted in correspondence to June 1984 produces a test statistics of 147.6404 with a p-value= 0.000.

Before this date, the average value of hνt is 0.00021 (Table 2, Panel A). After this date, the mean

of hνt is 7.5 time larger. In the four periods in which hνt spikes and goes above its long run mean,

both the volatility and third moment of hνt are significantly higher. The volatility is 0.0143, versus

0.00034, and the third moment is 7.49× 10−5, versus 3.93× 10−6.

This structural transition in the dynamics of hνt is consistent with Giesecke et al. (2011) obser-

vation that the introduction of the Bankruptcy Reform Act of 1978 which marked the first major

bankruptcy law overhaul in forty years. The new law introduced vast reforms in both liquida-

tion and reorganization proceedings shifting from the previous creditor protection spirit of the

Bankruptcy Act of 1898 to a new more debtor friendly approach.23

After June 1984, the four additional spikes in hνt suggest the presence of distress cascades which

are short-lived but with a significantly higher variance. Indeed, the model suggests that the distri-

butional properties of network systemic risk is different below and above the tipping point. Below

the tipping point (λ/η << Tc), the distribution of hνt should display exponential dampening of

fluctuations, in line with the Lucas assumption. In the vicinity of the tipping point (λ/η∼Tc) one

should expect a Pareto tail in the distribution of hνt :

Pr [hνt >H]'H−α,

with α = 0.5. Indeed, in the supercritical equilibrium contagion drives bursts of distress and the

distribution should display increasing logarithmic mean and variances. To test for these differences,

23 See figure 1 in Giesecke et al. (2011).
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we estimate α using a Hill estimator before and after the structural transition. Consistent with

the model, after June 1984 we find that α= 0.51 with a standard deviation equal to 0.03, which

is compatible with a Pareto tail. Before June 1984, on the other hand, we can reject the null

hypothesis H0 : α= 0.5. A graphical illustration of the distributional properties is reported in Fig.

5.

4.2. The network risk premium

The first empirical asset pricing implication of the model relates to the emergence of a risk premium

associated to the network systemic risk tracked by the level of hνt .

To assess the economic importance of the network risk premium, we consider a Fama and Mac-

Beth (1973) two-step multifactor regression (FMB hereafter) methodology and exploit information

on risk premia and on tradable portfolios. The cross-section of returns is formed by 45 test assets:

(i) 10 value-weighted portfolios sorted with respect to firm-specific probability of distress based on

the Campbell et al. (2008) logit estimation approach, (ii) 10 value-weighted portfolios sorted by

idiosyncratic return volatility, and (iii) 5× 5 portfolios sorted with respect to BE and M/B.

R
k

t+1−R
f
t = βMkt

k ×
[
RMkt
t −Rf

t

]
+βh

ν

k ×
hνt
σhν

+ εkt+1.

where σhν = stdev(hνt ) over the period of time

In the first stage, we estimate βMkt
k

and βh
ν

k
by regressing the time-series of the 45 test assets

monthly excess returns onto the market excess return and the standardized version of the network

systemic risk hνt
σhν

. Then, in a second stage, we project the monthly excess returns of the test assets

on the vector [βMkt
k , βh

ν

k ] to obtain the prices of risks associated to the factors. Table 3 summarizes

the results. Column (1) reports the results of a CAPM specification, which excludes NRPkt . We

find that the monthly market price of risk is equal to 0.683 and statistically significant at the 1%

confidence level. However, the intercept is −0.177 and statistically significant, suggesting that the

CAPM model is misspecified.

In column (2) we add the exposure to network systemic risk NRPkt . It is notable that the

statistical significance of a strictly positive NRPt can only be consistent with the existence of a

supercritical equilibrium in this period. We find that the monthly price of risk of the exposure to

network distress is 1.132% and is statistically significant at the 1% confidence level. Moreover, we

find that the absolute value of the intercept drops to 0.065 and is no longer significant, suggesting

that the new term reduces the misspecification error found in column (1). The evidence of a priced

network factor is robust after controlling for different combinations of the Common idiosyncratic

volatility factor of Herskovic et al. (2016) and of the five factor Fama-French model (market,

size, value, profitability, and investment), as shown in columns (4)-(6). In all these alternative
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specifications, the slope coefficient for βh
ν

is statistically significant and its value ranges between

1.165 and 1.45.

The model predicts that there’s substantial time variation of risk premia. Hence, we analyze the

intermediate Fama-McBeth statistics to study the time variability of the risk premium. First, it is

worth observing that before June 1984, the equally weighted average of NRPkt , which we refer to

as NRPt, in Table 2 Panel B, is equal to a monthly return of 0.007% with a t-statistics equal to

0.7, which is consistent with a subcritical dynamics; after June 1984, NRPt = 1.49% monthly with

a t-statistics equal to 4.81. Figures 6 and 7 summarize the economic significance of the network

risk premium relative to the CAPM market risk premium by showing the cumulative return of a

portfolio with unit exposure on each of the two sources of systematic risk. They are obtained as the

cumulative sum of the slopes from the monthly cross-sectional regressions. These cumulative returns

relate to zero-cost portfolios of the 45 test assets with a unit exposure on the corresponding factor

and zero on all the others. Temporal variation of the distress risk premium shows, as predicted

by the model, a positive and countercyclical increase that is steeper in correspondence to market

recessions.

Factor exposures are estimated by running an unrestricted time-series linear regression. However,

the model implies a humped shape function of βh
ν

k as a function of hkt . Table 4 summarizes the

results of the first stage regression coefficients. Consistent with the model, we find that for low

levels of hkt the coefficient βh
ν

k is positive, while for larger levels of specific distress risk hkt the

parameter βh
ν

k becomes decreasing in hkt and becomes strongly negative and significant for the top

distress deciles sorted portfolios. This is important given Campbell et al. (2008) observation of a

counterfactual negative premium earned by firms with large firm specific distress risk.

A related interesting empirical confirmation about the relevance of the network distress factors

relates to Fama and French (1993) and Chan and Chen (1991) who conjecture that size and book-

to-market anomalies could partially be compensation for distress risk. This is indeed consistent

with our model. We directly investigate this conjecture and estimate the risk exposure of a cross-

section 5× 5 sorted portfolios according to size and value characteristics. Confirming Fama and

French (1993) and Chan and Chen (1991) conjecture, we find that companies with the largest B/M

and smallest size are also those with the highest exposures to network distress risk βh
ν

k . Table 10

summarizes the results. The portfolio of companies in the bottom size quintile and top size decile

has a network beta βh
ν

k equal to 0.207; on the other hand, the exposure to network risk decreases

for large-growth companies and the βh
ν

k of the portfolio of companies in the top size quintile and

bottom size decile βh
ν

k is equal to −0.432. Results in Table 3 confirm that the traded factors HMLt

and SMBt are redundant after we control for hνt .
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4.3. The “Deep Value” effect

A second prediction of the model (Theorem 3) is that, in a super-critical equilibrium, the network

risk premium NRPkt is state-dependent and a function of both the current state H i
t of the firm

and the level of network systemic risk hνt . The state dependence can be expressed in terms of the

observed dividend-yield of the firm. Indeed,

NRPkt
(
H i
t , h

ν
t

)
≡ rpk(H i, hν)−κσ=

[
Ytxk (H i

t)

P (H i
t , h

ν
t )
− a
]
. (17)

The parameter a is the permanent component of the dividend-price ratio: it is linked to cash flows

and prices according to the Gordon’s type of relationship: a = [κσ + rf ]− µ. Below the tipping

point,
Ytxk(Hit)
P(Hit ,hνt )

is constant and equal to a, so that rpk(H i, hν) = kσ and firms’ risk premia are

constant. However, above the tipping point, firms’ risk premia are time-varying and correlated with

the dividend-price ratio:

rpk
(
H i
t , h

ν
t

)
= (µ− rf ) +

Ytxk (H i
t)

P (H i
t , h

ν
t )
.

For stocks of firms that are not in distress, greater values of hνt induce both greater risk pre-

mia NRPkt (H i
t , h

ν
t ) and larger dividend-price ratios

Ytxk(Hit)
P(Hit ,hνt )

. Moreover, since
∂2rpk(Hit ,hνt )

∂νR
k
∂hνt

> 0 at

hνt = 0, as the equilibrium become supercritical greater values of hνt correlate with a larger vul-

nerability spread V mRt, namely a larger spread in the dividend-price ratios between cheap and

expensive stocks. Asness et al. (2018) refers to episodes of elevated dividend-price ratios spread as

“Deep Value” states and document that in these periods equity risk premia of high dividend-price

ratio (value) firms are greater. Moreover, they find that this additional positive excess return is

unexplained by traditional factors. Within our framework, we expect that “Deep Value” states

corresponds to periods of high V mRt and in light of eq.(17) we expect V mRt to be a predictor of

larger future excess returns of value relative to growth stocks. We investigate this additional model

implication. We sort stocks in terciles portfolios k according to firm vulnerability νRk as determined

by the input-output network. We compute the average sale-to-price ratio of each tercile portfolio

and define V mRt as the spread of the mean sale-to-price ratio of the portfolios of firms with the

highest vulnerability tercile minus the lowest tercile. 24 We find that the portfolio in the lowest

tercile of vulnerability has an average vulnerability νRk equal to 0.01 and sale-to-price ratio equal to

1.82; the portfolio in the top tercile has an average vulnerability νRk equal to 0.07 and sale-to-price

ratio equal to 2.7. Table 8 summarizes the results. As predicted by the model, we find that the

sale-to-price ratio of the portfolio of firms with the highest vulnerability is higher than that of

the portfolio of firm with lower vulnerability (see Figure 8). We also find that, consistent with the

24 We use price-to-sales ratio instead of price-to-dividend ratio. This choice is internally consistent with the measure
of vulnerability to idiosyncratic cash flow shocks that relies on sales data reported in IO tables and on the analysis
of skewness that will be discussed later.
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model, in the supercritical equilibrium (i.e. 1985-2019) V mRt is increasing in hνt , with a correlation

between hνt and V mRt is 0.51. Figure 9 shows the joint dynamics of the network systemic risk hνt

and of V mRt. There are four periods in which network systemic risk hνt has increased significantly

well above the tipping point of a supercritical equilibrium. In all these four periods, the sales-to-

price ratio have spiked in correspondence to spikes in hνt . In these periods, the model predicts that

the price of more vulnerable stocks should drop more significantly than resilient firms. Indeed, we

find that V mRt increases during these episodes, as Table 8 and Figure 8 indicate. The average

value of V mRt is 0.865 when the economy is above the tipping point, while it is 0.463 when the

economy is below the tipping point.

