The very high temperatures and densities reached in high-energy heavy ion collisions allow quarks and gluons to form a deconfined state of matter, often referred to as the quark-gluon plasma (QGP). Among the various signatures of the QGP formation, the suppression of heavy quarkonia (e.g., J/ψ or Υ mesons) due to the screening of the heavy-quark potential has been intensely studied since its proposal by Matsui and Satz [1]. The strong J/ψ suppression observed in heavy ion collisions at the Super Proton Synchrotron [2] and Relativistic Heavy Ion Collider [3] was indeed qualitatively consistent with color screening effects. However, lead-lead (Pb-Pb) collisions at the Large Hadron Collider (LHC) reach higher temperatures, but show less J/ψ suppression [4]. This observation is interpreted as arising from the formation of bound states of charm quarks originating from different hard scatterings, a mechanism referred to as recombination [5,6]. By contrast, the bottomonium LHC data show no evidence for recombination, consistent with the relatively small b-quark production cross section. In addition, the suppression of Υ(nS) states is also consistent with the energy loss of a massive color octet state [19]. Therefore, comparing the B_c^+ yield with that of other heavy flavor mesons at large p_T [9,10] would manifest more strongly at low transverse momentum (p_T) [9].

For p_T ≫ m(B_c^+), B_c^+ mesons are produced predominantly via heavy-quark fragmentation [11,12], and are therefore sensitive to the energy loss of a massive color triplet charge in the QGP—possibly causing the suppression observed for other B mesons [13,14]. J/ψ mesons from B decays [15], and D mesons [16,17]. Conversely, the modification of prompt J/ψ meson production for p_T ≫ m(J/ψ) [15,18] probes the energy loss of a massive color octet state [19]. Therefore, comparing the B_c^+ yield with that of other heavy flavor mesons at large p_T can probe both the mass dependence of energy loss (from a possible dead-cone effect [20]) and its color charge dependence.

The B_c^+ meson was first observed in proton-antiproton collisions at the Tevatron in the B_c^+ → J/ψℓ+ν_ℓ decay mode [21]. Its ground and excited states were then studied...
in pp collisions at the LHC [22–26]. In this Letter, the first observation of B_{c}^{+} mesons produced in heavy ion collisions is reported, and their cross sections are measured and compared in Pb-Pb and pp collisions. The data were collected with the CMS detector in 2017 for pp and in 2018 for Pb-Pb collisions at the same center-of-mass energy per nucleon pair, $\sqrt{s_{NN}} = 5.02$ TeV, corresponding to integrated luminosities of 302 pb$^{-1}$ and 1.61 nb$^{-1}$, respectively. The signal is reconstructed from the three muons in the $B_{c}^{+}\rightarrow (J/\psi \rightarrow \mu^+\mu^-)\mu^+\nu\mu$ decay mode. While this mode features a neutrino that prevents a full reconstruction of the decay, it has a much larger branching fraction than neutrinoless decay channels [24]. In this Letter, charge-conjugate states are implied, and the quoted cross sections correspond to the sum of B_{c}^{+} and B_{c}^{-} mesons.

The results are presented in two kinematic regions that are defined in terms of the vector sum of the three muon momenta, and whose limits are chosen based on the single-muon acceptance of the CMS apparatus: a low-p_T bin, $6 < p_T^{\mu\mu\mu} < 11$ GeV with rapidity $1.3 < |y^{\mu\mu\mu}| < 2.3$, and a high-$p_T$ bin, $11 < p_T^{\mu\mu\mu} < 35$ GeV with $|y^{\mu\mu\mu}| < 2.3$. In simulations, the trimuon p_T is, on average, about 15% smaller than the B_{c}^{+} p_T. In Pb-Pb collisions, the analysis is performed in the 0%–90% centrality range, where centrality refers to the fraction of the inelastic nucleus-nucleus cross section, with lower values denoting a larger overlap of the nuclei [27]. The results integrated over the two kinematic regions are also presented, separated in the centrality ranges 0%–20% and 20%–90%. To reduce potential biases, the analysis was performed in a “blind” way: the algorithms and selection procedures were finalized and formally approved using a quarter of the Pb-Pb data, before examining the entire sample. Tabulated results are provided in a HEPData record [28].

