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Abstract— Egocentric vision is an emerging topic, which has
demonstrated great potential in assistive healthcare scenarios,
ranging from human-centric behavior analysis to personal
social assistance. Within this field, due to the heterogeneity of
visual perception from first-person views, egocentric pose esti-
mation is one of the most significant prerequisites for enabling
various downstream applications. However, existing methods
for egocentric pose estimation mainly focus on predicting the
pose represented in the camera coordinates from a single image,
which ignores the latent cues in the temporal domain and results
in less accuracy. In this paper, we propose Ego+X, an egocentric
vision based system for 3D canonical pose estimation and
human-centric social interaction characterization. Our system is
composed of two head-mounted egocentric cameras, where one
is faced downwards and the other looks outwards. By leveraging
the global context provided by visual SLAM, we first propose
Ego-Glo for spatial-accurate and temporal-consistent egocentric
3D pose estimation in the canonical coordinate system. With the
help of an egocentric camera looking outwards, we then propose
Ego-Soc by extending Ego-Glo to various social interaction
tasks, e.g., object detection and human-human interaction.
Quantitative and qualitative experiments have been conducted
to demonstrate the effectiveness of our proposed Ego+X.

I. INTRODUCTION

Egocentric vision can offer sufficient information about
how people perceive the world and interact with the en-
vironment from a human-centric perspective, furnishing di-
verse opportunities for the analysis of human behavior and
cognition [1], [2]. In general, an egocentric vision system
can be composed of either head-mounted or chest-mounted
cameras, capturing the visual data in a free-living environ-
ment with increased mobility and flexibility. Recent progress
in egocentric vision has been widely penetrated in daily
life assistive healthcare, including human behavior analysis
[2], human-machine interaction [3], and social interaction
characterization and assistance [4], [5].

Human pose estimation is one of the most important
topics in egocentric vision, which is the prerequisite of
human-object interaction or human-human interaction in
social assistance. However, due to extremely different view-
points between egocentric and third-person-view cameras,
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Fig. 1. Illustration of the proposed egocentric vision system for social
interaction characterization based on 3D canonical human pose estimation.

conventional 3D pose estimation methods learned from third-
person-view images or videos can hardly work on egocentric
images. Recent research efforts have been devoted to the
egocentric 3D pose estimation [6]–[11] and the practicability
of proposed methods have been demonstrated. According to
the orientation of the egocentric camera, existing methods
can be divided into looking outwards [6], [7] and looking
downwards [8]–[11]. Outward cameras focus more on per-
ceiving the interaction with surrounding environments but
with less observations on human target him/herself. Dif-
ferently, egocentric cameras looking downwards, especially
using a fisheye lens, can capture full human body within
the field of view, which is beneficial for achieving accurate
human pose estimation [9]–[11]. However, as shown in
Fig. 1, significant distortion introduced by the fisheye lens
and severe lower limb occlusions are inherent challenges
in previous works, leading to degraded or inaccurate pose
estimation. Our previous work proposed EgoFish3D, an
egocentric 3D pose estimation method via self-supervised
learning [11], which improves the performance on egocentric
images. Nevertheless, due to the egocentric vision system
keeps moving in practice, the estimated poses of previous
works represented in the egocentric camera coordinate sys-
tem will inevitably limit the usability in real-world appli-
cations [12], [13]. Therefore, for egocentric vision systems,
how to achieve spatial-accurate and temporal-consistent 3D
pose estimation in the world coordinate system is the key
issue to be solved.