At the same time, the models predicts that expected excess returns of value firms should increase

relative to growth firms, see equation (15). Indeed, in the context of our model, value (growth)

stocks can be interpreted as firms that are not yet in distress (H i
t = 0) but have high (low) vulner-

ability νR. These firms have a high dividend-to-price ratio (as proxied by the sales-to-price ratio)

and also a higher book-to-market, as shown in Table 8. We investigate this implication by testing

whether a widening of the level of network systemic risk hνt (“Deep Value ”states) correlates with

an increase in the value risk premium. Accordingly, we run a predictive regression of the HmLt+1

value portfolio return, which we download from the Ken French website, on hνt and V mRt:
25

HmLt+1:t+τ+1 = ah
ν

τ + bh
ν

τ h
ν
t + ετt+1:t+τ+1, τ = 2, ..5

HmLt+1,t+τ+1 = aVmRτ + bVmRτ V mRt + ητt+1:t+τ+1. (18)

Table 9 summarizes the results for the period 1985-2020. The t-statistics use Newey-West cor-

rected standard deviations to account for autocorrelation and heteroskedasticity in errors due to

overlapping data. As predicted by the model, prior to June 1984 (below the tipping point), the

slopes of the two predictive regressions are not significant. After June 1984, however, the slope

coefficient bh
ν

τ of the first regression becomes statistically significant at the 1% confidence level

for holding periods returns above 2 years. The slope coefficient bVmRτ in the second regression is

statistically significant at the 10% level above 2 years and at the 1% level for longer maturities.

This confirms that both network systemic risk hνt and the V mRt spread are significant predictors

of the dynamics of the HmL factor. It is also interesting to notice that we cannot reject the null

hypothesis that H0 : a= 0 in either regression, suggesting that these variables can capture a large

component of the unconditional value of the HmL factor, which was unexplained before.

25 We cross-checked the results considering also value portfolios constructed relying on earning-price ratios and results
are the same.
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4.4. Cash-flow Skewness and Vulnerability

An additional prediction of the model is that, when network systemic risk hνt spikes in supercritical

equilibria, cascades of cash-flow shocks give rise to clusters of distress transitions. This manifests

in more negative cross-sectional skewness; the effect should be greater for more vulnerable firms

and sectors.

This prediction relates to an important literature in economics that investigates how the distri-

bution of the growth rate of firm-level variables (sales, profit, inventories, and employment) changes

over the business cycle. Salgado et al. (2019) finds that the third moments of this distribution—

skewness—is strongly pro cyclical. This happens because the distribution of negative growth rates

expands during recessions while the distribution of positive growth rates changes little. They argue

that this is the main driver behind the counter cyclicality of dispersion. Figure 10 provides a graph-

ical illustration of the shift in the cross-sectional skewness during two well-known crises: (a) 11

September 2001 (i.e. “9/11”) and (b) September 2008 (“Global Financial Crisis”).

In our model, this effect is due to the propagation effect that emerges in supercritical equilibria.

To test this prediction, we consider economic periods characterized by a large level of network

systemic risk hνt . During these periods, we compute the cross-sectional skewness KSKk at the

sector level for yearly log-sales growth, a proxy for cash flow growth. We sort sectors in five quintiles

based on their network vulnerability νRk , k = 1, ..,5 and study the link between KSKk and νRk .

Table 10 summarizes the results.

When we select the top 5% tail events in terms of hνt , we find a strong monotonic relationship

between KSKk and νRk . It ranges between +1.18% for the first quintile group of firms and −15.01%

for the most vulnerable quintile. The value of KSKk for the last two quintile group of firms is

significant at the 1% confidence level. A negative value of Kelley Skewness indicates that the left tail

accounts for more than one-half of the total dispersion and the distribution is negatively skewed.

As predicted by the model, the greater the vulnerability the more negative the Kelley Skewness.

The result is robust if one were to restrict the sample to tail events corresponding to even larger

levels of aggregate distress. Indeed, in time periods in which hνt is in the top 5% of the distribution,

the difference in skewness between the top and bottom νRk group of firm exceeds 20%.

An important counterfactual implication of the model is that this link should not be present

in subcritical equilibria, due to the absence of cascades. To test this counterfactual, we consider

the subcritical subsample prior to the transition of hνt above its critical value and repeat the test.

Consistent with the model, we cannot reject the null hypothesis of a lack of relationship between

KSKk and νRk . The KSKk value of the most vulnerable firms is −0.48% versus −2.6% for the

least vulnerable firms and neither is statistically significant. This confirms the importance of both

distinguishing the nature of the equilibrium and the role played by the global network structure,

which ultimately determines firms’ vulnerabilities.
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5. Conclusion

The introduction of a network structure in a DSGE model shows the existence of two classes of valu-

ation equilibria. In subcritical equilibria Lucas diversification assumption implies that firm-specific

distress shocks can be diversified and CCAPM asset price implications applies. In supercritical

equilibria, however, seemingly idiosyncratic shocks generate externalities that propagate gener-

ating aggregate fluctuations. In these equilibria, these externalities survive in the long-run and

must be compensated ex-ante, giving rise to a second distinct source of (network) risk premia. We

use the model to study the importance of accounting for the networks dynamics to address four

questions bringing them to the data. First, we identify a structural transition between a sub and

a supercritical valuation equilibrium showing that a shift in the investor expectations about the

aggregate probability of distress drove also a change in the price of risk of network systemic risks

determined by cross sectional analysis of the CRSP-Compustat panel. Taking into account the

network systemic risk factor improves the cross-sectional pricing performance rationalizing docu-

mented distress related anomalies. Transition to a supercritical equilibrium and network systemic

risk pricing provides also evidence of a relationship between spikes in distress cascade risk and

‘Deep Value’ episodes. A Network systemic risk factor, hνt and a Vulnerability based spread (V mRt)

have forecasting power and anticipate the increase in the Value premium driven by these episodes.

Finally, we show that as predicted by the model, a higher level of firm vulnerability command also

a higher drop of cash flows, as proxied by the Kelley Skewness of sales-growth, during high distress

intensity, tail events.

There are many possible directions of improvement of this analysis. First, it would be interesting

to explore the asset pricing implications of a network observed at a finer scale. This will require

the extension of the analysis to a network including recursive directed tree geometries that violate

Assumption 1 that are important to characterize transmission of shocks along customer-supplier

chains. The model has also relevant implications also for the link between the cross-section of

idiosyncratic volatilities and risk adjusted expected returns α3FF . It can potentially rationalize the

puzzling inverse relationship between idiosyncratic risk and risk premia has been studied also by

Ang et al. (2006). Last but not least26, a line of research we are currently exploring is the application

of this network model to the analysis of systemic risk for financial institutions where the impact of

illiquidity and the price expectations of financial institutions feed-back into expectation and may

generate macroeconomic instability.

26 Some results along these lines were already present in previous version of this paper and are part of a new dedicated
one that is in preparation.
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6. Tables

Table 1 Sectoral Mean Systemicness and Vulnerabilities.

Sector νL νR

1 Agriculture, forestry, fishing, and hunting 0.0075 0.0674
2 Mining 0.0325 0.0727
3 Utilities 0.0292 0.0520
4 Construction 0.0195 0.1118
5 Manufacturing 0.3679 0.01185
6 Wholesale trade 0.0528 0.0647
7 Retail trade 0.0209 0.0696
8 Transportation and warehousing 0.0557 0.0643
9 Information 0.0469 0.0607

10 Finance, insurance, real estate, rental, and leasing 0.1448 0.0292
11 Professional and business services 0.1344 0.0476
12 Educational services, health care, and social assistance 0.0063 0.0832
13 Arts, entertainment, recreation, accommodation, and food services 0.0203 0.0970
14 Other services, except government 0.0199 0.0896
15 Government 0.0413 0.0784

Systemicness and Vulnerability indicators are computed as the left and right singular vectors for the

network matrix ∆ij which is estimated using the input-output two-digit BEA industry tables. BEA provides
Make-Use tables and the corresponding IO table is referred by Ahern et al. (2014) as REVSHARE. IO tables
are aggregated at their coarsest Sectoral level and set ∆ij = IOij/IOii as the revenue share that is produced
in industry i and consumed by industry j 6= i. We recompute these two vectors every 5 years and use its

beginning of period value to avoid any look-ahead bias. Both Sectoral Systemicness and Vulnerability values
are normalized so that

∑N
i=1

νL,R = 1.
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Table 3 Fama-McBeth Regression results.