The central feature of the CMS apparatus [29] is a superconducting solenoid providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Hadron forward calorimeters extend the pseudorapidity coverage to $3 < \eta < 5$, and the sum of the transverse energy deposited in them is used to estimate the collision centrality. Muons are detected in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid and covering $|\eta| < 2.4$. Muons with $p_T > 1.2$ and 3.3 GeV are reconstructed in the end cap and barrel regions, respectively [30]. For $p_T = 1.2$ GeV muons in the end caps, the transverse and longitudinal impact parameter resolutions are 150 and 400 μm, respectively, which improve to 20 and 40 μm for $p_T = 10$ GeV muons in the barrel [31].

Events of interest are selected using a two-tiered trigger system [32]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors [33]. The high-level trigger consists of a farm of processors running a fast version of the full event reconstruction software. The events used in this analysis were selected by triggers designed to collect all events containing a J/ψ meson, hence requiring two muons, without p_T requirements. Loose criteria on the single-muon quality and the dimuon mass and opening angle are also applied in the Pb-Pb high-level trigger, as in Refs. [34,35]. Monte Carlo (MC) simulations are used for various signal and background studies, and for estimating the acceptance and efficiency of the reconstruction, triggering, and selection. The B_{c}^{+} mesons are generated with BCVEGPY2.2 [12], while their decays are handled with EVTGEN1.3 [36]. The underlying event is generated with PYTHIA8.212 [37], tune CP5 [38]. PYTHIA8 is also used to generate prompt and nonprompt (from B meson decays) J/ψ background samples. To simulate Pb-Pb collisions, the generated events are embedded into simulated Pb-Pb collisions created using HYDJET1.8 [39]. All samples are passed to GEANT4 [40] to simulate the detector response, and then reconstructed with the same software as the collision data.

The $B_{c}^{+}\rightarrow (J/\psi \rightarrow \mu^+\mu^-)\mu^+\nu\mu$ decay features three muons originating from the same displaced vertex, an opposite-sign muon pair consistent with the J/ψ mass, and a trimuon invariant mass $m_{\mu\mu\mu}$ between $m_{J/\psi} + m_{\pi} \approx 3.2$ GeV and $m_{B_{c}} \approx 6.3$ GeV. Three main background sources can mimic this topology. Fake J/ψ events arise when neither of the opposite-sign muon pairs originate from a J/ψ decay. It is estimated by summing the trimuon mass distributions obtained in the lower and higher dimuon mass sidebands of J/ψ candidates. The second category (B decays) comes from b hadrons (excluding B_{c}^{+}) decaying to a true J/ψ meson associated with a muon (usually a misidentified hadron) from the same b-hadron decay. It is estimated via simulation, where the p_T spectrum is corrected using nonprompt J/ψ production measurements [15]. Its normalization is unconstrained to cover a possible mismodeling of the muon misidentification rate. The third contribution ($J/\psi + \text{random } X$) combines a true J/ψ meson with a muon candidate (usually an uncorrelated misidentified hadron) from another decay. It is estimated in data by rotating the momentum and decay vertex of J/ψ candidates around the collision vertex before associating them with third muon candidates. Several azimuthal rotation angles (excluding the vicinity of the original J/ψ meson) are used, with or without inverting rapidity. In Pb-Pb collisions, the associated muons are mostly uncorrelated with the J/ψ meson, so the distributions from various rotation angles are identical (within statistical uncertainties) and averaged, with a data-derived normalization (fixed in the fit). In pp collisions, significant residual $J/\psi-\mu$ correlations lead to different distributions for different rotation angles, which is accounted for by considering various mixes of these distributions.