Since egocentric vision systems, especially for cameras
looking outwards, can provide human-centric perception,
increasing popularity has been gained for developing egocen-
tric vision based social interaction characterization, including



Fig. 2. Overview of our proposed Ego+X system, which consists of two egocentric cameras looking downwards and outwards, respectively. The black
arrows indicate the direction of information flow. For Ego-Glo, egocentric 3D human pose estimation is first performed on each downward egocentric
image. We propose a rectify branch and a local pose refinement module (PRM) to improve the performance of local 3D pose estimation. Meanwhile,
the outward egocentric camera perceives the surrounding environment and provides the global localization of the system. Thus, the spatial-accurate and
temporal-consistent 3D pose represented in the canonical coordinate system can be derived by leveraging global constraints and temporal clues. At last, the
Ego-Soc enables the downstream social interaction characterization by incorporating advanced object detection, third-person-view human pose estimation,
human-human interactions, etc. PRM: Local Pose Refine Module.

human-human or human-robot interaction [14], [15], ego-
centric object detection [16], [17], egocentric action recog-
nition/anticipation [18]–[20]. It should be pointed out that
previous works mainly focus on the interaction or detection
within the field of view, ignoring the global context of
human target and surrounding environment. Besides, only
hand information is leveraged due to outward cameras,
where the full-body pose has not been considered. Hence,
it is advantageous to represent the 3D human pose and
surrounding environment in a canonical coordinate system,
which could further facilitate various social interaction tasks
and bring opportunities for new research topics.

To address aforementioned challenges, this paper pro-
poses Ego+X, an egocentric vision system consisting of
two egocentric cameras looking outwards and downwards,
respectively. Our Ego+X contains two parts: Ego-Glo for
egocentric global pose estimation and Ego-Soc for egocentric
social behaviour visualization. First, based on our previous
EgoFish3D [11], we propose Ego-Glo for the estimation
of 3D canonical human pose and the perception of the
surrounding environment. Ego-Glo first uses the downward
camera to estimate the 3D pose of the human target, in
which a dual branch network is proposed to correct the
spatial error and the temporal error is reduced by a smoothing
method. Next, the global information of the egocentric vision
system, as well as the head pose, is determined by the
outward camera performing visual SLAM [21]. By fusing the
outputs of these two modules, spatial-accurate and temporal-
stable 3D pose estimation can be achieved in the canonical
coordinate system. In addition, we propose Ego-Soc to per-

form different egocentric social interaction characterization,
such as object detection and human-human interaction. In
specific, we take advantage of the global pose predicted
by Ego-Glo and use the RGB-D camera looking outwards
to collect rich information of two modalities. Along this
line, the social activities of the human target can be well
visualized and further explored. For egocentric global pose
estimation, we evaluate our method on ECHA dataset [11]
and on video sequences with ground truth of both camera and
human pose collected by a VICON motion capture system.
For characterizing social interactions, we demonstrate the
qualitative results of egocentric object detection and human-
human interaction.

In summary, the main contributions of this paper are:
• An egocentric vision system consisting of two cameras

looking downwards and outwards respectively is pro-
posed for social interaction characterization. Its capa-
bility in various downstream tasks is demonstrated.

• An effective framework for 3D canonical pose estima-
tion from an egocentric fisheye camera is developed, in
which a pose refine module is proposed to improve the
estimation in both temporal and spatial domains.

II. EGOCENTRIC VISION SYSTEM: EGO+X

The overview of Ego+X system is shown in Fig. 2. The
Ego+X system contains two head-mounted egocentric cam-
eras, one is looking downwards with a fisheye lens to capture
RGB images for pose estimation, and the other one is looking
outwards to capture RGB-D images for camera localization
and other downstream applications. The details of the camera



placement can also be found in Fig. 2. In Ego-Glo module,
we take the egocentric videos from the downward camera as
input to estimate spatial-accurate and temporal-consistent 3D
human pose in the canonical coordinate system. In Ego-Soc
module, we utilize the global pose predicted by Ego-Glo
as self-localization of the human target, and then use the
outward camera to perform egocentric object detection and
human-human interaction for social characterization.

A. Ego-Glo: Egocentric Global Pose Estimation

In Ego-Glo, we aim to estimate the global 3D body pose
sequences from an egocentric video. The proposed method
takes T egocentric frames I = {I1, ..., IT } as input, and
outputs the global 3D human poses PG = {PG

1 , ..., PG
T }.

