
 

 
 

 

 

Characterisation of SHARPIN as a third 
component of the linear ubiquitin chain 

assembly complex (LUBAC) 

 

 

 

 

A DISSERTATION 
SUBMITTED TO THE DEPARTMENT OF 

MEDICINE OF 
IMPERIAL COLLEGE LONDON 

IN FULFILMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 

Anna Schmukle 
May 2012



Summary 

1 
 

1 Summary 

Tumour necrosis factor (TNF) is an important cytokine with great physiological relevance 

and effects ranging from pro-inflammatory to immuno-regulatory functions. On a cellular 

level, it induces signalling processes by crosslinking its receptors and by initiating the 

formation of an intracellular, multi-protein receptor-signalling complex (RSC). Investigation 

of the TNF-RSC by modified tandem affinity purification (moTAP) and mass spectrometry 

revealed the presence of three novel components in this complex: heme-oxidised IRP2 

ubiquitin ligase-1 (HOIL-1), HOIL-1-interacting protein (HOIP) and SHANK-associated 

RH-domain-interacting protein (SHARPIN). Previous studies showed that HOIL-1 and HOIP 

form an E3-complex that mediates the generation of linearly linked ubiquitin chains and is 

hence referred to as linear ubiquitin chain assembly complex (LUBAC). Identification of 

peptides specific for SHARPIN in the mass spectrometric analysis of the native TNF-RSC 

together with its sequence similarity to HOIL-1 raised the questions whether SHARPIN 

contributes functionally to TNF-signalling and/or the E3-activity of LUBAC. 

In this thesis, it could be shown that all three proteins are specifically recruited to the 

TNF-RSC in a cIAP1/2-dependent manner. As SHARPIN, HOIL-1 and HOIP can bind ubiquitin 

chains this suggests that the three proteins are recruited via cIAP1/2-generated ubiquitin 

chains. In addition, HOIP is required for presence of SHARPIN and HOIL-1 in the TNF-RSC. 

This, together with the finding that these three factors form a stimulation-independent 

protein complex in the cytosol, indicates that LUBAC is recruited to the TNF-RSC as a 

tripartite complex via its central component HOIP. 

In-vitro ubiquitination assays showed that SHARPIN is not only a physical but also a 

functional component of LUBAC. HOIP can generate ubiquitin chains when combined with 

either SHARPIN, HOIL-1 or both and was shown to exclusively generate linear linkages via a 

HECT-like mechanism. NEMO was identified as a common target of all possible LUBAC-

combinations in vitro and, in line with this, the activity of LUBAC is required for full 

activation of NF-B following TNF stimulation.  

The results obtained in this thesis identify SHARPIN as a third component of LUBAC, an E3-

complex that is specifically recruited to the TNF-RSC and regulates TNF signalling by 

modifying specific target proteins with linearly linked ubiquitin chains. 
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2 Introduction 

2.1 The ubiquitin system 

Ubiquitin is a small, relatively heat-stable polypeptide of 76 aminoacids that was first 

isolated from bovine thymus (Goldstein, 1974; Schlesinger et al., 1975)  and was found to be 

identical to an essential component of an energy-dependent protein degradation system 

that had been referred to as ATP-dependent proteolysis factor 1 (APF-1) (Ciechanover et al., 

1978; Wilkinson et al., 1980). Ubiquitin is covalently linked via its C-terminus to the amino-

groups of lysine residues or the N-terminus of other proteins by the concerted action of 

three classes of proteins, a ubiquitin activating enzyme (E1), a ubiquitin conjugating protein 

(E2) and a ubiquitin ligase (E3) (Figure 1 and (Ciechanover et al., 1982; Hershko et al., 1983). 

  

 

Figure 1: Schematic representation of the ubiquitination process. In a first ATP-dependent step ubiquitin is 
activated by the E1. In a second reaction it is transferred onto a catalytic cysteine within the E2 and with the 

help of an E3 it is conjugated to an aminogroup, usually the -aminogroup of a lysine residue, within the target 
protein. Depending on the class of E3 participating in the process the last step can involve the formation of an 
E3-ubiquitin thioester intermediate or can occur independently thereof. PPi: inorganic phosphate, RING: really 
interesting new gene, HECT: Homologous to the E6-AP Carboxyl Terminus. 
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differentially linked chains is possible and these chains differ both structurally and 

functionally (Komander, 2009; Peng et al., 2003; Virdee et al., 2010). In the context of 

protein degradation the target is often modified with ubiquitin chains linked via lysine (K) 48 

and this leads to its recognition by the proteasome and its degradation (Chau et al., 1989; 

Ciechanover et al., 1980; Hershko et al., 1980). Tagging of target proteins can be reversed by 

the action of ubiquitin specific proteases known as deubiquitinases (DUBs) (Clague et al., 

2012; Komander et al., 2009a; Reyes-Turcu et al., 2009). Ubiquitin is encoded on 4 highly 

conserved genes. Two of these encode linear polyubiquitin in which ubiquitin molecules are 

linked to each other from ‘‘head-to-tail,’’ and the other two genes encode ubiquitin fused to 

ribosomal subunits. Hence, one important function exerted by specific members of the DUB 

family is to co- or posttranslationally cleave the resulting ubiquitin fusion proteins into single 

ubiquitin moieties (Baker and Board, 1987; Finley et al., 1987; Ozkaynak et al., 1984; Reyes-

Turcu et al., 2009; Wiborg et al., 1985). 

Ubiquitin is the prototype of a family of proteins that, in spite of variable sequences, display 

a remarkably similar structure, referred to as the -GRASP fold. This structure contains a 

domain with two -sheets followed by an -helix and another two -sheets (Schulman and 

Harper, 2009; van der Veen and Ploegh, 2012; Vijay-Kumar et al., 1987). Due to the 

similarities to ubiquitin, the structure and the group of proteins containing it are also 

referred to as the ubiquitin-like (UBL)-fold and -family, respectively. Members of the UBL-

family include, amongst others, NEDD8, ATG8, SUMO1-3, FAT10 and ISG15 that, like 

ubiquitin, can be covalently conjugated to target proteins via an isopeptide bond. The 

mechanisms of tagging proteins with the different UBLs are similar but rely on specific 

enzymes and only the process of ubiquitination will be discussed here (van der Veen and 

Ploegh, 2012).  