(1) (2) (3) (4) (5) (6)
cons -0.177∗∗ 0.065 0.047 -0.102∗ -0.042 -0.066

(0.079) (0.069) (0.07) (0.061) (0.072) (0.074)

βmkt 0.683∗∗∗ 0.648∗∗∗ 0.589∗∗∗ 0.764∗∗∗ 0.663∗∗∗ 0.668∗∗∗

(0.201) (0.204) (0.207) (0.2) (0.196) (0.206)

βh
ν

1.132∗∗∗ 1.450∗∗∗ 1.357∗∗∗ 1.165∗∗∗ 1.177∗∗∗

(0.222) (0.234) (0.228) (0.199) (0.229)

βCIV -0.416∗∗∗ -0.891∗∗∗ -0.807∗∗∗ -0.769∗∗∗

(0.117) (0.131) (0.128) (0.144)

βsmb -0.033
(0.127)

βhml 0.106
(0.158)

βrmw 0.701∗∗∗ 0.605∗∗∗

(0.143) (0.15)

βcma -0.027
(0.144)

N 25055 25055 25055 25055 25055 25055
R2 0.289 0.405 0.459 0.603 0.59 0.536
RMSE 0.540 0.490 0.486 0.339 0.311 0.293

The set of test assets are 25 portfolios sorted on size (ME) and book-to-market (BM)ratio, 10 portfolios sorted with respect
to Idiosyncratic Volatility which is computed following the procedure proposed by Ang et al. (2006) considering as reference

model the Fama French 3 factor model and 10 portfolios sorted on the firm-specific probability of distress as computed by

Campbell Hilsher and Szilagy (2008) relying on the inhomogeneous grid of percentile cutoffs used in the original reference to
provide a better sample of the tails. The estimation sample is 1970.01–2019.12. Column 1 contains the excess market return

Column 2 includes as factors the excess market return and the aggregate distress factor hνt as defined in the text, considering the

systemicness weighted mean of individual firm probability of distress as computed Campbell Hilsher and Szilagy (2008) Column
3 includes the excess market return, the aggregate distress factor hνt and common idiosyncratic volatility (CIV) innovation as

factors. The model in Column 4 (5) include the excess market return, the aggregate distress factor hνt and common idiosyncratic

volatility (CIV) innovation as defined in Herskovic et al. (2016) and the SMB HML (RMW CMA) traded factors as dowloaded
from the ken French website. The aggregate distress factor hνt and common idiosyncratic volatility (CIV) innovation have been

standardized to unit volatility. The FMB including all factors has not been included since SMB and HML can be replicated
as a linear combination of the factors included in Column 4. The Table reports the risk premia estimates (λ) associated with

the factors and their Newey and West standard errors (with 4 lags) from an average of cross sectional regressions of monthly

excess portfolio returns on factor exposures which have been computed considering a widening window with a minimum of 60
months including at least 24 observations.The last row reports the mean R2. ∗,∗∗,∗ ∗ ∗ denote significance at 10,5,1 percent,

respectively.
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Table 5 5 x 5 Value-Size portfolio Betas.

βh
ν

S1 S2 S3 S4 S5
V5 0.207 -0.008 -0.124 -0.259 -0.369
se (0.067) (0.065) 0.084) (0.110) (0.151)
V4 0.163 0.020 -0.090 -0.095 -0.304
se (0.097) (0.078) (0.093) (0.097) (0.124)
V3 0.140 -0.063 -0.129 -0.103 -0.139
se (0.126) (0.098) (0.094) (0.104) (0.136)
V2 -0.056 -0.171 -0.067 -0.210 -0.420
se (0.151) (0.124) (0.112) (0.116) (0.143)
V1 -0.324 -0.263 -0.270 -0.290 -0.432
se (0.198) (0.178) (0.139) (0.143) (0.153)

For each one of the 25 value-weighted portfolios double
sorted in quintiles with respect to value and size character-

istics, downloaded from the Ken French website, we run a

regression of the time series of returns over the period 1970-
2019 with respect to the benchmark valuation model that

includes as factors: the excess return of the market portfolio

and the aggregate distress factor hν . In the Table we denote
by V1-V5 the value quintiles and S1-S5 the size quintiles and

report the corresponding βh
ν

and the corresponding stan-
dard errors.

Table 6 Allocation of the Factor Mimicking Portfolios: Size-Value anomalies

Value-Size 5x5 S1 S2 S3 S4 S5 Sum S1-S5
V1 -0.11 -0.07 -0.08 -0.09 -0.18 -0.53 Short Growth
V2 0.05 -0.02 0.05 -0.04 -0.17 -0.14
V3 0.17 0.05 0.01 0.02 0.00 0.25
V4 0.18 0.10 0.03 0.03 -0.10 0.24
V5 0.21 0.08 0.01 -0.07 -0.14 0.10 Long Value

Sum V1-V5 0.50 0.13 0.02 -0.15 -0.58 -0.08
Long Small Short Big

The Table shows the mean allocation required to replicate the factor mimicking portfolio for hν in each one

of the 25 value-weighted portfolios double sorted in quintiles with respect to value and size characteristics.
In the Table we denote by V1-V5 the value quintiles and S1-S5 the size quintiles. Note that effective trading

of this portfolio would certainly incur in very high transaction costs, in fact it requires heavy shorting of

high distress firms that might be relatively illiquid.



Title: Financial Contagion in Network Economies
Preprint 41

Table 7 Allocations in Factor
Mimicking Portfolios: Idiosyncratic
Volatility and Distress anomalies

Ivol Distress
P1 0.10 0.06
P2 0.09 0.22
P3 0.05 0.12
P4 0.05 0.10
P5 0.04 0.04
P6 -0.02 -0.02
P7 -0.04 -0.05
P8 0.03 -0.09
P9 0.03 -0.31
P10 0.04 -0.36

Sum P1-P5 0.35 0.53
Sum P6-P10 0.05 -0.83

The first (second) column in the

Table shows the allocation in each

one of the 10 value-weighted portfo-
lios obtained sorting securities with

respect to idiosyncratic volatility and
probability of distress. Distress port-

folios are selected following the rule

considered in Campbell Hilsher and
Szilagy (2008)

Table 8 Vulnerability Tertile portfolios.

Variable Obs Mean Std. Dev. Min Max
νR1 427 0.0149 0.0038 0.0067 0.0241
νR2 427 0.0365 0.0026 0.0328 0.0450
νR3 427 0.0728 0.0024 0.0687 0.0769
bm1 427 0.675 0.231 0.435 3.7531
bm2 427 1.082 5.016 0.464 104.34
bm3 427 0.859 0.610 0.498 5.029
sp1 427 1.823 0.770 0.861 5.256
sp2 427 1.443 0.608 0.688 4.133
sp3 427 2.688 1.126 1.409 7.900
∆sp 427 0.865 0.562 0.025 3.421

t > 1984m6
∆sp 174 0.463 0.310 -0.041 1.107

t < 1984m6

Summary statistics for the relevant characteristic ratios of the
tertile portfolios created sorting securities according to their vul-

nerability. For each portfolio we report mean vulnerability, mean
book-to-market ratio, mean price-to-sale ratios. Relevant financial

ratios for single securities have been downloaded from the CRSP

database.
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Table 9 Deep Value Predictive Regression Results.

Date > June 1984 bh
ν

ah
ν

bVmR aVmR

Holding Period

2 years 2.66 4.42 8.12 1.87
[0.88] [1.05] [1.53] [0.52]

3 years 7.09 5.80 11.27 3.27
[2.77]∗∗∗ [1.05] [1.86]∗ [0.68]

4 years 9.73 7.40 15.29 4.18
[3.44]∗∗∗ [1.04] [2.59]∗∗∗ [0.71]

5 years 10.46 9.89 18.57 5.74
[2.41]∗∗∗ [1.04] [3.09]∗∗∗ [0.79]

The Table summarizes the results for the period 1985-2020. In

fact, prior to the structural break located in June 1984, the predic-
tive relations are not significant. Predictive variables are defined as:

(i) the yearly mean level of aggregate distress hνt and (ii) Vulnera-

bility Spread V mR which is determined by the mean price-to-sales
ratio for firms in high vulnerability terciles minus the mean price-

to-sales ratio for firms in the low vulnerability tercile. Time vari-
ation of the two standardized regressors hνt and V mRt are those

plotted in Fig.(9). Returns of the portfolio HMLt are downloaded

from the Ken French website and cumulated over the relevant hori-
zon. The specification of the regressions is HMLt+1:t+τ+1 = ah

ν

τ +

bh
ν

τ hνt + ετt+1:t+τ+1 and HMLt+1,t+τ+1 = aVmRτ + bVmRτ V mRt +

ητt+1:t+τ+1. Standard errors include a Newey-West correction (num-
ber of lags is set equal to the holding period) to take into account

autocorrelation and heteroskedasticy. t-stats are reported within

square brackets [.].
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Table 10 Kelley Skewness and Firm Vulnerability.