The off-line selection includes the same event-level and single-muon identification criteria as in Refs. [34,35].
Loose kinematic acceptance criteria are applied to the muon candidates, matching the efficient region for the two triggering muons, and even looser for the third one. At least one of the two opposite-sign dimuon combinations must have an invariant mass in the J/ψ peak region, or in the sidebands used for background estimation. The sideband and peak regions are both asymmetric to account for radiative tails, and are separated by small gaps. The total sideband width equals that of the peak region, from 180 to 260 MeV depending on the muon pseudorapidity (which affects the mass resolution). For the trimuons having two opposite-sign dimuons in the studied mass regions (5%–6% of the overall sample), the two corresponding trimuon candidates are kept, weighted by the probability of the chosen dimuon to be a true J/ψ meson. This probability is extracted from the dimuon mass distribution from events with only one J/ψ candidate in the signal or sideband regions.

Requirements are also set on the probability of the trimuon vertex fit, the significance of its displacement from the collision vertex, the angle between the trimuon momentum and the segment joining the collision and trimuon vertices, the invariant mass corrected for the momentum and the segment joining the collision and trimuon vertex fit, the significance of its displacement from the candidate in the signal or sideband regions.

After the selection, the simulated signal and the three background samples are used to train a boosted decision tree (BDT) using the TMVA package [41]. This combines and optimizes the discriminating power of eight variables: the five discussed in the previous paragraph, the imbalance between the p_T of the J/ψ and of the third muon, the ratio of the ΔR of the J/ψ muons to the sum of the ΔR values from the other two dimuon combinations, and the significance of the displacement from the collision vertex for the non-J/ψ muon.

Candidates with very low values of the resulting discriminant BDT variable (hence very high background probability) are rejected, losing only 0.1% in signal efficiency. For each analysis bin, low, medium, and high BDT intervals are set to contain about 25%, 40%, and 35%, respectively, of the expected signal. The first and last intervals are dominated by background and signal, respectively. A binned likelihood fit of the pp or Pb-Pb trimuon mass distributions provides the signal yields. Using ROOFTFIT [42], templates from the signal and the three backgrounds are simultaneously fitted in the three BDT intervals, and in either two kinematic bins, two centrality bins, or the whole kinematic range. The BDT distribution of the sum of the fitted templates is checked against that of data, and, in pp collisions, corrected before rerunning the template fit.

The results of the fits in the three BDT intervals and integrated over the two kinematic regions are shown for pp and Pb-Pb collisions in Fig. 1. In each BDT bin, the signal purity and the measured yield, $N(B_\mu)$, are given. The wrong-sign distributions, containing three same-sign muons in data, are superimposed to illustrate that the purely combinatorial background is easily rejected. The normalizations of the fake J/ψ sample, and of the J/ψ + random X sample in Pb-Pb collisions, are provided by the data. In Pb-Pb collisions, the J/ψ + random X and fake J/ψ backgrounds are dominant. In pp collisions, the region above the B_τ^+ mass strongly constrains the J/ψ + random X contribution, and the remaining background comes from B decays and fake J/ψ events.

The signal yields extracted from the fit are corrected for the acceptance and efficiency of the reconstruction, triggering, and selection. These are calculated in each analysis bin using the simulated signal trimuons. The simulated efficiencies of single muon reconstruction, identification, and triggering are corrected by a tag-and-probe method using the J/ψ resonance, similarly to Refs. [15,34]. The acceptance and efficiency are evaluated iteratively by first performing the $p_T^{\mu\mu}$-differential analysis using the original simulation. The resulting corrected yields are fitted to correct the $p_T^{\mu\mu}$ spectrum of the simulation before a second run of the analysis. This $p_T^{\mu\mu}$ spectrum is then corrected again based on the second-step results, notably improving upon the initial acceptance and efficiency estimation.