2.1.1 The ubiquitination process 

The ubiquitination process involves three steps. In the initial step ubiquitin is activated in an 

ATP-dependent manner by the E1. The second step involves the formation of an energy-rich 

thioester bond between ubiquitin and the E2 and in the final step, which is facilitated by an 

E3, an isopeptide bond between the C-terminus of ubiquitin and an aminogroup in the 

target protein is established and ubiquitin thus becomes covalently linked to the substrate.    
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2.1.1.1 Ubiquitin-activating enzymes (E1s) 

In humans there are two ubiquitin-specific E1s, UBA1 and UBA6 (Chiu et al., 2007; Jin et al., 

2007; Pelzer et al., 2007). The two proteins are distantly related and share about 40 % 

sequence identity. Whereas UBA1 is involved in charging a variety of E2s with ubiquitin, 

UBA6 is more restricted in its activity and charges the UBA6-specific E2 USE1. In addition the 

two enzymes seem to differ in their catalytic efficiencies in vivo. Almost all UBA1 molecules 

as well as its substrates are in their activated or charged forms at steady state whereas only 

50 % of the UBA6 and USE1 molecules are activated or charged under the same conditions 

(Jin et al., 2007).  

Structurally, E1s are characterised by three domains, the adenylation-domain, the catalytic 

cysteine containing domain and the C-terminal ubiquitin fold domain (UFD) (Schulman and 

Harper, 2009). The adenylation-domain is responsible for the initial binding of the 

substrates ubiquitin and ATP•Mg2+ and for the acyl-adenylation of ubiquitin. It is a 

pseudo-symmetric domain that resembles the prokaryotic proteins molybdopterin 

biosynthetic enzyme B (MoeB) and thiamine biosynthesis protein F (ThiF) (Lake et al., 2001; 

Lee and Schindelin, 2008). These bacterial proteins are involved in the C-terminal acyl-

adenylation of molybdopterin converting factor subunit 1 (MoaD) and thiamine biosynthesis 

protein S (ThiS), thus enabling them to form a C-terminal thiocarboxylate which facilitates 

the insertion of sulphur into the organic cofactors thiamine and molybdopterin respectively 

(Hochstrasser, 2000; Rajagopalan, 1997; Taylor et al., 1998). Human E1s resemble MoeB and 

ThiF not only structurally but also in the mechanism catalysing the adenylation of their 

substrates (Pickart and Eddins, 2004). Generally the reaction mediated by the E1 can be 

divided into two steps, the initial formation of a ubiquitin-adenylate intermediate and the 

following generation of an E1-Ub thioester.  The activation of ubiquitin is initiated by the E1 

binding to its substrates. Structural studies on MoeB and ThiF suggest that one of their two 

symmetrical catalytic centres binds a surface on the substrate that corresponds to the 

hydrophobic L8-I44-H68-V70 patch in ubiquitin whereas the other contributes to the 

stabilisation of this interaction. The monomer that is not involved in nucleotide binding 

contains a conserved arginine that is involved in binding ATP and an aspartate residue 

coordinating Mg2+ (Lee and Schindelin, 2008; Pickart and Eddins, 2004; Schulman and 

Harper, 2009) (Figure 2, upper panel).  
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Figure 2: Activation of ubiquitin by the E1. In the first step the E1 binds ATP•Mg
2+ 

and catalyses the C-terminal 
acyl-adenylation of ubiquitin (upper panel). In the second part of the reaction (lower panel), the catalytic 
cysteine of the E1 attacks the ubiquitin-adenylate and a thioester linkage is formed between the C-terminus of 
ubiquitin and the catalytic cysteine. The individual steps are reversible in principle and the reaction is driven by 
the release of inorganic phosphate (PPi) and AMP.  

The key catalytic residues including the Mg2+-coordinating aspartate and basic residues that 

provide electrostatic stabilization to the departing pyrophosphate product are conserved in 

E1 enzymes from E. coli to humans. The conserved arginine that contributes to ATP-binding 

is located in a distant region of the linear sequence of UBA1 (Pickart and Eddins, 2004). By 

making positive contacts with residue 72 of ubiquitin UBA1 can distinguish its substrate 

from the UBL-protein NEDD8 which at this position contains an alanine instead of the 

arginine present in ubiquitin (Lee and Schindelin, 2008; Walden et al., 2003a; Walden et al., 

2003b). This ensures that only the correct substrate can enter the ubiquitination cascade. 

Once all substrates are bound the E1 facilitates the attack of the C-terminal carboxylate 

oxygen of ubiquitin at the -phosphate of ATP. This results in the C-terminal adenylation of 

ubiquitin which stays non-covalently associated with the E1 (E1~Ub(A)) and the release of 
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inorganic phosphate (PPi) (Haas and Rose, 1982; Haas et al., 1982; Haas et al., 1983). The 

ubiquitin-adenylate is attacked by the catalytic cysteine of UBA1 which, under the 

elimination of AMP, results in an E1-Ub(T) complex that is covalently linked by a thioester 

bond between the C-terminus of ubiquitin and the catalytic centre of the E1 (Figure 2, lower 

panel) (Ciechanover et al., 1982; Ciechanover et al., 1981; Haas et al., 1982). Although a 

general base poised to deprotonate the catalytic cysteine has not been identified, a network 

of polar and charged side chains surrounding the thioester bound was found to be critically 

involved in the catalysis (Huang et al., 2007; Schulman and Harper, 2009).  Both steps of this 

process, i.e. the adenylation of ubiquitin and the formation of the thioester bond, are in 

principle reversible but the release of PPi and AMP drives the progression through the 

reaction (Haas and Rose, 1982; Haas et al., 1982).  

Once the thioester intermediate has been established UBA1 catalyses the adenylation of a 

second ubiquitin which remains non-covalently associated with the adenylation domain. 

UBA1 thereby becomes asymmetrically associated with two ubiquitin molecules 

(E-Ub(T)~Ub(A)) (Figure 3; (Haas and Rose, 1982; Schulman and Harper, 2009).  

 

 

Figure 3: Schematic representation of the 
different steps of the reaction catalysed 
by the E1. Step 1 shows the activation of 
ubiquitin by the formation of ubiquitin-
adenylate, step 2 represents the thioester 
formation, step 3 depicts the additional 
association with a second adenylated 
ubiquitin and step 4 shows the transfer of 
ubiquitin to the E2. Modified from (Haas 
and Rose, 1982).  