νR KSK KSK KSK
Mean top 5% top 2% Sub Critical

V1 0.020 +1.18% +0.31% -2.6%
se (1.55%)
V2 0.056 +0.65% -1.24% +4.7%
se (2.57%)
V3 0.069 +0.07% -4.65% +3.1%
se (4.61%)
V4 0.080 -6.83% -4.21% -3.3%
se (2.53%)***
V5 0.099 -15.01% -19.80% -0.48%
se (3.27%)***

Kelley Skewness provides a simple decomposition of the share

of total dispersion that is accounted for by the left and the right

tails of a distribution. It is given by: KSK := P9050

P9010
− 5010

P9010

where PQ2Q1 denote the dispersion between Quantile Q1 and

Q2. A negative value of Kelley Skewness indicates that the left

tail accounts for more than one-half of the total dispersion and
the distribution is negatively skewed. We restrict our analysis to

those periods of time characterized by high aggregate distress,

in particular those that correspond to the top 5 percentiles for
the distribution of hν reported in Fig 5. We split the full sample

of firms who have quarterly data on sales in Compustat over

five quintile groups of firms sorted with respect to their vul-
nerability νR and report the cross sectional skewness KSK for

yearly log sales growth within each quintile group. The first col-
umn reports the mean vulnerability for each group, the second

column reports the mean (standard deviation) KSK computed

restricting the sample to percentiles in the range 95− 100. For
illustration the fourth column report the point estimate for the

top 2% period. The last column reports the KSK prior to the

critical transition, when the economy is estimated to be in a sub-
critical equilibrium. ∗,∗∗,∗ ∗ ∗ denote respectively significance

at 10,5,1 percent.
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7. Figures

Figure 2 Graphical illustration of the weighted directed network.

1970 2015

Note. Graphical illustration of the weighted directed network for the first year 1970 IO-Table and the year 2015

IO-Table considered in the sample. Node numbering is consistent with that reported in Table 1. Size of each edge

(i, j) is proportional to the entry ∆i,j of the network matrix.

Figure 3 Time series evolution of the aggregate distress indicator hνt .
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Note. Time series evolution of the aggregate distress indicator hνt computed as described in eq.(16) and its mean pre

and post structural break.



Title: Financial Contagion in Network Economies
46 Preprint

Figure 4
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with 95% confidence bands around the null
Recursive cusum plot of H_nu

Parameter stability for the mean of the process hνt .

Note. Results from the recursive cumulative sum of squared residuals test with confidence bars at 95%. We run the

test on the sample: 1971m1− 2019m12. We test the hypothesis Ho: No structural break. The null is rejected with

a test statistic (3.8885) above the 1% critical threshold (1.1430). A test based on sup-Wald test statistic localizes a

structural break in June 1984.

Figure 5 Distributional properties of the aggregate distress indicator.

Note. Distributional properties of the aggregate distress indicator hνt post structural break. Shaded areas denote

respectively the level of the right standard deviation, of the 95th and of the 99th percentiles of the empirical distri-

bution. Peaks correspond to cascades, i.e. clusters of high distress with low probability of occurrence. Panel A Time

Series representation. Panel B: Cumulated empirical distribution.
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Figure 6 Time series evolution of the cumulated log returns

June 1984
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Note. Factor mimicking portfolios for the benchmark two factor model that includes the (traded) excess market

return as dowloaded from the Ken French website and the aggregate distress determined from the first pass slopes of

the Fama-MacBeth (1973) cross-sectional regression. Mean portfolio allocation corresponding to the factor mimicking

portfolio for hν are reported in Tables 6 and 7. Since market factor is traded, we report for reference also the cumulated

return of the original factor. The Sharpe Ratios of the corresponding portfolios are (in brackets those computed over

the period post-1984): SRMktRf = 0.431(0.779) , SRFMPhν = 0.853(0.983)
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Figure 7 Time series evolution of the cumulated log returns

June 1984
-2

0
2

4
6

8
cu

m
ul

at
ed

 lo
g 

re
tu

rn

1970m1 1980m1 1990m1 2000m1 2010m1 2020m1
date

Aggregate Distress mimick ptf Idiosyncr Vol mimick ptf

Market mimick ptf Market ptf

Note. Factor mimicking portfolios for the three factors model including market, aggregate distress and Common

Idiosyncratic Variance as determined from the first pass slopes of the Fama-MacBeth (1973) cross-sectional regression.

Since the market portfolio is traded, we report for reference also the cumulated return of the original factor. The

Sharpe Ratios of the corresponding portfolios are: SRMktRf = 0.431(0.779) , SRDistress = 0.853(0.983), SRCIV =

−0.567(−0.556)

Figure 8 Time series evolution of the normalized tertile sales-to-price ratios
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Note. In the figure we plot the monthly variation of the mean sales-to-price ratios for the third and the first tertile

groups of securities sorted according to their level of vulnerability. The vertical line represents the structural break.

Monthly data refer to the period 1970-2019, the individual sales-to-price ratios have been downloaded from CRSP.

Vulnerability is determined from the BEA Make/USE tables provided from the BEA as described in the text.
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Figure 9 Time series evolution of the predictor variables.
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Figure 10 Endogenous Cross-Sectional Skewness.
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Additional results and Proofs

EC.1. Proofs

We assume that the contagion process HS
t follows a continuous time homogeneous Markov process with a finite

number of states. Each configuration vector H∈C is a N dimensional vector of dummy variables, hence the set of

configurations C = {0,1}N has 2N elements. Relying on a well known result, see e.g. Duffie (2010), we define the

continuous time contagion dynamics in a filtered probability space
(

Ω,{Ft}t≥0 ,
(
PGS
)
H∈C ,

(
HS
t

)
t≥0

)
in terms of 2N

Poisson Processes that count for each firm i the number of distress and recovery transitions occurred up to time t.

The dynamics of each component Hi
t of the process HS

t =
(
H1
t , ....,H

N
t

)
are defined by:

dHi
t : = (1−Hi

t−)dN+,i
t

(
HS
t−

)
−Hi

t−dN
−,i
t

(
HS
t−

)
i= 1, ..,N (EC.1)

Hi
0 =

{
1 if i∈ S,
0 if i /∈ S (EC.2)

and correspondingly, jump intensities of the Poisson processes N+,i
t

(
HS
t

)
, N−,it

(
HS
t

)
are set equal to (1−Hi

t−)λi(HS
t )

and Hi
t−η

i(HS
t ). The corresponding continuous time dynamics is Markov in the state vector HS

t . In light of the

above Poisson representation, only transition rates between configurations that differ at most for the state of a single

firm are allowed. Correspondingly, the transition rate matrix or infinitesimal generator of the Markov process can be

defined as follows:

Definition EC.1. Let A be the transition rate matrix for the contagion process HS
t . It has size 2N ×2N and

its elements AH,H′ are:

• The unique out-of-diagonal non-zero elements are:

AH,H{i} :=
(

1−Hi
)
λi(H) +Hiηi(H), , i= 1, ..,N. (EC.3)

where H{i} denotes the configuration that differs from configuration H only for the distress state of firm i, i.e.(
H{i}

)
j

= (H)j for j 6= i while
(
H{i}

)
i
= 1−Hi.

• The diagonal elements are uniquely determined by the condition that row elements sum to zero, hence:

AH,H :=−
N∑
i=1

AH,H{i}

Singular Value Decomposition: general formulation. We report here the basic formulation on the K factor

approximation of a matrix ∆ relying on the Singular Value Decomposition adapted to the present notation. For an

introduction to SVD and a proof of the following proposition, see Golub and Van Loan (2012):

Proposition EC.1. Consider a generic directed network G, then the best rank-K approximation of the

network matrix ∆ij 1≤ i, j ≤N , N ≥K, with respect to the 2-norm, ‖∆‖2 = max|v|=1 |∆v|, is given by:

∆
(K)
ij = α

(N)
0 νRi ν

L
j +

K−1∑
k=1

α
(N)
k v

(k)
i u

(k)
j

where α
(N)
0 is the principal singular value of ∆ij, ν

R
i is firm i vulnerability and νLj is firm j systemicness, α

(N)
k is the

k− th order singular value while v
(k)
i (u

(k)
j ) is the k− th right (left) singular component.
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The following Lemma is necessary to prove Theorem 1. Its proof follows directly from properties i) and ii) stated

in Assumption 2:

Lemma EC.1. Assume Assumption 2 Then:

lim
N→+∞

αG
N∑
i=1

xiyi =Lx ·y =L

K∑
k=1

pkxkyk

and the limiting expression is finite if and only if xk, yk are finite for k= 1, ..,K.

Proof of Theorem 1. Consider first the process for a finite number of firms N in the economy.