The corrected yields are divided by the pp integrated luminosity [43] or by its Pb-Pb equivalent, the number of minimum bias Pb-Pb hadronic collisions N_{MB} times the nuclear overlap function $T_{\text{pp},\text{Pb}}$ from Ref. [27]. The Pb-Pb–to–pp ratio of these pp-equivalent normalized yields then provides the nuclear modification factor, R_{AA}. In case of no modification by the medium, R_{AA} is expected to be equal to unity.

Uncertainties arise from different sources: statistical, background (shapes and normalizations), choice of the fit method, muon efficiency, B_τ kinematics (acceptance and efficiency), contamination from other B_τ decays, and overall normalization. The fit uncertainties, ranging from 5% to 9% in pp and 17% to 31% in Pb-Pb collisions, include the purely statistical and the background uncertainties. The latter are implemented via nuisance parameters allowing variations of the trimuon mass templates, such as controlling their statistical uncertainties with the Barlow-Beeston procedure [44], varying the fake J/ψ background between the lower and higher dimuon sideband, or varying the rotation angles in the J/ψ + random X background. Variations of the fit method are also considered, such as changing the $m_{\mu\mu}$ or BDT bin size, neglecting the low-BDT bin, using a BDT variable whose $m_{\mu\mu}$ dependence is subtracted, or regularizing the low-statistics templates instead of using the Barlow-Beeston procedure. The resulting uncertainty remains below 7% (12%) in pp (Pb-Pb) collisions. The uncertainty from the tag-and-probe derived muon efficiency corrections is 2%–5%.

Since the B_τ kinematic distributions are not precisely known, acceptance and efficiency corrections are recalculated 1500 times with $p_T^{\mu\mu}$ spectra fitted on variations of the
measured $p_T^{\mu\mu\mu}$-differential yields within the above-mentioned uncertainties. For the $p_T^{\mu\mu\mu}$-integrated results, the root mean square (RMS) of the varied acceptance and efficiency corrections, of order 7% and 24% for pp and Pb-Pb collisions, respectively, is used as the systematic uncertainty related to the B^+_c kinematics. For the $p_T^{\mu\mu\mu}$ dependence, these variations are correlated with the other uncertainty sources, so the combined uncertainty is assessed as the RMS of the varied corrected yields. The correlation between the variations of the spectrum and of the acceptance and efficiency is small or negative for the Pb-Pb high-p_T bin and for both pp p_T bins, so that the uncertainties with or without this systematic effect are similar. This correlation is large and positive for the Pb-Pb low-p_T bin, inducing an additional 12%–31% uncertainty. The uncertainty in the Pb-Pb–to–pp ratio is the RMS of the ratios of the relevant varied quantities.

The contamination from other B^+_c decays, such as $B^+_c \to J/\psi (\tau^+ \to \mu^+ X)\nu_\tau$, or $B^+_c \to (c \bar{c} \to J/\psi X)\mu^+\nu_\mu$, where X denotes any decay product(s), is estimated to be below 4.5%, and to have largely canceling pp and Pb-Pb contributions. The overall normalization uncertainty arising from the luminosity and centrality determination is 1.9%–3.8%. The leading uncertainties in the $p_T^{\mu\mu\mu}$-differential and $p_T^{\mu\mu\mu}$-integrated measurements are from the fit and the B^+_c kinematics, respectively.

The significance of the B^+_c signal in Pb-Pb collisions, calculated from the fit likelihood ratio and including the fit method uncertainty, is well above 5 standard deviations. The left panel of Fig. 2 shows the measured B^+_c meson $p_T^{\mu\mu\mu}$-differential cross sections in pp and (pp-equivalent) Pb-Pb collisions. The two bins of the trimuon p_T correspond to different rapidity ranges. The markers of the $p_T^{\mu\mu\mu}$ bins are placed according to the Lafferty-Wyatt prescription [45]. The bin-to-bin correlation factor ρ_{1-2} is also displayed. The filled and empty rectangles show the fit and total uncertainties, respectively. The ratio between the low-p_T and high-p_T regions is 18.2$^{+1.3}_{-1.1}$ in pp data and 24.1 in the BCVEGPY2.2 simulation, suggesting that the latter overestimates the spectrum steepness.