In this section, we first review the local 2D pose and 3D
pose estimation from a single frame by our previous method
EgoFish3D [11]. Next, we propose the 3D Pose Refine
Module (PRM) to achieve spatial-accurate and temporal-
consistent pose estimation. Finally, we extract the camera
pose by a visual SLAM system [21] and compose the
global pose estimation to get the final output global 3D pose
sequences.

1) Local Pose Estimation by EgoFish3D: In our previous
work [11], we propose EgoFish3D, which achieves egocen-
tric 2D/3D pose estimation in a self-supervised manner. In
[11], we designed three different modules to perform both
third-person view and egocentric view pose estimation as
well as predicting the transformation between two different
viewpoints. The experimental results on the benchmark syn-
thetic datasets [9], [10] and our proposed real-world ECHA
dataset demonstrate the effectiveness of our method. Here we
directly apply EgoFish3D as the backbone model for local
pose estimation, which is denoted as fθ. Given a sequence
of egocentric images I, we have [J,PL,e] = fθ(I), where
J = {J1, ..., JT } and PL,e = {PL,e

1 , ..., PL,e
T } indicates 2D

and 3D local poses estimated by EgoFish3D, respectively.
Note that, each pose is consists of 15 body joints and the
subscript {L, e} indicates the estimated pose represented in
the Local camera coordinates. Since EgoFish3D is trained
for pose estimation from a single frame without considering
the temporal constraints, the estimated pose sequence PL,e

are prone to transformation error in the spatial domain and
unstable jitters in the temporal domain. We refer readers to
our previous EgoFish3D [11] for more details of the network
structure.

2) Local Pose Refine based on PRM: In this paper, we
develop a Pose Refine Module (PRM) to refine the 3D
pose estimation in both spatial and temporal domains. In
the spatial domain, an efficient rectify branch ϕθ is designed
to correct the transformation error introduced by the self-
supervised EgoFish3D method. Given the camera intrinsic
parameters K and the 2D poses J, we train the rectify branch
to estimate the absolute depth maps Z = {z1, ..., zT } of
2D joints. Then we can derive the 3D local poses PL,r

by reprojection formula. Pose sequences estimated from the
rectify branch can be used to refine the local poses PL,e

mentioned above. The network architecture of the rectify

Fig. 3. Overview of our proposed Pose Refine Moduel (PRM), which
consists of a rectify branch and a three-step data processing flow. We
perform procrustes analysis, average weighting and temporal filtering on the
pose sequences to output the spatially accurate and temporally consistent
3D pose estimation.

branch is similar to the CNN backbone of the egocentric
module in EgoFish3D with only the last several MLPs
changed to output the absolute depth of each joint, i.e.,
Z = ϕθ(J), where θ is the parameters of the rectify branch.
As in Eq. (1), the rectify branch is trained with the loss
between the estimated pose PL,r and the triangulated pose
Ptri in egocentric camera coordinates and the bone-length
loss to force the left and right links B to be the same. The
triangulated pose Ptri is calculated by triangulation method
from external cameras as pseudo labels and more details
about the triangulated pose can be referred to our previous
work [11].

Lrec =
∑
i

||PL,r
i −Ptri

i ||2+
1

λ

∑
j

||Bleft
j −Bright

j ||2 (1)

From the dual-branch network, we extract two local pose
sequences PL,e and PL,r. We apply Procrustes Analysis
(PA) [22] to extract the rotation matrix rRe for alignment.
After conducting PA, we average the weights of two pose
sequences with coefficient β to improve the further refined
local 3D pose output, which is denoted as PL,s in Eq. (2).

PL,s
i = βPL,r

i + (1− β)rReP
L,e
i (2)

In temporal domain, for simplicity and effectiveness we
directly apply filtering methods, i.e. Gauss filtering fg(·) and
Kalman filtering fk(·), to make the local pose temporally sta-
ble. The final output of the PRM is pose sequences PL,st =
fk(fg(P

L,s)), where subscript {st} indicates spatial and
temporal refinement, respectively. The detailed structure of
PRM is shown in Fig. 3.