• The dynamics of Hi
t has to be computed applying Ito Lemma for pure jump processes from the dynamics of

the vector state variable H considering the projection function that maps the configuration H on the value of the

single firm state variable:

Hi (H) : H =
(
H1, ...,HN

)
→Hi

Then:

dHi
t (Ht) =

N∑
j=1

[
(+δij)

(
1−Hi

t

)(
νRi αλH

ν
t

)
+ (−δij)Hi

tη
]
dt

N∑
j=1

[
(+δij)

(
1−Hi

t

)(
dN+,i

t (Ht)−
(
νRi αλH

ν
t

)
dt
)

+ (−δij)Hi
t

(
dN−,it (Ht)− ηdt

)]
Hence, defining the martingale (compensated) process as:

dM i
t :=

[
(+1)

(
1−Hi

t

)(
dN+,i

t (Ht)−
(
νRi αλH

ν
t

)
dt
)

+ (−1)Hi
t

(
dN−,it (Ht)− ηdt

)]
(EC.4)

we can write:

dHi
t =

[
(+1)

(
1−Hi

t

)(αGλ
η
νRi

(
+N∑
i=1

νLi H
i
t

))
+ (−1)Hi

t

]
ηdt+ dM i

t

• Correspondingly, repeating the computation on all the firms:∑+N
i=1 ν

L
i dH

i
t∑+N

i=1 ν
L
i

=

∑+N
i=1 ν

L
i

[
(+1)

(
1−Hi

t

)(
νRi

αλ
η
Hν
t

)
+ (−1)Hi

t

]
ηdt+ dM i

t∑+∞
i=1 ν

L
i

dHν
t = Hν

t

[
+N∑
i=1

νLi ν
R
i

(
1− H̃ν

t

)((+N∑
i=1

νLi

)
αGλ

η

)
+ (−1)

]
ηdt+

∑+N
i=1 ν

L
i dM

i
t∑+N

i=1 ν
L
i

H̃ν
t : =

∑+N
i=1 ν

L
i ν

R
i H

i
t∑+N

i=1 ν
L
i ν

R
i

,

• Now we compute the limiting expression for N→+∞ of the previous expressions relying on Lemma EC.1 and

on the strong law of large numbers for Poisson processes. Then:

lim
N→+∞
Nk
N
→pk

∑+K
k=1

Nk
N
νLk

(
1
Nk

∑
i∈Ck dM

i
t

)
νL ·1 = 0

and, for N→+∞ the evolution of

hνt := lim
N→+∞
Nk
N
→pk

(
+K∑
k=1

Nk
N

νLk
νL ·1

(∑
i∈Ck H

i
t

Nk

))
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is given by the deterministic equation:

dhνt
dt

= −ηhνt
[
1−

(
1− h̃νt

)
L
(
νL · νR

) λ
η

]
(EC.5)

h̃νt : =

K∑
k=1

pk
νLk ν

R
k

νL · νR
(
hkt

)
.

where the dynamics for hkt , is deterministic and given by:

dhkt = lim
Nk→+∞

1

Nk

∑
i∈Ck

dHi
t

=

[
(+1)

(
1−hkt

)(Lλ
η
νRk

(
νL · 1

)
(hνt )

)
+ (−1)hkt

]
ηdt

• As expected hν∞ = 0, hk∞ = 0 , k = 1, ...,K is a solution for eq.(EC.5). A second positive solution hν∞ > 0 may

arise only if
(

1− h̃νt
)
L(νL·νR)λ

η
− 1 = 0. By construction h̃νt ≤ 1, hence existence of the solution requires

1

L(νL·νR)λ
η

= 1− h̃νt

0≤ h̃νt < 1

and a fortiori it is required that
L
(
νL · νR

)
λ

η
> 1

Hence, defining the tipping point value:

K (∆) :=
1

L (νL · νR)

we can conclude that in the region λ
η
<K (∆) there exists a unique nonnegative solution which is given by hν∞= hk∞ =

0.

• Now we prove that, for λ
η
>K(∆) there exists a strictly positive solution. Relying on the steady state condition

for the dynamic evolution of the distress rates hkt and on the definition of hν∞, it is immediate to derive by self-

consistency the following fixed point equation:

hν∞ =

∑K
k=1 pkν

L
k h

k
∞

νL ·1 =

K∑
k=1

pk
νLk
νL ·1

Lλ
η
νRk h

ν
∞
(
νL ·1

)
Lλ
η
νRk h

ν∞ (νL ·1) + 1
.

• Now we prove that in the supercritical region, i.e. for λ
η
>K(∆) it admits a strictly positive solution, i.e. there

exists a value hν∞ > 0 such that:

1 =

K∑
k=1

pk

Lλ
η
νLk ν

R
k

Lλ
η

(νL ·1)νRk h
ν∞+ 1

.

Consider the function F defined as follows:

F (hν∞) := 1−
K∑
k=1

pk
νLk ν

R
k L

λ
η

L (νL ·1) λ
η
νRk h

ν∞+ 1
.

It is easy to verify that F (hν∞) is continuous and monotonic increasing in [0,1]. Now we prove also that for Lλ
η
> 1

νL·νR ,

F (0)< 0 while F (1)> 0:

hν∞ = 0, L
λ

η
>

1

νL · νR

⇒ F (0) = 1−Lλ
η
νL · νR < 0
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hν∞ = 1,L
λ

η
>

1

νL · νR

⇒ F (1) = 1−
K∑
k=1

pk
νLk ν

R
k L

λ
η

Lλ
η
νRk (νL ·1) + 1

= 1−
K∑
k=1

pk
1(

(νL · 1) +
(
Lλ
η
νRk

)−1
)

1(
(νL·1)+(Lλη νRk )−1

)< 1

(νL·1)
>

= 1−
(
νL · 1

)
(νL · 1)

= 0

Hence by continuity there must exist a non trivial value 0<hν∗∞ < 1 such that F (hν∗∞ ) = 0. (Observe that the explicit

expression for the steady state value h̃ν∞
∗

is determined inserting in eq.(EC.5) the values hk∞ (hν∗∞ ), k= 1, ...K.

• Now we prove that the positive solution hν∗∞ > 0 is stable in the region λ
η
>K(∆) . Observe that an increase of

hνt increases also h̃νt , in fact:

∂h̃νt
∂hkt

=
νLk ν

R
k

νL · νR > 0

∂hνt
∂hkt

=
νLk
νL · 1 > 0

hence in a neighborhood of the fixed point:[
∂h̃νt
∂hkt

]
h̃ν∞
∗
> 0 ⇔

[
∂hνt
∂hkt

]
hν∗∞

> 0

On the other hand, observe that for positive (negative) deviations h̃ν∞
∗
±∆:[

dhνt
dt

]
hν∗∞

=−ηhνt
[
1−

(
1− h̃νt

)
L
(
νL · νR

) λ
η

]
h̃ν∞
∗±∆

=∓ηhν∞∆≶ 0

the variation is negative (positive), hence the equilibrium point corresponding to hν∗∞ is stable.

Proof of Corollary 1. In the large economy limit it is possible to compute the ratio between the expected

consumption when dynamics is above the tipping point and the one, corresponding to the standard Lucas tree

economy that is realized below the tipping point:∑N
i=1 x

(
Hi
t

)
Yt∑N

i=1 x (0)Yt
: =

1

N

N∑
i=1

((
1−Hi

t

)
+
x (1)

x (0)
Hi
t

)

=

K∑
k=1

1

N

∑
i∈Ck

(
1−

(
1− x (1)

x (0)

)
Hi
t

)
N→+∞→

K∑
k=1

pk

(
1−

(
1− x (1)

x (0)

)
hkt

)

For λ
η
>Kc and small deviations from Kc the tipping point then hν∞ << 1 and it is possible to assume hνt << 1.

Then to leading order in hνt : ∑N
i=1 x

(
Hi
t

)
Yt∑N

i=1 x (0)Yt
'

K∑
k=1

pk exp

(
−
(

1− x (1)

x (0)

)
νRk α

λ

η
hνt

)
that will be strictly than 1 for any super-equilibrium state. Consider now the additional contribution induced by the

network on the cash flow drift for a firm i:

d [xi (Ht)]Yt
xi (0)Yt

=
dxi (Ht)

xi (0)

Our analysis is focused on the residual component of the cash-flow conditional mean variation of the n− th moment

which is given by:
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• Dynamics of idiosyncratic cash flow

dxi (Ht) =− (xi (0)−xi (1))
(

1−Hi
t

)
dN i,↑

t + (xi (0)−xi (1))Hi
tdN

i,↓
t

= (xi (0)−xi (1))
([

(−)1
(

1−Hi
t

)
νRi αλH

ν
t + ηHi

t

]
dt+ dM

(−),i
t

)

• Dynamics of cash flow conditional n− th order variation.