The other panels of Fig. 2 show the B^+_c nuclear modification factor, i.e., the ratio of the (pp-equivalent) Pb-Pb to pp cross sections, as a function of $p_T^{\mu\mu\mu}$ (middle) and of centrality (right). The markers of the $p_T^{\mu\mu\mu}$ bins are placed at the average of their values for pp and Pb-Pb collisions, while the centrality bin markers are placed at the minimum bias average number of participants N_{part}. The filled and empty rectangles, respectively, show
the bin-to-bin-uncorrelated and total uncertainties, such that the uncertainty in the difference of the two bins is the quadratic sum of uncorrelated uncertainties.

In the high-\(p_T^{\mu\mu}\) region, the \(B_c^+\) shows a moderate suppression, while the low-\(p_T^{\mu\mu}\) modification factor stands above unity and above the high-\(p_T^{\mu\mu}\) region, respectively, by 1.2 and 1.8 standard deviations, consistent with an enhancement of the integrated production and a softening of the \(p_T\) spectrum in the QGP. No significant variation is observed as a function of centrality. As shown in the Supplemental Material [46], except for the \(B_c^0\) meson [14], other heavy mesons in these \(p_T\) ranges typically show more suppression than our measurement [4,7,13,15–17], which may indicate that heavy-quark recombination is a significant \(B_c^+\) production mechanism in the QGP. A study based on Ref. [47], ignoring the recombination of \(B_c^+\) excited states and possibly underestimating initial correlations, predicts an \(R_{\text{AA}}(B_c^+)\) about an order of magnitude smaller than our measurement.

In summary, the first observation of the \(B_c^+\) meson in heavy ion collisions is presented, using the \(B_c^+ \rightarrow (J/\psi \rightarrow \mu^+\mu^-)\mu^+\nu_\mu\) decay. The production cross sections in lead-lead and proton-proton collisions and the nuclear modification factor derived from their ratio are measured in two bins of the trimuon transverse momentum, and in two ranges of the heavy-ion centrality. This unique bottom-charm state can help disentangle the enhancement (possibly dominant in central events at low \(p_T\)) and suppression (dominant at high \(p_T\)) mechanisms at play in the evolution of heavy quarks through the quark-gluon plasma.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); SNS and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); MNCS (Romania); MES of Ukraine (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contracts No. 675440, No. 724704, No. 752730, No. 758316, No. 765710, 824093, No. 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium)
under the “Excellence of Science—EOS”—be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—390833306, and under Project No. 400140256–GRK2497; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFI research grants No. 123842, No. 123959, No. 124845, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/02861 (Poland); the Fundação para a Ciência e a Tecnologia de Excelência María de Maeztu, grant No. MDM-2014-01000 (Spain); the Stavros Niarchos Foundation (Greece); the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic Infrastructure Platform (CLIP), Vienna.

[23] CMS Collaboration, Measurement of the ratio of the production cross sections times branching fractions of $B^+_c\rightarrow J/\psi \pi^+$ and $B^+\rightarrow J/\psi K^+$ and $B(B^+_c\rightarrow J/\psi \pi^+\pi^-\pi^+)/B(B^+_s\rightarrow J/\psi \pi^+)$ in pp collisions at $\sqrt{s} = 7$ TeV, J. High Energy Phys. 01 (2015) 063.

[28] HEPData record for this analysis (2021), 10.17182/hepdata.111309.