In order for the ubiquitination reaction to proceed UBA1 needs to associate with an E2 and 

transfer the activated ubiquitin to its catalytic centre. Although UBA1 can work with a 

variety of different E2s it needs to be ensured that E2s are not charged with the wrong kind 

of UBL. UBA1 therefore needs to select only ubiquitin-specific E2s. This is achieved mainly 

by interactions between the UFD of the E1 and the N-terminal sequence of the E2’s catalytic 

domain (Huang et al., 2007; Lee and Schindelin, 2008; Wenzel et al., 2011b). Subtle 
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(Jin et al., 2007). The interaction between E2s and the E1 in its uncharged state is usually 

weak as shown by the observation that UBA1 can be separated from the E2 by gelfiltration 

(Hershko et al., 1983). On the other hand doubly charged UBA1 (E1-Ub(T)~Ub(A)) binds 

uncharged E2s with nanomolar affinities (Haas et al., 1988). This increased affinity could be 

due to the availability of additional binding sites. Indeed, the ubiquitin thioester itself may 

act as an interaction point. Furthermore, a rotation in the E1’s UFD could unmask an 

additional E2 binding surface in the adenylation domain of the E1 and make a negatively 

charged groove in the UFD accessible. This feature can be recognised by two conserved 

lysine residues that are present in the 1-helix of all ubiquitin-specific E2s but absent from 

E2s involved in the conjugation of other UBLs (Huang et al., 2007; Lee and Schindelin, 2008; 

Ye and Rape, 2009). The conformational changes induced in the E1 by its charging with 

ubiquitin therefore contribute to both affinity and specificity for the E2. In addition, the 

rotation of the UFD and possibly the catalytic domain could also bring the ubiquitin 

thioester into close proximity to the catalytic centre of the E2 and may thus be a 

prerequisite for the ubiquitin transfer to occur (Huang et al., 2007; Schulman and Harper, 

2009). In this thioester transfer reaction the C-terminus of the covalently bound ubiquitin is 

transferred from the E1 to the catalytic cysteine of the E2. By elimination of the 

E1-ubiquitin-bond one of the binding sites for the E2 is lost and the thioester-linked E2-

ubiquitin complex is released from the E1. This enables the charged E2 to interact with an 

E3 which, due to a structural overlap in the E1- and E3-binding sites on the E2, is not 

possible in the presence of an E1 (Eletr et al., 2005). In addition, the dissociation of the E1-

E2 complex enables the E1 to participate in additional rounds of ubiquitin-activation and 

transfer.  
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2.1.1.2 Ubiquitin-conjugating enzymes (E2s) 

Ubiquitin conjugating enzymes are characterised by a conserved catalytic domain of 

approximately 150 aminoacids that assumes a compact structure in the shape of an 

elongated ellipsoid and that is referred to as Ubc domain. This domain contains 4 -helices, 

a short 310 helix, i.e. a right handed helix in which the stabilising hydrogen-bonds are formed 

between the CO-group of one aminoacid and the NH-group of the aminoacid three residues 

later, and a 4-stranded antiparallel -sheet (Lin et al., 2002; Wenzel et al., 2011b; Ye and 

Rape, 2009). Apart from the catalytic cysteine, the enzymatic reaction also involves other 

essential residues as for example an HPN-motif approximately 10 aminoacids N-terminal of 

the catalytic cysteine in which histidine serves a structural role and asparagine is involved in 

mediating the formation of an isopeptide bond between ubiquitin and the substrate. These 

conserved aminoacids are located in a groove on the bottom of the domain which is formed 

by the loop connecting helix 2 and helix 3 and the loop proximal to the catalytic cysteine 

(Wenzel et al., 2011b; Wu et al., 2003; Ye and Rape, 2009). In addition to the signature Ubc 

domain, E2s can also contain additional domains that vary in size and structure and that can 

contribute to E3- or substrate binding or regulate the intrinsic activity of the E2. According 

to the presence or absence of these additional features E2s can be allocated to 4 subclasses: 

class I contains only the Ubc-domain, class II has a C-terminal extension, class III E2s are 

characterised by additional domains in their N-terminus and class IV comprises of E2s that 

have additional domains in both their N- and their C-terminus (van Wijk and Timmers, 

2010). However, this classification does not permit predictions concerning the functionality 

of the E2. Alternatively, E2s can be classed into those initiating chain formation, those that 

interact with ubiquitin moieties already attached to a substrate and that exclusively 

promote chain elongation and those that can fulfil both functions. In the group of chain-

initiating E2s it can further be distinguished between those E2s that target lysine residues in 

an unspecific manner and therefore serve as general activators of the ubiquitination process 

and those that recognise a sequence or motif in the proximity of the aminogroup to be 

targeted and that therefore act in a more substrate-specific manner (Ye and Rape, 2009). 

Finally, E2s could be divided into groups based on their ability to catalyse the formation of 

isopeptide bonds. Most E2s can transfer the activated ubiquitin to either cysteine residues 

on an E3 thereby forming another thioester intermediate or to lysine residues of target 

proteins or ubiquitin through formation of an isopeptide-bond. On the other hand it was 
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recently found that UBE2L3 lacks lysine reactivity and the formation of an E3-ubiquitin 

thioester is therefore obligatory in reactions catalysed by this E2. It is possible that other E2s 

have similar requirements but, due to the concept being quite recent, this has not been fully 

established (Wenzel et al., 2011a). Because the E2-thioester bond is relatively stable and in 

order to ensure substrate specificity, E2s need to cooperate with E3s in transferring 

ubiquitin (Song et al., 2009). Although N- or C-terminal domains can contribute to some 

extent, the E3-binding is mainly mediated by the Ubc-domain of an E2. Specifically, polar 

and charged residues in helix 1, hydrophobic residues in loop 7 and, depending on the E3, a 

conserved hydrophobic residue in loop 4 mediate this interaction. Variations in these 

interacting parts generate specificity of the E2-E3 combinations (Ye and Rape, 2009) 

meaning that not every E2 can interact with every E3 and vice versa. However, as expected 

from the respective numbers (there are about 38 E2s and 600-1000 E3s encoded in the 

human genome) E2-E3 pairs are usually not exclusive. Most E2s can bind different E3s while 

many E3s can also accommodate different E2s. As described previously, the E2-E3 

interaction generally needs to be dissolved for the E2 to be recharged by the E1. E2-E3 

complexes are therefore of a transient nature, with the binding partners displaying only low 

affinities in the micromolar range for each other (Wenzel et al., 2011b; Yin et al., 2009b). 

Nevertheless, these associations are sufficient for the catalysis to occur. The structural and 

catalytic requirements for a transfer of ubiquitin between thiols or from a thiol to an amine 

should include an oxyanion hole that can stabilise the charged intermediate formed during 

the attack of the thiol- or aminogroup. In addition a general base might be required to 

deprotonate the attacking group which may be especially relevant for the -aminogroup of 

lysine which has a high pKa. However, most of these features have not been identified in E2s 

(Pickart and Eddins, 2004). It is therefore possible that E1 or E3 contribute certain catalytic 

elements in the respective reactions. Although binding of an E3 substantially increases the 

rate of ubiquitin discharge from the E2’s catalytic centre, the fact that the binding of the E3 

occurs at a surface of the E2 that is distant from its active site makes this direct cooperation 

seem less likely (Das et al., 2009b; Deshaies and Joazeiro, 2009; Ozkan et al., 2005; Zheng et 

al., 2000). On the other hand binding of the E3 or a substrate might induce conformational 

changes in the E2 that might cause potential cryptic groups in the active centre to adopt a 

catalytic conformation. A strictly conserved asparagine (Asn) residue for example could then 

form part of the oxyanion hole (Ozkan et al., 2005; Wu et al., 2003). A schematic 
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representation of ubiquitin being transferred from the E2 to a target or the catalytic 

cysteine of an E3 is shown in Figure 4.  