〈dxi (Ht) , .... 〈dxi (Ht) , dxi (Ht)〉〉︸ ︷︷ ︸
n - times

= (xi (0)−xi (1))n
([

(−1)n
(

1−Hi
t

)
νRi αλH

ν
t + ηHi

t

]
dt+ dM

(±),i
t

)
If I now sum over i assuming uniform levels x (0), x (1) in the large economy limit

limN→+∞ 1
N

∑K
k=1

∑
i∈Ck

〈dxi (Ht) , .... 〈dxi (Ht) , dxi (Ht)〉〉
x (0)n︸ ︷︷ ︸

n th cumulant

(EC.6)

=

K∑
k=1

pk

(
1− x (1)

x (0)

)n ([
(−1)n

(
1− νRk αλhνt

)
νRk αλh

ν
t + ηνRk αλh

ν
t

]
dt
)

Valuation in a finite network economy Buraschi and Porchia (2012) The computation of the equilibrium

risk free rate and risk premia at finite N that we report below for completeness is the same of Buraschi and Porchia

(2012) . It is derived computing the explicit dynamics of the equilibrium state price density. Since the dividend pro-

cesses are Di
t = Ytx

i
t, i= 1, . . . ,N , aggregate consumption reads Ct = YtX

(N)
t = Yt

∑N
i=1 x

i
t

27. Then, the consumption

optimality condition of the representative agent implies the following equilibrium state price density, ξt:

ξt ∝ e−δtY −γt

(
X

(N)
t

)−γ
. (EC.7)

Ito computation of drift, diffusion and jump components for (EC.7) uniquely identify the expression of the state price

density. The equilibrium interest rate (rt (H)), market prices of diffusive risk (κ), and market price of distress/recovery

risk (θit (H)− 1) are given by:

rt (H) = δ+ γµ− 1

2
γ(γ+ 1)σ2−

N∑
i=1

{
Hi
t

[
1−

(
xi (0) +

∑
xt−

xi (1) +
∑
xt−

)−γ]
ηit+

+(1−Hi
t)

[
1−

(
xi (1) +

∑
xt−

xi (0) +
∑
xt−

)−γ]
λit

}
(EC.8)

κ = γσ

θit (H) = Hi
t

(
xi (0) +

∑
xt−

xi (1) +
∑
xt−

)−γ
+ (1−Hi

t)

(
xi (1) +

∑
xt−

xi (0) +
∑
xt−

)−γ
i= 1,2, . . .N, (EC.9)

where
∑
xt− denotes the sum of trees’ persistent dividend components excluding i at time t−. θit (H)−1 is the market

price of firm i’s risk of dividend jumps, either distress or recoveries. λiθit and ηiθit are the risk-neutral transition

27 When the limiting expression as N →+∞ is required, total consumption Ct is rescaled to total consumption per
firm CtN

−1. Assumption of homothetic preferences makes the rescaling irrelevant for the pricing implications.
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intensities of distress and recovery. The computation of the equilibrium conditional equity risk premium for a claim

on dividends of firm i:

rpit (H) = E
[
dP i(H)

P i(H)

∣∣∣∣Ft]+
Di
t

P i(H)
− rt,

goes as follows: we apply Ito’s lemma to the martingale Mi
t = ξtP

i(H) +
∫ t

0
ξsD

i
sds, taking into account expression

for the state-price density. We use the following notation: H−j (H+j) coincides with the current state H, except for

firm j (not) in distress. θjt (H) is the market price of distress/recovery risk, reported in (EC.9) while

Ri(H−j) =
P i(H−j)

P i(H)
< 1, Ri(H+j) =

P i(H+j)

P i(H)
> 1

Then, one has:

dMi
t = ξtD

i
tdt+ ξtP

i(H)mi
tdt− ξtP i(H)rtdt− ξtP i(H)κσdt− ξtP i(H)(κ−σ)dZt+

+ ξtP
i(H)

N∑
j=1

[
Ri(H±j)− 1

]
dHj

t + ξtP
i(H)

N∑
j=1

(1− 2Hj
t )
(
θjt − 1

)
dM j

t +

+ ξtP
i(H)

N∑
j=1

[
Ri(H±j)− 1

]
(1− 2Hj

t )
(
θjt − 1

)〈
dHj

t , dM
j
t

〉
= ξtD

i
tdt+ ξtP

i(H)mi
tdt− ξtP i(H)rtdt− ξtP i(H)κσdt− ξtP i(H)(κ−σ)dZt+

+ ξtP
i(H)

N∑
j=1

[
Ri(H±j)− 1

]
dHj

t + ξtP
i(H)

N∑
j=1

(
θjt − 1

)
(1− 2Hj

t )dM j
t +

+ ξtP
i(H)

N∑
j=1

[
Ri(H±j)− 1

]
(1− 2Hj

t )2︸ ︷︷ ︸
1

(
θjt − 1

)
dHj

t

= ξtD
i
tdt+ ξtP

i(H)mi
tdt− ξtP i(H)rtdt− ξtP i(H)κσdt− ξtP i(H)(κ−σ)dZt+

+ ξtP
i(H)

N∑
j=1

(
θjt − 1

)
(1− 2Hj

t )dM j
t + ξtP

i(H)

N∑
j=1

[
Ri(H±j)− 1

]
θjtdM

j
t +

+ ξtP
i(H)

N∑
j=1

[
Ri(H±j)− 1

](
θjtλj

(
1−Hj

t

)
+ ηjθ

j
tH

j
t

)
dt

mi
t denotes equity i’s instantaneous expected return E[dP i/P i|Ft]. H−j ( H+j) is the realization of H to which the

present state H jumps if firm j has a distress (recovery). Dividing both sides by ξtP
i(H), taking expectations and

recalling that the martingale property of Mi
t implies that the drift component must vanish and we obtain:

mi
t +

Di
t

P i(H)
− rt = κσ−

N∑
j=1

Hj
t

[
Ri(H±j)− 1

]
θjtη

j
t −

N∑
j=1

(1−Hj
t )
[
Ri(H±j)− 1

]
θjtλ

j
t

In conclusion, let rpit denote the equilibrium risk premium of the i− th security. We have:

rpi = κσ+ rpiλ + rpiη

rpiλ (H) =

N∑
j=1

(1−Hj
t )λjt (H)θjt (H)

[
1−Ri(H−j)

]
.

rpiη (H) =

N∑
j=1

Hj
t η
j
t (H)θjt (H)

[
1−Ri(H+j)

]
.

The pure jump risk premium is easy to interpret. θjtλ
j
t (θjtη

j
t ) is the risk-neutral distress (recovery) intensity of firm

j. It is greater (smaller) than the objective transition intensity λj (ηj). The market price of distress (recovery) risk
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can thus be interpreted as the risk adjustment per unit of (instantaneous) probability that the agent requires as

compensation for the risk of distress (recovery). If the event materializes, security i responds with a gross returns

Ri(H−j) (Ri(H+j)). Thus the distress risk premium is a weighted average of the risk adjusted returns on security i

that would emerge if firm j had a distress (recovery), with the likelihoods of distress (recovery) as weights. Again,

the network determinants of the cross-section of risk premia are hard to capture at visual inspection, as they are

embedded in the transition matrix of state variables. The next Proposition states the general expression of the

price-dividend ratio in a general network structure for finite N and is necessary to prove the Theorem 2.

Proposition EC.2. Conditional on the current state H The equilibrium price-dividend ratio satisfies the

following multidimensional stochastic Gordon growth condition:

P i(H)

Di (H)
=
P̂ i (H)

Ci (H)
,

with

P̂ i (H) : = lim
T→∞

∫ T

t

exp(A(s− t))︸ ︷︷ ︸
1

e−a(s−t)Ci (H)︸ ︷︷ ︸
2

ds (EC.10)

Ci (H) : = xi
(
X(N) (H)

)−γ
,

where A is the transition rate matrix and

a= δ−µ (1− γ)− σ2γ (1− γ)

2

is the inverse of the standard (representative firm) Lucas equilibrium price-dividend ratio.

Remark EC.1. Note that Term 1 in equation (EC.10) is the transition probability matrix of the network

Markov chain, from time t to s.28 Term 2 is the conditional gross dividend of the firm discounted by the intertemporal

marginal rate of substitution, namely the equilibrium pricing kernel. Therefore, P̂ i is the expectation of cumulative

discounted dividends, in the infinite horizon limit, conditional on the initial distress state H.

Proof of Proposition EC.2. Let H denote the initial configuration, P i(H) the price of the claim to the i−th

endowment stream and Di (H) = Ytx
i (H) the corresponding initial dividend level. Then the Theorem states that

P i(H)

Di (H)
=
P̂ i (H)

Ci (H)
,

where:

P̂ i (H) : = 1
′
H (aI2N −A)−1 Ci

Ci (H) : = xi (H)X(N) (H)−γ

1H is a vector with 2N entries with 1 in the entry corresponding to configuration H and zero elsewhere, Ci is the

vector with 2N entries Ci (H) while I2N is the 2N−dimensional identity matrix and A is the transition rate matrix

and

a= δ−µ (1− γ)− σ2γ (1− γ)

2

28 exp( · ) in this expression in a matrix exponential.
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Given the equilibrium state-price density ξt as in (EC.7), computing the expectation of the diffusive component one

gets:

P i(H)

Di (H)
=

E
[∫∞
t
ξsYsx

i
sds | Ft

]
Ytxit(H)ξt(H)

i

=
P̂ i(H)

Ci (H)
;

where

P̂ i(H) = E

[∫ ∞
t

e−a(s−t)xis

(
X

(N)
s

X
(N)
t

)−γ
ds | Ft

]
where by assumption a= δ−µ(1− γ) + σ2

2
(1− γ)γ > 0 so that the integral is converging. The explicit form for the

vector P̂ i = [. . . , P̂ i(H), . . . ]′ is determined as follows: absence of arbitrage opportunities implies that the process∫ t

0

e−asxis

(
N∑
j=1

xis

)−γ
ds+ e−atP̂ i(H) (EC.11)

must be a Ft−martingale, hence its predictable component must vanish. Therefore applying Ito’s lemma to (EC.11)

and taking conditional expectations, the resulting expression must vanish. Using the notation λ̂it =Hi
tη
i+(1−Hi

t)λ
i
t,

we obtain the following system of equations(
−a−

N∑
j=1

λ̂jt (H)

)
P̂ i(H) +

N∑
j=1

λ̂jt (H) P̂ i(H±j) +xit

(
X

(N)
t

)−γ
= 0 (EC.12)

The current distress state for the economy, H, moves to the state H+j if firm j recovers from a distress, or to H−j if it

experiences a distress. The system of equations (EC.12) determines the functions P̂ i(H). We can write the resulting

linear system of equations in vector form:

(aI−A) P̂i−Ci = 0 (EC.13)

In conclusion P̂i = [. . . , P̂ i(H), . . . ]′ contains functions P̂ i( · ) conditional on all 2N possible states H.29 Similarly

Ci = [. . . , xi(H)
(∑N

j=1 x
j(H)

)−γ
, . . . ]′ contains all conditional (persistent) dividends discounted by the marginal

utility of aggregate consumption. I is a 2N × 2N diagonal matrix. A is the Markov transition matrix. From (EC.13)

one gets immediately

P̂ i = (aI−A)−1Ci

a is a diagonal matrix with a on the main diagonal. A is the transition matrix of multidimensional Markov chain.