3) Egocentric camera localization: For global 3D human
pose estimation, we need to obtain the camera pose in the
world coordinate system. Here we implement the RGB-D
version of ORB-SLAM2 [21] for tracking the 6D pose of
the egocentric vision system. We found that when using
the images captured by the camera looking downwards,
few available ORB features can be detected, especially in
cluttered indoor scenes, leading to a failure of tracking the
camera trajectory. To solve this, we incorporate another head-
mounted RGB-D camera looking outwards in our Ego+X
system for performing camera localization. Note that the
global position transformation matrix between two cameras
is known. Hence, the 6D pose sequences Tc = {(Rc

i , t
c
i )}

of the Ego+X system can be extracted by ORB-SLAM. In
addition, the Kalman filter is applied to predict the camera
pose when SLAM fails to track and smooth the raw data.
Similar to [12], we also incorporate the visual SLAM to



build the map M of the environment based on dense point
clouds for better visualization shown in Fig. 2.

4) Information fusion for global 3D human pose: With
the refined local pose PL,st and camera pose {(Rc

i , t
c
i )},

the local pose can be transformed to the global coordinate
system as PG by Eq. (3).

PG
i = Rc

iP
L,st
i + tci (3)

B. Ego-Soc: Egocentric Social Interaction Characterization

The global human pose estimated by Ego-Glo can provide
both pose information and self-localization of the target
human in a canonical coordinate system, thus leading to di-
verse social interaction characterization and assistance appli-
cations. In Ego-Soc, two downstream social characterization
tasks are performed based on the global 3D human pose PG,
i.e., human-object interaction (HOI) via egocentric object
detection and pose-based human-human interaction (HHI).

1) Egocentric object detection: The detection of 3D ob-
jects within the field of view plays a crucial role in modeling
HOI, which can be further applied in healthcare, personal
assistance and long-term monitoring. Given the global pose
PG as prior, we first implement the existing 2D object
detection method [23] on the RGB images captured from
the outward RGB-D camera, extracting the 2D proposal of
the object of interest with both bounding box and semantic
segmentation. With depth maps, the 3D proposals of the
target objects OL can be transformed into a 3D point
cloud represented in the camera coordinate system. Next, 3D
proposals OG in the world coordinate system can be derived
by using real-time camera pose from visual SLAM, which
can be highlighted on the pre-build world map M. Thus,
the HOI characterization can be expressed as {PG,OG,M},
which can be used for further applications, such as personal
assistance, obstacle avoidance, and navigation.

2) Pose-based Human-human interactions: Pose-based
human-human interaction is an important research area in
human behavior and cognition analysis. Previous work [14]
used a chest-mounted egocentric camera looking outwards
to simultaneously estimate the pose of a second-person-
view human and predict the pose of the wearer him/herself.
However, the outward egocentric camera can only capture
a tiny part of the wearer, thus leading to inaccurate and
inconsistent pose estimation. To solve this, our proposed
Ego+X system contains two cameras that simultaneously
capture images of both the interacting person and the wearer.
The 3D global pose PG

self of the wearer him/herself can be
estimated by Ego-Glo module. Here, the 3D pose PG

second

of the interacting person can be estimated with the outward
RGB-D camera. We first implement OpenPose [24] to extract
the 2D pose of the interacting person from RGB images. For
the low-confidence and untracking 2D joints, interpolation
and temporal filtering are used for smoothing. By using
additional depth maps and the 6D camera pose, the global
3D human pose PG

second of the interacting person can be
derived. Consequently, the global 3D poses of both the
wearer and the interacting person can be represented in

the same canonical coordinate system with pre-build map,
noted as {PG

self ,P
G
second,M}, which can well describe the

characteristics of HHI. In future work, we will use the
proposed pose-based HHI characterization for social activity
analysis.