 

 

 

 

 

 

Figure 4: Schematic representation of the 
ubiquitin-transfer from an E2 to a target 
or an E3. An E2 that was charged by the 
corresponding E1 carries activated 
ubiquitin in a thioester bond. This can be 
attacked by the catalytic cysteine of an E3 
(right part) or by an aminogroup of a 
target protein or a ubiquitin-molecule 
already associated with a substrate. 
Usually the aminogroup involved in the 
formation stems from a lysine residue 

(shown here) but the -aminogroup can 
also be involved (resulting bond not 
shown). The catalytic residues present in 
the E2 have not been entirely clarified but 
a conserved Asn residue is thought to be 
involved in stabilising the intermediate.  

 

In this reaction E2s are not only carriers that transfer ubiquitin from the E1 to the E3 or the 

substrate but they also have an important regulatory role. Due to the internal lysine 

residues present in ubiquitin the formation of inter-ubiquitin linkages and thus ubiquitin-

chains is possible. The function of these chains depends both on length and linkage type 

(Hochstrasser, 2006) and E2s are involved in determining both these features. The length of 

a ubiquitin chain depends on the availability of chain-elongating E2s and on the processivity 

of the ubiquitination reaction. The term processivity is defined as the number of ubiquitin 

molecules transferred to a substrate during a single round of its association with the E3 

(Hochstrasser, 2006). E2s can influence this factor because it depends on efficient chain 

initiation, which is usually the rate limiting step in a ubiquitination reaction (Deshaies and 

Joazeiro, 2009). This first step can be supported by substrate binding sites within the E2. The 

reaction can be further optimised by atypical E2-E3 interactions that enable recharging of 

the E2 without the need to fully dissociate from the E3. Other factors that can enhance the 

processivity and thereby favour the generation of longer chains include the oligomerisation 
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of E2s or even the pre-assembly of ubiquitin chains on the active site of the E2 which can 

then be transferred en bloc to the substrate (Brzovic et al., 2006; Li et al., 2007; Li et al., 

2009b; Ravid and Hochstrasser, 2007). In addition, non-covalent interactions between an E2 

and ubiquitin may force the acceptor ubiquitin to adopt a certain orientation making only a 

particular aminogroup accessible to the active centre thereby determining linkage 

specificity. This influence on chain topology exerted by the E2 is especially relevant in 

reactions that proceed without the formation of a covalent E3-ubiquitin intermediate 

(Eddins et al., 2006; Nagy and Dikic, 2010; VanDemark et al., 2001).  

2.1.1.3 Ubiquitin ligases (E3s) 

Although E2s can have substrate-binding features, modification of targets with ubiquitin 

usually depends on a third class of proteins, the ubiquitin ligases (E3). All E3s share E2-

binding properties and the ability to recognise specific substrates. However, in the case of 

E3-complexes, these two functions may be performed by different subunits of the protein 

assembly (Pickart and Eddins, 2004). Due to the necessity to ensure specific recognition of a 

plethora of different substrates, a large number of E3s exists which can be subdivided into 

two major classes, the RING/U-box- and the HECT-ligases. The former group comprises 

approximately 95 % of all predicted E3s (Li et al., 2008).  Although both subgroups facilitate 

the transfer of ubiquitin from the charged E2 to the target protein, members of the two 

families differ both structurally and in the mechanism they employ. While RING-E3s act as a 

scaffold bridging the E2 and the substrate, HECT-ligases contain a catalytic cysteine and 

form a thioester intermediate with ubiquitin before transferring it onto the target (Figure 1). 

Thus the active centre mediating the formation of the final (iso)peptide-bond differs 

depending on the E3 involved with aminolysis being catalysed by HECT-ligases themselves 

whereas the active centre of the E2 is responsible in RING-dependent reactions (Deshaies 

and Joazeiro, 2009; Rotin and Kumar, 2009).  
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2.1.1.3.1 HECT-ligases 

The founding member of this family of proteins is the human papilloma virus (HPV) 

E6 associated protein (E6AP) (Huibregtse et al., 1995). Proteins are classified as members of 

this family based on the presence of a bilobal HECT-domain, which is formed by 

~350 aminoacids and which is homologous to E6AP’s C-terminus. The N-terminal lobe of this 

domain (N-lobe) mediates E2 binding whereas the C-terminal lobe (C-lobe) contains the 

catalytic cysteine (Huibregtse et al., 1995; Pickart, 2001). Apart from this signature domain, 

which is generally located in the C-terminal part of the E3, most members of the HECT-

family contain additional structures in their N-terminus that can for example be involved in 

substrate binding (Rotin and Kumar, 2009). According to the specific N-terminal domains 

HECT-ligases can be subcategorised into three groups. Nedd4 ligases are characterised by a 

C2 domain, which binds to phospholipids and targets the protein to membranes, and by two 

to four WW-domains that typically bind PY-motifs in substrates thereby mediating protein-

protein interactions (Kanelis et al., 2001; Staub et al., 1996). HECT-E3s containing regulator 

of chromosome condensation 1 (RBCC1)-like domains (RLDs) are referred to as HERC-ligases. 

The RLD assumes a 7-bladed -propeller fold and apart from mediating interaction with 

chromatin might also serve as a guanine exchange factor (GEF) for the small GTPase Ran 

(Garcia-Gonzalo and Rosa, 2005; Renault et al., 2001; Renault et al., 1998). E3s of this class 

can further be subdivided into large HERCs which contain multiple RLDs and small HERCs 

which contain only a single copy of this domain. Finally, HECT-ligases containing other 

N-terminal features such as ankyrin repeats, zinc fingers, UBA-, PHD- or RING-domains are 

assigned to the group of “other HECTs” (Rotin and Kumar, 2009).  

Like E2s, HECT-E3s accept ubiquitin on a catalytic cysteine by forming a thioester 

intermediate which is then attacked by the aminogroup of a target residue resulting. This 

results in the formation of an isopeptide-bond and thus in the ubiquitination of the target 

(Pickart and Eddins, 2004; Scheffner et al., 1995). As in the case of E2s (see section 2.1.1.2), 

the active site of HECT-ligases lacks well-positioned candidates for the anticipated general 

base and the oxyanion hole (Pickart and Eddins, 2004). It is therefore likely that 

conformational changes induced by substrate- or ubiquitin-binding lead to a rearrangement 

in the catalytic centre. The need for a change in conformation is further emphasised by the 

observation that, if the native conformation was maintained, the catalytic centre of the E2 

would be separated from the E3’s catalytic cysteine by a distance too great to enable 
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ubiquitin transfer (Verdecia et al., 2003).  Due to their active role in transferring ubiquitin 

specificity for a certain chain topology can be an intrinsic, E2-independent property of HECT-

E3s (Kim and Huibregtse, 2009).  