Ci = [. . . , xi(H)
(
X(N) (H)

)−γ
, . . . ]′ is the 2N vector of dividend components paid in each state, discounted by the

marginal utility. The 2N−vector V i of P/D ratios for all states H is then:

Vi = diag
(
Ci
)−1

(a−A)−1Ci

�

Proof of Theorem 2. Since x (0)>x (1)> 0:

θj (Ht) : =Hj
t

(
xjt (0) (

∑
xt−)−1 + 1

xjt (1) (
∑
xt−)−1 + 1

)−γ
+ (1−Hj

t )

(
xjt (1) (

∑
xt−)−1 + 1

xjt (0) (
∑
xt−)−1 + 1

)−γ
j = 1,2, . . .N,

= Hj
t

(
1 +

(
xjt (1)−xjt ( 0)

)(∑
xt−
)−1

)−γ
+ (1−Hj

t )

(
1−

(
xjt (1)−xjt (0)

)(∑
xt−
)−1

)−γ
= Hj

t

(
1− γ

(
xjt (1)−xjt (0)

)(∑
xt−
)−1

)
+ (1−Hj

t )

(
1 + γ

(
xjt (1)−xjt (0)

)(∑
xt−
)−1

)
= 1 + γ(1− 2Hj

t )
(
xjt (1)−xjt (0)

)(∑
xt−
)−1

29 Of course not all of them are mutually reachable, because at most one of the trees can fall in distress or recover at
some time instant.
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and the second term is of order 1/N Hence computation of prices goes as follows:[
P̂ it (h,0)

P̂ it (h,1)

]
=

1

det

[
+η+ a +ανRi λh

+η +ανRi λh+ a

][
xit (0)Y −γt

(
xit (0) +

∑
xt−
)−γ

xit (1)Y −γt

(
xit (1) +

∑
xt−
)−γ

]
N→+∞' (

∑
xt−)−γ

det

[
xit (0) (η+ a) +xit (1)ανRi λh
xit (0)η+xit (1)

(
ανRi λh+ a

) ]
and correspondingly, returns determined by state transitions are given by:

Ri(H+i) =
P i(0)

P i(1)
=
ανRi λhx

i
t (1) + ηxit (0) + axit (0)

ανRi λhx
i
t (1) + ηxit (0) + axit (1)

= 1 + a
xit (0)−xit (1)

(ανRi λh+ a)xit (1) + ηxit (0)
= 1 + a

xit(0)

xit(1)
− 1

(a+ανRi λh) + η
xit(0)

xit(1)

and

Ri(H−i) =
P i(1)

P i(0)
=
ανRi λhx

i
t (1) + ηxit (0) + axit (0) + a

(
xit (1)−xit (0)

)
ανRi λhx

i
t (1) + (η+ a)xit (0)

= 1− a
xit(0)

xit(1)
− 1

(a+ η)
xit(0)

xit(1)
+ανRi λh

hence

Ri(H−it )
N→+∞' 1−

(
xi(0)

xi(1)
− 1
)

(
1 + η

a

)(xi(0)

xi(1)
− 1
)

+
(

1 + ανiλh
a

+ η
a

) ,
Ri(H+i

t )
N→+∞' 1 +

(
xi(0)

xi(1)
− 1
)

(
1 + η

a
+ ανiλh

a

)
+ η

a

(
xi(0)

xi(1)
− 1
) .

and inserting these expressions in the general expression for rpλ and rpη :

rpiλ (H) =

N∑
j=1

(1−Hj
t )λjt (H)θjt (H)

[
1−Ri(H−j)

]
.

rpiη (H) =

N∑
j=1

Hj
t η
j
t (H)θjt (H)

[
1−Ri(H+j)

]
.

and in the rank one approximation, the pair (Hi
t , h

ν
t ) is a sufficient statistic to describe the impact of configuration

Ht on the risk premium of firm i then, with a slight abuse of notation, we can write:

rpλ (h) : = rpi
(
Hi
t = 0, hνt = h

)
=
λ

η
ανih

(
xi(0)

xi(1)
− 1
)

(
1
η

+ 1
a

)(
xi(0)

xi(1)

)
+ ανiλh

η
1
a

, (EC.14)

rpiη (h) : = rpi
(
Hi
t = 1, hνt = h

)
=

−
(
xi(0)

xi(1)
− 1
)

(
ανiλh
η

1
a

+ 1
η

)
+
(
xi(0)

xi(1)

)
1
a

 .
which implies the desired conditional result. Note that the distress and recovery risk premia are approximated by:

rpkλ (hνt ) ∼= α
λ

η
νRk h

ν
t

a(
1 + a

η

) (1− xk (1)

xk (0)

)
+O

[(
xk (1)

xk (0)

)2
]
,

rpkη ∼= (η) (−a)

(
1− xk (1)

xk (0)

)
+O

[(
xk (1)

xk (0)

)2
]
.

for
xk(1)

xk(0)
<< 0

�
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Proof of Corollary 2 Consider the limiting expression for N→+∞, of the mean risk premium for the group of

firms with vulnerability νRk thanks to Assumption 2,
∑
i∈Ck

Hit

Nk
→ hit, i ∈ Ck . Then, in light of Theorem 1 the risk

premium for firms i∈Ck is given by:

rpkt = κσ+
(

1−hkt
)
rpkλ (hνt ) +hkt rp

k
η

�

Proof of Theorem 3. The expressions of the expected risk premia imply

rpiλ (0,Hν)

[
(a+ η)

xi (0)

xi (1)
+ανiλH

ν

]
=

[
a

(
xi (0)

xi (1)
− 1

)
νiαλH

ν

]
,

rpiη (1,Hν)

[
η
xi (0)

xi (1)
+ a+ανiλH

ν

]
=

[
−a
(
xi (0)

xi (1)
− 1

)]
η.

Inserting these expressions in the equations: P̂ i(h,0)

xi(0)
P̂ i(h,1)

xi(1)

=
1

a

 1−

(
xi(0)

xi(1)
−1

)
(
xi(0)

xi(1)
−1

)
+1

ανiλh
(a+η+ανiλh)

1 +
(
xi(0)

xi(1)
− 1
)

η
(a+η+ανiλh)


one gets: [

P̂ i(h,0)

xi(0)
P̂ i(h,1)

xi(1)

]
=

1

a

 1−

(
xi(0)

xi(1)
−1
)

(
xi(0)

xi(1)
−1
)
+1

ανiλh
(a+η+ανiλh)

1 +
(
xi(0)

xi(1)
− 1
)

η
(a+η+ανiλh)

 (EC.15)

reshuffling this expression one finds that it is equivalent to:

 xi(0)

P̂ i(Hν ,0)
− a

xi(1)

P̂ i(Hν ,1)
− a

=


rpiλ (0,Hν)

a+η+ανiλH
ν x

i(1)

xi(0)
a+ανiλH

ν+η

1− rp
i
λ
(0,Hν )

a

a+η+ανiλH
ν x

i(1)

xi(0)
a+ανiλH

ν+η

rpiη (1,Hν)

a+ανiλH
ν+η

xi(0)

xi(1)
a+ανiλH

ν+η

1−
rpiη(1,Hν )

a

a+ανiλH
ν+η

xi(0)

xi(1)
a+ανiλH

ν+η


Rearranging this expression it is immediate to verify that the closed form expression of the risk premia is the fixed

point solution to:

[
rpiλ (0,Hν)
rpiη (1,Hν)

]
=


(

xi(0)

P̂ i(Hν ,0)
− a
)(

a+ανiλH
ν+η

a+ανiλHν
xi(1)

xi(0)
+η
− rpiλ(0,Hν)

a

)
(

xi(1)

P̂ i(Hν ,1)
− a
)(

a+ανiλH
ν+η

a+ανiλHν+η
xi(0)

xi(1)

− rpiη(1,Hν)

a

)


which can be obtained considering a recursive solution to an iteration with initial condition x
(0)
λ = 0, x

(0)
η = 0:

[
x

(n)
λ

x
(n)
η

]
=


(

xi(0)

P̂ i(Hν ,0)
− a
)(

1 +
ανiλH

ν
(

1− x
i(1)

xi(0)

)
a+ανiλHν

xi(1)

xi(0)
+η
− 1

a
x

(n−1)
λ

)
(

xi(1)

P̂ i(Hν ,1)
− a
)(

1−
η

(
1− x

i(1)

xi(0)

)
(a+ανiλHν)

xi(1)

xi(0)
+η
− 1

a
x

(n−1)
η

)


Truncating the iteration at the first order one gets eq.(12). Note however that the first order result is in fact exact.