III. EXPERIMENTS

A. Dataset

Following [11], we directly apply the EgoFish3D model
trained on ECHA dataset for single-frame 3D pose esti-
mation. To demonstrate the effectiveness of our proposed
PRM module on local pose refinement, we conducted several
experiments on ECHA test dataset, which consists of 7
different video sequences with 4 subjects performing 10 ac-
tions. To evaluate the performance of global pose estimation
by proposed Ego-Glo, we capture a new real-world human
movement dataset, noted as ECHA-Glo dataset, which con-
tains five video sequences about 7k frames of human walking
and other actions with different body textures. The ECHA
dataset and ECHA-Glo dataset both provide the ground truth
collected by the VICON motion capture system to conduct
quantitative results. To evaluate the feasibility of our Ego-
Soc system for social interaction characterization, we capture
several video sequences for egocentric object detection and
pose-based human-human interactions for qualitative results.

B. Implementation Details

The architecture of the rectify branch ϕθ is similar to the
structure of the egocentric module in EgoFish3D. It consists
of an encoder-regressor network which is build upon three
CNN layers along with four MLP blocks. We train the rectify
branch on the ECHA dataset under the supervision of the
absolute joints depth extracted by reprojection methods with
loss in Eq. (1) with λ = 20. The network of the rectify
branch is implemented by PyTorch, and we choose Adam
for optimization during training for 20 epochs. In PRM, we
find that β = 0.5 generalizes best for pose estimation under
different scenarios. Then we choose Gaussian filter with a
smoothing window of 10 frames and a Kalman filter with
a covariance of 0.5 to conduct temporal smoothing. Two
different cameras are well-calibrated with a chessboard to
extract the intrinsic and extrinsic parameters.

C. Evaluation Metrics

We evaluate our method with three different metrics to
provide quantitative results. One refers to Mean Per Joint
Position Error (MPJPE), which calculates the Euclidean
distances between ground truth and estimated 3D pose in
Eq. (4). Another refers to PA-MPJPE, which calculates the
MPJPE after applying Procrustes Analysis on translation,
rotation and scale between ground truth and estimated 3D
pose. The other refers to Bn-MPJPE, which calculates the
MPJPE after applying Procrustes alignment for all the poses
in a batch with the certain number n. In our experiments,
we report B50-MPJPE and B100-MPJPE, which means the



TABLE I
COMPARISON MPJPE RESULTS OF EGOCENTRIC 3D LOCAL POSE ESTIMATION IN MILLIMETERS (mm) ON ECHA DATASET

Approaches All squatting Walking Dancing Stretching Waving Boxing Kicking Touching Clamping Knocking
EgoFish3D [11] 107.9 123.8 106.8 110.4 121.4 95.6 111.2 94.6 110.5 101.6 102.7
+PA 89.6 103.2 88.9 98.0 92.4 75.3 88.5 85.8 83.0 96.7 83.7
+PA&Avg 81.8 94.6 81.7 85.4 81.7 66.5 80.6 80.5 76.0 91.2 78.1
+PRM (Ours) 78.9 92.9 79.2 82.6 79.5 63.5 77.2 78.2 73.2 84.1 75.4

Ablated models All squatting Walking Dancing Stretching Waving Boxing Kicking Touching Clamping Knocking
w/o PA&Avg 105.1 121.9 103.8 106.9 118.8 93.2 108.0 92.3 108.2 97.4 100.1
w/o Avg 87.1 101.5 86.6 95.4 90.5 72.8 85.5 83.4 80.7 91.4 81.5
w/o PA 83.9 100.4 84.2 84.1 89.2 70.0 83.6 79.3 79.7 82.7 81.2
w/o Filt 81.8 94.6 81.7 85.4 81.7 66.5 80.6 80.5 76.0 91.2 78.1
Ours 78.9 92.9 79.2 82.6 79.5 63.5 77.2 78.2 73.2 84.1 75.4