2.1.1.3.2 RING- and U-box-E3 ligases 

Members of the RING-family are characterised by a RING domain which, unlike the HECT-

domain can be located anywhere within the protein. This characteristic domain is a 

cysteine- and histidine-rich domain that was first identified in really interesting new gene 1 

(RING1) (Freemont et al., 1991). It consists of a central -helix and several small -strands 

that are separated by variable loops (Pickart and Eddins, 2004). On one surface a shallow 

hydrophobic groove is formed by the central helix and the loops. The overall primary 

sequence of this domain is not well conserved. However, characteristic cysteine and 

histidine residues, which are buried in the domain’s core where they coordinate two zinc 

ions, and their spacing are largely invariant. Although swapping of cysteine and histidine 

residues or replacement by other zinc-coordinating residues is possible in certain cases, the 

canonical RING-sequence can be summarised as C-X2-C-X9-39-C-X1-3-H-X2-3-C-X2-C-X4-48-C-X2-C 

(Deshaies and Joazeiro, 2009). The zinc-coordinating residues are interleaved, yielding a 

rigid globular structure (see Figure 5A) (Barlow et al., 1994; Borden et al., 1995). A similar 

overall structure is assumed by the UFD2-homology (U-box) domain. UFD2 is a yeast protein 

that is involved in the elongation of ubiquitin chains and is hence categorised as an E4 

(Koegl et al., 1999). Other proteins containing this domain can however also act as E3s in a 

manner very similar to that of RING-containing E3s (Jiang et al., 2001). The U-box domain 

does not coordinate zinc ions but like the RING-domain it has a hydrophobic core and two 

interaction centres. Charged or polar residues, that correspond to the zinc-coordinating 

residues of the RING in their function and position, form salt bridges and hydrogen-bonds 

whereby the domain adopts an overall RING-like fold (Ohi et al., 2003). Functionally, the 

RING-domain was first thought to be involved in DNA-binding but many RING-containing 

proteins were soon found to act as ubiquitin ligases (Freemont et al., 1991; Joazeiro et al., 

1999; Lorick et al., 1999; Xie and Varshavsky, 1999). Indeed most RING-proteins seem to 

posses the ability to act as an E3. However, there are a few exceptions. In these cases 

heterodimerisation with an active RING-E3, mediated by the RING-domain itself or other 

domains present in the respective proteins can greatly increase the activity of the latter 
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protein (Hashizume et al., 2001; Linares et al., 2003; Wang et al., 2004). Furthermore, 

dimerisation of the E3 can increase the processivity of ubiquitination by favouring the 

recruitment of multiple E2s or by inducing conformational changes required for activity 

(Feltham et al., 2011; Feltham et al., 2010; Tang et al., 2007). Unlike HECT-ligases, RING-E3s 

do not form a covalent intermediate with ubiquitin (Joazeiro and Weissman, 2000). Instead 

they mediate ubiquitination of a substrate by inducing sufficient proximity between the E2 

which binds to the hydrophobic groove on the surface of the RING-domain (Zheng et al., 

2000) and the target protein. It is thought that the rigidity of the RING-domain is well suited 

for fixing the E2 and the substrate in a favourable position. In addition, binding of the E3 

induces conformational changes in the E2 (see section 2.1.1.2) and thus RING-E3s indirectly 

favour ubiquitination (Pickart and Eddins, 2004; Zheng et al., 2000). The lysine targeted by 

this reaction is likely to be chosen based on its ability to access the thioester-bond in the 

catalytic centre of the E2 rather than by the surrounding primary sequence. However a 

certain influence could be exerted by the proximal residues as nearby basic residues could 

lower the pKa of the aminogroup and thus enhance its reactivity (Deshaies and Joazeiro, 

2009). An influence of the E3 on the selection of the target residue seems likely and could 

be mediated by binding the substrate in a way that makes only a certain residue accessible 

for ubiquitination. However, conserved residues on the E3 that would be suitable to guide 

substrates in this way have not been identified (Pickart and Eddins, 2004). On the other 

hand, domains outside the RING-domain might also contribute to binding and orienting the 

target. Indeed about three quarters of all RING-ligases are predicted to have additional 

domains such as SH2-, SH3-, PDZ- or UBL-domains (Li et al., 2008). Based on these domains 

and on sequence homology subclasses of RING-proteins can be established, the largest 

classes being the TRIM/RBCC family which is characterised by a B-box and a coiled-coil 

domain (Meroni and Diez-Roux, 2005; Sardiello et al., 2008) and the RBR/TRIAD group of E3s 

which comprises those E3s that contain two RING-domains separated by an 

in-between-RING (IBR) domain (Eisenhaber et al., 2007; Marin and Ferrus, 2002).  

The founding member of the latter subfamily was Parkin, a protein that, when mutated and 

inactivated, predisposed to several forms of Parkinson’s disease (Foroud et al., 2003; Kitada 

et al., 1998; Oliveira et al., 2003a; Oliveira et al., 2003b; Pankratz et al., 2003). Structurally it 

contains an N-terminal UBL-domain followed by two typical RING-domains (C3HC4) and an 

intermediate IBR which is characterised by a C6HC pattern (Kitada et al., 1998; Morett and 
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Bork, 1999; van der Reijden et al., 1999). The sequence of RING1-IBR-RING2 comprises 

around 200 aminoacids, and is referred to as RBR-domain (Eisenhaber et al., 2007; Marin 

and Ferrus, 2002). This structural element, like isolated RING-domains, can be located 

anywhere in a protein and is the defining feature of the RBR-family (Wenzel and Klevit, 

2012). In humans this group comprises only approximately 15 members so far. However, the 

RBR-proteins constitute an ancient and highly diversified family, members of which can be 

found in fungi, plants and animals (Marin, 2009; Marin and Ferrus, 2002; Marin et al., 2004). 

Many of the RBR-proteins were shown to act as E3s. The three parts of the RBR-domain are 

all cysteine- and histidine-containing zinc-coordinating features but they nevertheless show 

certain differences. Comparison of the general formulas for RING1 (C-X2-C-X10–24-C-X1–6-H-X2-

C-X2-C-X14–25-C-X2–9-C) and RING2 (C-X2-C-X9–11-C-X-H-X2-C-X1–4-C-X4-C-X2-C) shows that the 

RING1 domain is longer, usually around 60 aminoacids, and shows greater tolerance 

towards changes in sequence or size of its loops than the RING2 which comprises only 

approximately 40 residues. The IBR-RING is intermediate in size (~50 aminoacids) and like 

the RING1 more variable in the loops connecting the zinc coordinating residues (Eisenhaber 

et al., 2007; Marin and Ferrus, 2002). On the other hand the identity of these cysteine and 

histidine residues is more strictly conserved in the N-terminal domains. Indeed, structural 

studies revealed that the RING2-domain of ARIH1 (also known as human homolog of 

Drosophila ariadne-1 (HHARI)), assumes an atypical conformation coordinating only a single 

zinc ion (Figure 5B; (Capili et al., 2004).  