This can be shown searching for the fixed point
(
x∗λ, x

∗
η

)
that is determined by the relationship:


x∗λ

xi(0)

P̂ i(Hν,0)
−a

+
x∗λ
a

x∗η
xi(1)

P̂ i(Hν,1)
−a

+
x∗η
a

=


1 +

ανiλH
ν
(

1− x
i(1)

xi(0)

)
a+ανiλHν

xi(1)

xi(0)
+η

1−
η

(
1− x

i(1)

xi(0)

)
(a+ανiλHν)

xi(1)

xi(0)
+η
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hence

[
x∗λ
x∗η

]
=


(

1 +
ανiλH

ν
(

1− x
i(1)

xi(0)

)
a+ανiλHν

xi(1)

xi(0)
+η

)(
1

xi(0)

P̂ i(Hν,0)
−a

+ 1
a

)−1

(
1−

η

(
1− x

i(1)

xi(0)

)
(a+ανiλHν)

xi(1)

xi(0)
+η

)(
1

xi(1)

P̂ i(Hν,1)
−a

+ 1
a

)−1


that can be rewritten as:[

x∗λ
x∗η

]
=

 (1 + (c1 (0)− c2 (0))n (0)− c1 (0) c2 (0)n2 (0)
)( xi(0)

P̂ i(h,0)
− a
)

(
1 + (c2 (1)− c1 (1))n (1)− c1 (1) c2 (1)n2 (1)

)( xi(1)

P̂ i(h,1)
− a
) 

where:

c2 (0) =
1

(a+ η+ανiλh)
, c1 (0) =

1

a+ανiλh
xi(1)

xi(0)
+ η

,n (0) = ανiλh

(
1− xi (1)

xi (0)

)

c2 (1) =
1

a+ η+ανiλh
, c1 (1) =

1

a+ανiλh+ η x
i(0)

xi(1)

, n (1) = η

(
xi (0)

xi (1)
− 1

)
Observe that:

(c1 (0)− c2 (0)) =
ανiλh

(
1− xi(1)

xi(0)

)
(
a+ανiλh+ η−ανiλh

(
1− xi(1)

xi(0)

))
(a+ η+ανiλh)

= (c1 (0) c2 (0))n (0)

(c2 (1)− c1 (1)) =
η
(
xi(0)

xi(1)
− 1
)

(a+ η+ανiλh)
(
a+ η+ανiλh+ η

(
xi(0)

xi(1)
− 1
))

= (c2 (1) c1 (1))n (1)

hence: [
x∗λ
x∗η

]
=

 (1 + (c1 (0) c2 (0))n2 (0)− c1 (0) c2 (0)n2 (0)
)( xi(0)

P̂ i(h,0)
− a
)

(
1 + (c2 (1) c1 (1))n2 (1)− c1 (1) c2 (1)n2 (1)

)( xi(1)

P̂ i(h,1)
− a
) 

and, since the coefficients different from 1 simplify, the final relationship is given by eq.(12). �

We can state the following:

Theorem EC.1. Consider Assumptions 1, 2 and set xk (1) = 0, k = 1, ..,K. Let HS
0 6= 0 and define τ0 :=

inft′>0

{
HS
t′ = 0

}
. Then:

- for λ
η
<K (∆), ξLt is the conventional ‘Lucas’ stochastic discount factor:

dξLt
ξLt

=−rfdt−κdWt. In fact the risk free

rate converges to:

rL (Ht)
N→+∞' rf := δ+µγ− 1

2
(1 + γ)γσ2,

and pure jump risk premia θj (Ht)− 1 vanish in the limit N→+∞.

- while in a supercritical equilibrium, λ
η
>K (∆) the stochastic discount factor is given by the product ξLt · ξ?t , where

ξ?t = dQ
dP determines the additional martingale component of the long-term risk neutral valuation measure. Its expres-

sion restricted to any finite group of firms G in the economy is given by:30

dξ?t,G
ξ?t,G

= (θ (Ht)− 1)

K∑
k=1

∑
j∈Ck∩G

(
1−Hj

t−

)
dM j

t , t < τ0 (EC.16)

θ (Ht) =
hν∞
hνt

.

The expression ln (θ (Ht)) sets the long-term price of cascade risk. It drives a positive price of distress risk for hνt <h
ν
∞

and a negative price of recovery risk for hνt >h
ν
∞.

30 We consider the restriction to a finite set of firms to avoid potential divergences that could arise due to the presence
of an infinite number of firms in the economy.
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Proof of Theorem EC.1

• To prove the first part of the theorem, it is sufficient to compute the N → +∞ limit of the steady state

expressions for finite N that in the subcritical state converge to the state corresponding to hν∞ = 0.

• In order to prove the second part of the Theorem we briefly recall here the Girsanov Theorem for Poisson

processes: define the process

dLt =Lt−

2N∑
l=1

J lt

(
dN l

t −λltdt
)

and such that EP [LT ] = 1. Then define dP̃ =LT dP. Then the intensities λ̃lt of the Poisson processes dN l
t under P̃ are

given by:

λ̃lt = λlt

(
1 + J lt

)
In the current framework, set dPLT := ξ∗τ0dP, and impose EP [ξ∗τ0 ] = 1 where τ0 is the first arrival time to configuration

Hτ0 = 0. For each firm i, the P−intensity of dN+,i
t (Ht) is given by

(
νRi αλh

ν
t

)
while the P−intensity of dN−,it (Ht) is

η. Hence setting: (
1 + J+,i

t

)
=
νRi αλh

ν
∞

νRi αλh
ν
t−

(
1−Hi

t

) (
1 + J−,it

)
=
η

η
Hi
t if i∈Ck

implies:

J+,i
t =

hν∞
hνt−
− 1 J−,it =

1

1
− 1 if i∈Ck

and

λ̃−,it = νRi αλh
ν
∞, λ̃+,i

t = η if i∈Ck

and the following expression for the SDF

dξ∗t
ξ∗t

=

K∑
k=1

∑
j∈Ck

(
θjk (Ht)− 1

)(
1−Hj

t−

)
dM j

t ,

θjk (Ht) =
hν∞
hνt

, j ∈Ck

Note that the process is well defined only for t < τ0, i.e. only before the time of absorption to the state Hτ0= 0 that,

however, in the large N limit is also diverging. �

EC.2. Empirical Estimation Details

EC.2.1. Empirical proxy of distress probability

In order to estimate distress probabilities, we consider a 1-month horizon logit whose specification is the exact

replication of the one proposed in Campbell et al. (2008). We identify the instantaneous probability of a distress in

the model with the next-month distress probability of distress estimated using the logit:

hit = lim
τ→0+

EP
t

[
Hi
t+τ

]
τ=1m' hit,1m

In Table 11 we report the descriptive statistics of the regressors considered in the logit estimation. Coefficients used in

the logit are those estimated in the original reference on the shortest monthly period. In Table 4 we report the αFF3s

computed relying on the FF3 factor model for the portfolios of securities sorted w.r.t. distress probability replicating

the original table reported in Campbell et al. (2008).
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EC.2.2. Factor mimicking portfolio of factor hνt and the Fama-MacBeth

We focus our discussion on the benchmark model that includes, MktRf and hνt can build the factor mimicking

portfolio defined by the condition βh
ν

= 1 and βMktRf = 0 constructed by allocating zero total wealth in the 45 test

assets. Define

Pt
45×(2+1)

:= (Bt)
45×(2+1)

(
B′tBt

)−1

(2+1)×(2+1)

where the Bt is a matrix with 45 lines and 3 columns. Each line i is given by bi,t =
[
1, βMktRf

i,t , βh
ν

i,t

]
and denote by

pk, k= 0,1,2 the column vectors of Pt

Pt =
[
p0, pMktRf , ph

ν
]

Then the relevant portfolio we analyze is ph
ν

which is a zero investment portfolios since (P ′tBt)3,1 = ph
ν

·1 =0. Notice

that, by construction of the linear regression coefficients, the time series of its realized returns is equal to the time

series of the slopes. λMktRf
t ,λh

ν

t are plotted in Figure 6. In fact:[
λ0
t ,λ

MktRf
t ,λh

ν

t

]
=
(
B′tBt

)−1 (
B′tR

e
t+1

)
where Ret+1 is the vector of excess returns for the 45 test assets. The resulting portfolio provides relevant information

on the composition of the portfolio exploiting the network component of the risk premium. It is interesting to observe

that this portfolio composition depends only on the size of the risk exposures βMktRf
i,t , βh

ν

i,t but its composition exploits

the profitability resulting from all the distress related αi, i.e. the mispricing that drove the selection of the 45 test

assets:

• It is short big (growth) portfolios, it is long small (value) quintile portfolios, see Table 6.

• It is short high distress portfolios and with the proceeds it takes a long position in low distress and low volatility

portfolios. See Table 7.