TABLE II
COMPARISON RESULTS IN MILLIMETERS (mm) ON ECHA DATASET

Approaches MPJPE PA-MPJPE

EgoFish3D [11] 107.9 73.1
EgoFish3D+PRM 78.9 63.3
Tome [9] 112.4 73.9
Tome+PRM 80.9 64.6

Martinez [25] 118.3 80.0
Martinez+PRM 82.8 66.8

TABLE III
COMPARISON GLOBAL 3D POSE ESTIMATION RESULTS

IN MILLIMETERS (mm) ON ECHA-GLO DATASET

With GT Tc MPJPE B50-MPJPE B100-MPJPE

Ours 104.0 87.5 92.1
w/o Filt 105.6 90.9 95.0
w/o PRM 120.0 103.6 109.2

With EST Tc PA-MPJPE B50-MPJPE B100-MPJPE

Ours 73.2 103.5 124.0
w/o Filt 74.5 107.1 127.4
w/o PRM 83.9 116.0 135.6

corresponding batch number is 50 and 100, respectively.

E(P, P̂) =
1

T

T∑
i=1

||Pi − P̂i||2 (4)

D. Comparison methods

On the one hand, to prove the effectiveness of our global
pose estimation method Ego-Glo, we conduct several ex-
periments to do comparison and ablation studies. First, we
conduct experiments on the ECHA test dataset to evaluate
the performance of PRM module. We compare our proposed
method with three baseline methods [9], [11], [25]. For ab-
lation studies, we validate the influence of the PRM module
step by step by removing or changing each part. We provide
quantitative results and qualitative results to give a clear
view. Second, we conduct experiments on the new ECHA-
Glo dataset to evaluate the global 3D pose estimation with
both quantitative and qualitative results. Besides, we present
our Ego-Soc method’s qualitative results in egocentric object

Fig. 4. Visualization results of the improvement of our proposed PRM on
ECHA test dataset. The red color is the predicted 3D pose by EgoFish3D
or our method. The blue color is the ground truth 3D pose.

detection and pose-based HHI. The quantitative experiments
are defined as follows.
• Baselines: we apply three different models as the baseline

method, i.e., Martinez [25], Tome [9], EgoFish3D [11].
• +PA: rotation rRe based procrustes analysis by a rectify

branch network.
• +PA&Avg: rotation rRe based procrustes analysis and

average weight of PL,e and PL,r for pose refinement.
• +PRM: full local pose refinement module.
• w/o PRM: remove the local pose refine and directly apply

the pose PL,e by baseline method as the final output.
• w/o Filt: remove the temporal smoothing fg(·) and fk(·).
• w/o Avg: remove the average weight β.
• w/o PA: remove the rotation based procrustes analysis.
• w/o PA&Avg: only refine the local pose in temporal

domain by filtering the pose sequences.

IV. RESULTS AND ANALYSIS

A. Quantitative Results

Without further clarification, all the elements indicate the
result in millimeters (mm). By incorporating a full-body gait
model provided by the VICON motion capture system, the
ground truth 3D body joints are from the anatomical level.

1) ECHA dataset: We first evaluate our proposed PRM
with three different pose estimation methods, and report
the MPJPE and PA-MPJPE for all test data in Table II.
EgoFish3D with our PRM module achieves the best per-
formance among other approaches (MPJPE=78.9 and PA-



Fig. 5. Visualization of the estimated global 3D human pose. The first row indicates the input egocentric images with different actions. The second row
indicates the local pose estimation by our proposed PRM. The third row visualizes the global pose in the pre-build map. The red points are the predicted
joint positions and the colorized lines represent the skeleton.

Fig. 6. Visualization results of human-human interaction based on our Ego+X. The blue color is the predicted 3D pose of the human in the looking-
downwards camera, and the red color is the predicted 3D pose of the human in the looking-outwards camera.