A recent study found that the RING2 domain of ARIH1 is required for E3 activity and 

involved in formation of a ubiquitin thioester (Wenzel et al., 2011a). Accordingly, a HECT-

like mechanism was suggested for all RBR-E3s (Figure 5C and (Wenzel and Klevit, 2012)). 

Whereas the functions of RING1- and RING2-domains consist of E2-binding and carrying out 

the enzymatic reaction, respectively, the relevance of the IBR-domain is less well 

understood. It is possible that it has a structural role in bringing RING1 and RING2 into close 

proximity thus allowing the catalytic cysteine to attack the thioester bond of the RING1-

bound E2-ubiquitin complex (Wenzel and Klevit, 2012). However additional studies will have 

to clarify whether this is the only function of this domain.  
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Figure 5: Schematic representation of classical and atypical RING-domains and of the HECT-like mechanism 
adopted by RBR-E3s. A: Representation of a classical RING-domain. A sequence of 7 cysteine (C) and one 
histidine (H) residues forms an interleaved structure coordinating two zinc residues. X indicates interspacing 
aminoacids. The backbone is shown as a black line; non-covalent interactions are depicted as dashed lines. B: 
Schematic structure of a classical RING coordinating two zinc ions as compared to the RING2 domain of ARIH1 
which does not show a canonical RING fold and only binds one zinc ion. Modified from (Capili et al., 2004).  C: 
RBR E3s act via a HECT-like mechanism. Ubiquitin is transferred from the E2-ubiqutin complex that is bound by 
the RING1-domain to a catalytic cysteine present in the RING2 of the E3 before being conjugated to the target 
protein.  

Overall, RBRs can be categorised as RING-HECT-hybrids, and due to their direct involvement 

in ubiquitin transfer they are likely to determine the topology of the generated ubiquitin 

chain independently of the E2 involved and are thus critically involved in determining the 

fate of their target proteins.  

2.1.2 Different forms of ubiquitination 

Like phosphorylation, ubiquitination leads to a covalent posttranslational modification of a 

target protein. The attachment of a ubiquitin moiety can occur at one (monoubiquitination) 

or several sites (multi-monoubiquitination). In contrast to phosphorylation, ubiquitination 

has a further layer of complexity as chains of ubiquitin can be generated. This results from 

the possibility to attach the C-terminus of a ubiquitin molecule to the N-terminus or one of 

the 7 internal lysine residue of the preceding moiety and allows the formation of eight 

different types of polyubiquitin (Behrends and Harper, 2011). Chains in which identical 

lysine residues mediate linkage of sequential ubiquitin molecules, e.g. the C-terminus of the 
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distal ubiquitin forms an isopeptide-bond with lysine 48 of the proximal ubiquitin 

throughout the chain, are referred to as homotypic chains (Figure 6).  

 

 
 

Figure 6: Types of 
ubiquitination. A 
target protein can be 
modified on one or 
several sites by single 
ubiquitin molecules 
or by ubiquitin 
chains. Polyubiquitin 
can be linked via one 
of the seven lysine 
residues of ubiquitin 
or its N-terminus 
resulting in 
differentially linked 
chains. Different 
linkages can also be 
combined in one 
chain.  

K48-linked chains, that were the first to be functionally characterised (Chau et al., 1989) are 

referred to as canonical whereas all other linkage types are usually referred to as non-

canonical or atypical chains. This nomenclature can vary slightly as K63-linked ubiquitin, the 

second linkage to be associated with a functional outcome (Deng et al., 2000; Spence et al., 

1995), is sometimes counted among the canonical forms of ubiquitination. In addition to the 

homotypic chains the formation of heterotypic ubiquitin conjugates is possible. In the latter 

not only one but different lysine residues are used to conjugate ubiquitin molecules thus 

creating a chain that contains alternating linkage types. The group of heterotypic 

polyubiquitin chains also comprises branched or forked linkages in which a single ubiquitin is 

extended at two or more lysine residues (Ben-Saadon et al., 2006; Kim et al., 2007; Peng et 

al., 2003).  

Modification of a target by covalent conjugation of ubiquitin molecules can change its fate 

by exerting an allosteric effect on its activity as for example in the activation or inactivation 

of an enzyme by ubiquitination-induced conformational changes. Alternatively, 

ubiquitination can enable interactions with proteins that specifically bind ubiquitin via 

ubiquitin-binding domains (UBDs) (Dikic et al., 2009; Komander, 2009; Scaglione et al., 2007; 

Todi et al., 2009). There are at least 20 different types of UBDs, including for example 
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ubiquitin binding zinc fingers (ZnF) (UBZ), nuclear protein localisation 4 ZnFs (NZFs), 

ubiquitin conjugating (Ubc) domains, typically found in E2s, ubiquitin interacting motifs 

(UIMs) and ubiquitin-associated (UBA) domains. The individual domains employ different 

structural elements and can recognise different surfaces on the ubiquitin molecule. Their 

interaction with conformations generated by a specific linkage between two ubiquitin 

molecules allows them to specifically bind one but not another type of ubiquitin chains 

(Dikic et al., 2009; Hurley et al., 2006). Despite the structural similarities in a UBD-family, 

specific recognition of a particular linkage type can usually not be attributed to UBDs of only 

a single family and in addition different members of the same family can show different 

linkage specificities (Dikic et al., 2009; Raasi et al., 2005).  Although UBDs usually show very 

low affinities for isolated ubiquitin molecules they can efficiently mediate the interaction 

between ubiquitin and the UBD-containing protein, also referred to as a ubiquitin receptor 

(Hurley et al., 2006). Efficient binding in spite of low affinity is usually due to increased 

avidity which can be accomplished by the presence of multiple UBDs in a protein, by 

oligomerisation of ubiquitin receptors or by accumulation of ubiquitin-receptors and -chains 

in cellular compartments or in multi-protein complexes. Binding of ubiquitin receptors to a 

ubiquitinated protein can alter the activity, localisation or stability of the modified target 

protein. Due to the ability of ubiquitin-interacting proteins to differentiate between the 

different forms of ubiquitination (Dikic et al., 2009; Raasi et al., 2005) the fate of a target 

depends on the type of modification it is subject to. This applies not only to the difference 

between mono- and polyubiquitination but also to differentially linked ubiquitin chains. An 

additional aspect that contributes to the specific outcomes of ubiquitination with the 

individual forms of ubiquitination relates to different linkages being more or less refractory 

towards the disassembly by particular DUBs. These proteases usually also contain UBDs 

allowing them to interact with ubiquitin chains of specific linkage types thus enabling them 

to efficiently and specifically cleave the (iso)peptide bonds linking the individual ubiquitin 

molecules (Bremm et al., 2010; Faesen et al., 2011; Komander et al., 2009a; Virdee et al., 