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey

Istanbul Technical University, Istanbul, Turkey

Istanbul University, Istanbul, Turkey

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, Texas, USA

Catholic University of America, Washington, DC, USA

The University of Alabama, Tuscaloosa, Alabama, USA

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of California, Davis, Davis, California, USA

University of California, Los Angeles, California, USA

University of California, Riverside, Riverside, California, USA

University of California, San Diego, La Jolla, California, USA

University of California, Santa Barbara-Department of Physics, Santa Barbara, California, USA

California Institute of Technology, Pasadena, California, USA

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

University of Colorado Boulder, Boulder, Colorado, USA

Cornell University, Ithaca, New York, USA

Fermi National Accelerator Laboratory, Batavia, Illinois, USA

University of Florida, Gainesville, Florida, USA

Florida State University, Tallahassee, Florida, USA

Florida Institute of Technology, Melbourne, Florida, USA

University of Illinois at Chicago (UIC), Chicago, Illinois, USA

The University of Iowa, Iowa City, Iowa, USA

Johns Hopkins University, Baltimore, Maryland, USA

The University of Kansas, Lawrence, Kansas, USA

Kansas State University, Manhattan, Kansas, USA

Lawrence Livermore National Laboratory, Livermore, California, USA

University of Maryland, College Park, Maryland, USA

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

University of Minnesota, Minneapolis, Minnesota, USA

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

State University of New York at Buffalo, Buffalo, New York, USA

Northeastern University, Boston, Massachusetts, USA

Northwestern University, Evanston, Illinois, USA

University of Notre Dame, Notre Dame, Indiana, USA

The Ohio State University, Columbus, Ohio, USA

Princeton University, Princeton, New Jersey, USA

University of Puerto Rico, Mayaguez, Puerto Rico, USA

Purdue University, West Lafayette, Indiana, USA

Purdue University Northwest, Hammond, Indiana, USA

Rice University, Houston, Texas, USA

University of Rochester, Rochester, New York, USA

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA

Texas A&M University, College Station, Texas, USA

Texas Tech University, Lubbock, Texas, USA

Vanderbilt University, Nashville, Tennessee, USA

University of Virginia, Charlottesville, Virginia, USA

Wayne State University, Detroit, Michigan, USA

University of Wisconsin-Madison, Madison, Wisconsin, USA
aDeceased.
bAlso at TU Wien, Wien, Austria.
cAlso at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
dAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
fAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
gAlso at The University of the State of Amazonas, Manaus, Brazil.
hAlso at University of Chinese Academy of Sciences, Beijing, China.
iAlso at UFMS, Nova Andradina, Brazil.
jAlso at The University of Iowa, Iowa City, Iowa, USA.
kAlso at Nanjing Normal University Department of Physics, Nanjing, China.
lAlso at Chinese Academy of Sciences, Beijing, China.
mAlso at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
nAlso at Joint Institute for Nuclear Research, Dubna, Russia.
oAlso at British University in Egypt, Cairo, Egypt.
pAlso at Cairo University, Cairo, Egypt.
qAlso at Purdue University, West Lafayette, Indiana, USA.
rAlso at Université de Haute Alsace, Mulhouse, France.
sAlso at Thilisi State University, Thilisi, Georgia.
tAlso at Erzincan Binali Yildirim University, Erzincan, Turkey.
uAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, Institute for Nuclear Research, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Forschungszentrum Jülich, Juelich, Germany.
Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt.
Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Wigner Research Centre for Physics, Budapest, Hungary.
Also at IIT Bhubaneshwar, Bhubaneshwar, India.
Also at Institute of Physics, Bhubaneshwar, India.
Also at G. H. G. Khalsa College, Punjab, India.
Also at Shoolini University, Solan, India.
Also at University of Hyderabad, Hyderabad, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at Indian Institute of Technology (IIT), Mumbai, India.
Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
Also at Sharif University of Technology, Tehran, Iran.
Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran.
Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.
Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy.
Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy.
Also at Università di Napoli ‘Federico II’, Napoli, Italy.
Also at Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali, Perugia, Italy.
Also at Riga Technical University, Riga, Latvia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan.
Also at St. Petersburg Polytechnic University, St. Petersburg, Russia.
Also at University of Florida, Gainesville, Florida, USA.
Also at Imperial College, London, United Kingdom.