Fig. 7. Visualization results of object detection based on our Ego+X. The red points are the predicted joint positions and the colorized lines represent
the skeleton. The highlighted point clouds (red) are the detected objects matched in the global coordinate system.

MPJPE=63.3). It can also be found that after applying
our proposed PRM, the local pose improves a lot (nearly
30mm improvement in MPJPE and 10mm improvement
in PA-MPJPE), which significantly proves the effectiveness
and generalization ability of our proposed local pose refine
method. We then conduct experiments on the influence of
each part of the PRM module and report MPJPE for all test
data and each action in Table I. The upper part of the table
shows the improvement of the local pose step by step and
the lower part removes some parts of the PRM to do ablation
studies. It can be found that three different processes in PRM
(noted as PA, Avg and Filt) all play important roles for the
local pose refinement.

2) ECHA-Glo dataset: We evaluate the performance of
Ego-Glo for global pose estimation on ECHA-Glo dataset,
and report three different metrics to conduct the quantitative
results in Table III, where GT and EST Tc indicate the
camera poses captured by VICON and estimated by ORB-
SLAM2, respectively. The upper part of the table (noted
as With GT Tc) refers to that we implement the ground

truth camera pose captured by VICON system to compose
the global pose for the evaluation. We report MPJPE, B50-
MPJPE and B100-MPJPE for the average results, where our
method achieves high-accuracy performance (MPJPE=104.0,
B50-MPJPE=87.5, B100-MPJPE=92.1). The lower part of
the table (noted as With EST Tc) means that we use
the camera pose estimated by visual SLAM to compose
the global pose. We report PA-MPJPE, B50-MPJPE and
B100-MPJPE for evaluation. Since the camera trajectory
estimated by visual SLAM has been greatly affected by the
surroundings which introduce the scale error compared to
ground truth, we report PA-MPJPE instead of MPJPE to
remove the influence of the scale ambiguity. Our method with
visual SLAM also performs well (PA-MPJPE=73.2, B50-
MPJPE=103.5, B100-MPJPE=124.0).

B. Qualitative Results

Fig. 4 demonstrates the visualization results of our pro-
posed local pose refine module. The PRM corrects the trans-
formation error introduced by EgoFish3D and can predict



more accurate results.
Fig. 5 presents the visualization results of our proposed

Ego-Glo for global 3D human pose estimation. The first
row represents the input egocentric images, the second row
shows the estimated local pose under the camera coordinate
system, and the third row visualizes the global 3D human
pose represented in the 3D canonical coordinate system with
a pre-build 3D map. It can be seen that our Ego-Glo method
can predict relatively accurate global 3D human pose with
different actions.

Fig. 6 visualizes the social characterization of human-
human interaction. We present two human poses under the
local camera coordinate system and the global coordinate
system with a pre-build map, respectively. We show the
interacting scenes like talking, clamping, etc.

Fig. 7 shows the social characterization of human-object
interaction based on egocentric object detection. With ex-
tracted 2D bounding boxes, we recover the point cloud of
the detected object and present combined with our estimated
global pose, as well as highlighting the object in the pre-
build 3D map. More qualitative results can be found in our
attached video.

V. CONCLUSIONS

In this article, we propose Ego+X, an egocentric vision
system for global 3D human pose estimation and extend it
to human-centric social interaction characterizations, which
is achieved by using two head-mounted egocentric cameras
looking outwards and downwards, respectively. Specifically,
in Ego-Glo, we design a local pose refine module (PRM) to
correct the 3D pose from both spatial and temporal domains
and also combine visual SLAM to generate the spatial-
accurate and temporal-consistent 3D pose in a canonical
coordinate system. In Ego-Soc, we extend the global human
pose estimation to the applications of egocentric object
detection and human-human interactions. The experimental
results prove the effectiveness of our method. In the future,
we will apply our method to conduct scientific research for
human-centric behavior analysis and cognition evaluations.
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