2010).  
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2.1.2.1 Monoubiquitination 

When compared to other posttranslational modifications such as phosphorylations, 

ubiquitination involves the attachment of a relatively large molecule to the target. Although 

the bigger surface area of ubiquitin provides a variety of potential interaction sites (Searle et 

al., 2012; Winget and Mayor, 2010) most UBDs bind to a hydrophobic area surrounding 

Ile44 (Ile44 patch) of ubiquitin, rendering the recognition of monoubiquitin by different 

UBDs mutually exclusive. This exclusivity can prevent a single ubiquitin molecule from 

triggering different and possibly opposing signals at the same time. However, it is possible 

that wherever cooperation of two ubiquitin-binding proteins is needed, their UBDs may 

recognise different features in the ubiquitin molecule allowing the receptors to be recruited 

at the same time (Dikic et al., 2009). Therefore, attachment of a single ubiquitin molecule to 

one or several sites in a target protein can not only be the initiating step of a 

polyubiquitination (Windheim et al., 2008) but may in itself already alter the fate of the 

substrate. In the DNA-damage response for example, monoubiquitination of histones or of 

the DNA sliding clamp proliferating-cell nuclear antigen (PCNA) is of functional relevance. In 

yeast the ubiquitination status of PCNA is decisive for the method by which replication 

passes damaged DNA. Monoubiquitination of PCNA triggers translesion synthesis, which is 

more error prone than the template switching pathway initiated by K63-ubiquitinated PCNA 

(Hoege et al., 2002; Ulrich and Jentsch, 2000). Multiple-monoubiquitination is also 

implicated in internalisation and subsequent lysosomal degradation of cell surface receptors 

(Haglund et al., 2003). Here some of the subunits of the multimeric endosomal-sorting 

complex required for transport (ESCRT) machinery contain UBDs which are responsible for 

ubiquitinated cargoes to be recruited and to be transported to multivesicular bodies (MVBs) 

where they are degraded in a lysosomal manner (Hirano et al., 2006; Raiborg and Stenmark, 

2009; Williams and Urbe, 2007). A role for multi-monoubiquitination in the context of 

protein degradation is indicated by the finding that processing of the nuclear factor kappa B 

(NF-B) precursor p105 to the NF-B subunit p50 can be initiated by the conjugation of 

single ubiquitin moieties rather than of a polyubiquitin chain (Kravtsova-Ivantsiv et al., 

2009). In addition, following genotoxic stress monoubiquitination of phosphorylated and 

SUMOylated NF-B essential modulator (NEMO, also known as IKK), the regulatory subunit 

of the inhibitor of kappa B kinase (IKK) complex, in the nucleus leads to its export to the 
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cytoplasm where it can mediate the induction of the NF-B pathway (Hadian and 

Krappmann, 2011; Huang et al., 2003).  

2.1.2.2 Polyubiquitination 

As mentioned previously the generation of ubiquitin chains can occur by the formation of an 

(iso)peptide-bond between the carboxyl-group of the incoming ubiquitin moiety and an 

aminogroup of the preceding molecule. The latter group can be provided by the N-terminal 

methionine (M1) or by one of the internal lysine residues (K6, K11, K27, K29, K33, K48 or 

K63). Studies in both yeast and cell lines found that all possible linkage types exist in vivo. 

Different studies found K48 to be the most abundant linkage type with 29 % and 52 % of all 

ubiquitin chains being linked in this manner in yeast and HEK293 cells respectively (Dammer 

et al., 2011; Xu et al., 2009b). The percentages of the other chain types were estimated as 

11 % (K6), 28 % (K11), 9 % (K27), 3 % (K29), 4 % (K33) and 16 % (K63) in yeast (Xu et al., 

2009b) and 2 % (K11), 8 % (K29), 38 % (K63) of all ubiquitin chains were found to be linked in 

an atypical manner in HEK293 cells where the amounts of K6-, K27-, K33- and M1-linked 

chains accounted for less than 0.5 % (Dammer et al., 2011). Due to technical limitations of 

the analysis and because certain linkages are formed in a stimulation- or cell cycle 

dependent manner, the observed percentages may not represent the physiological 

relevance of the individual chain types. Branched chains including for example K29 and K33 

linkages were also identified and it was found that in contrast to all other homomeric chains 

these forked chains cannot be degraded by the proteasome (Kim et al., 2007). Indeed, 

inhibition of the proteasome increases the amount of all linkages in HeLa cells (Meierhofer 

et al., 2008) and of all chain types apart from K63-linked chains in yeast. In addition, all 

linkages could signal for degradation by purified proteasomes in vitro (Xu et al., 2009b). 

Although this could indicate that all linkages apart from K63 target for proteasomal 

degradation and are thus functionally redundant, it is likely that recognition of different 

chains by proteins that regulate the transport to the proteasome and by proteasomal 

subunits themselves differs both qualitatively and quantitatively. In addition, differential 

DUB-sensitivity may allow transient non-proteolytic functions to be mediated by some, i.e. 

the more stable, but not by other, i.e. the more DUB-sensitive, linkage types. Along these 

lines specific binding of proteasome-independent UBDs may protect selected chain types 

from transport to the proteasome as well as from DUB-mediated disassembly. Indeed 
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specific receptors, proteases and functions have been described for the different linkage 

types (Dikic et al., 2009; Komander et al., 2009a). Specific recognition is enabled by the fact 

that differentially linked ubiquitin chains differ not only in the linkage between individual 

ubiquitin molecules but also in their overall conformation (Virdee et al., 2010) thus creating 

specific binding surfaces that are absent from monoubiquitin or other chain types. These 

different topologies result from the fact that all potential linkage points in the ubiquitin 

molecule are located on different surfaces and point into different directions. The 

exceptions are M1 and K63 which are in close proximity (Figure 7 and (Vijay-Kumar et al., 

1987). Accordingly, K63- and linear chains assume a similar extended conformation in which 

the individual ubiquitin moieties do not make contact. However, the two chain types can be 

differentiated by the chemical characteristics of the linkage. M1 chains are linked by a 

peptide- instead of an isopeptide bond and are thus conformationally more restrained 

(Komander et al., 2009b). On the other hand K6-, K11- and K48-linked chains have a 

different structure. K6-linked chains assume an asymmetric compact conformation in which 

the Ile44 patch of the proximal ubiquitin which contains the lysine residue involved in the 

linkage binds to another hydrophobic surface containing L71, I36 and I8, the so called Ile36 

patch, on the distal ubiquitin. The resulting structure is further fixed by additional 

interactions and the Ile44 patch of the distal ubiquitin remains accessible thus allowing 

interaction with UBDs (Virdee et al., 2010). Two different conformations exist for K11 

chains. One of the structures involves an asymmetric interaction between the areas 

surrounding Glu24 on the distal and K29 and K33 in the proximal ubiquitin moiety. In the 

other the ubiquitin molecules interact via their respective Ile36 patches. Both 

conformations exist in an equilibrium and contribute to a higher order assembly in crystals 

(Bremm et al., 2010; Matsumoto et al., 2010). Finally, K48 chains assume a conformation in 

which the two Ile44 patches of subsequent ubiquitin moieties interact with the linking 

residues being closely packed against the ubiquitin units. In tetramers further contacts 

between molecules exist leading to an overall pseudo-tetragonal structure. Nevertheless, 

interactions with K48-linked chains are possible as an equilibrium with more open 

conformations exists and because UBA-domains can insert between the Ile44-patches of 

interacting molecules (Cook et al., 1992; Trempe et al., 2005; Varadan et al., 2004; Varadan 

et al., 2005). The structures of the other linkage types have not been determined to date 
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but due to the location of the linking residues as well as to distinct cellular functions (see 

below) it can be assumed that they all adopt specific conformations. 

Figure 7: Structural features of ubiquitin and of different ubiquitin chains. Upper panels: Two different 
angles of the ubiquitin structure (PDB: 1UBQ; (Vijay-Kumar et al., 1987) reveal that the different potential 
linkage points for the formation of ubiquitin chains, i.e. the N-terminal methionine 1 (M1, depicted in red) and 
the seven internal lysine residues (K6-K63, shown in yellow with dark blue side chains), are located on different 
surfaces of the molecule and face into different directions. Lower panel: Table summarising structural and 
functional differences between the different linkage types. Modified from (Komander, 2009) under 
incorporation of information obtained from (Virdee et al., 2010) and (Bremm et al., 2010).  
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and alpha-synuclein (-syn) by TNF-receptor associated factor (TRAF) 6 thereby causing 

accumulation of these Parkinson’s disease associated proteins in cytoplasmic aggregates 

(Zucchelli et al., 2010). 

2.1.2.2.2 K11-linkages 

As mentioned previously K11-linkages were found to account for 28 % of all ubiquitin chains 

in yeast but only for 2 % in human cells. The low amount of K11-linkages identified in 

HEK293 cells may be due to the abundance of this linkage type being strongly cell cycle 

dependent, reaching maximum levels during mitosis (Jin et al., 2008; Matsumoto et al., 

2010). This is in accordance with a functional role of this chain type as a signal for 

proteasomal degradation of cell cycle related proteins such as cyclin B1, cyclin A and 

Securin. Modification of these substrates is mediated by the anaphase-promoting 

complex/cyclosome (APC/C) in cooperation with the K11-specific E2 UBE2S and with UBE2C 

(Jin et al., 2008; Kirkpatrick et al., 2006; Williamson et al., 2009). K11-linked ubiquitination of 

cyclin B1 was shown to be sufficient for its proteasomal degradation in vitro (Jin et al., 2008) 

and although specific UBDs that may be involved in shuttling K11-ubiquitinated proteins to 

the proteasome have not been identified, a physiological role for this modification is 

suggested by the finding that depletion of both UBE2C and UBE2S causes mitotic arrest 

(Williamson et al., 2009). In addition, K11-linked chains have been suggested to be 

functionally important in the endoplasmatic reticulum associated degradation (ERAD) 

pathway (Xu et al., 2009b). Furthermore, a potentially non-proteolytic function was 

suggested in the context of TNF-signalling. It was described that cellular inhibitor of 

apoptosis (cIAP) 1 in conjunction with the promiscuous E2 UBE2D can attach K11-linked 

chains to RIP1 (Dynek et al., 2010) and K11-linkages were found to be associated with RIP1 

in the native TNF-receptor signalling complex (RSC) (Gerlach et al., 2011). It has not been 

clarified whether this leads to RIP1 degradation and thus termination of signal transduction 

emanating from the receptor complex or whether K11-chains have a proteasome-

independent function in this context. The latter notion is supported by the finding that the 

UBD of NEMO can bind to K11-dimers with similar affinity as to K63-linked dimers (Dynek et 

al., 2010) indicating that K11-chains could be a potential recruitment platform for the IKK-

complex. In addition, Cezanne, a DUB that was described to negatively regulate TNF-induced 

NF-B activation was found to preferentially cleave K11-linked chains (Bremm et al., 2010; 
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Enesa et al., 2008) further implying that K11-chains have a signal-promoting rather than a 

degradative function in the context of TNF-induced signal transduction.  

2.1.2.2.3 K27-linked chains 

Due to the close proximity of lysines K27, K29 and K33 their analysis by mass spectrometry is 

challenging and this has somewhat dampened the investigation of these linkages types 

(Komander, 2009). Accordingly, little is known concerning the structure and function of K27-

linked chains. Like K6-linked chains they were reported to be attached to misfolded DJ-1 and 

-synuclein favouring their aggregation (Zucchelli et al., 2010). In addition, it was reported 

that upon viral infection, the E3 ligase tripartite motif containing 23 (TRIM23) conjugates 

K27-linked to NEMO thereby promoting NF-B activation and the production of antiviral 

IFN (Arimoto et al., 2010). In another context, attachment of the same linkage type to the 

same substrate was reported to have an entirely different outcome. In this case, the 

bacterium Shigella was found to hijack the ubiquitin conjugation system of the host cell 

leading to K27-ubiquitination of NEMO followed by its degradation. This led to a dampening 

of the host’s proinflammatory response (Ashida et al., 2010). Further investigation is needed 

to clarify the structure and function of K27-linked chains and especially to established 

whether this chain type preferentially targets proteins for proteasomal degradation or 

whether it fulfils other, signalling related tasks.  

2.1.2.2.4 Ubiquitin chains conjugated via K29 

Together with K6- and K27-chains K29-linked ubiquitin was reported to be conjugated to 

DJ-1 and -synuclein by TRAF6 in the context of Parkinson’s disease (Zucchelli et al., 2010). 

Furthermore, another member of the TRAF family, TRAF7 was found to generate this linkage 

type on NEMO and the NF-B subunit p65 leading to their lysosomal degradation and to a 

down-regulation of NF-B signalling (Zotti et al., 2011). K29-linked chains were also reported 

to target Deltex (DTX) for lysosomal degradation when attached to this protein by the action 

of the E3 ligase E3 ubiquitin-protein ligase Itchy homolog (ITCH) (Chastagner et al., 2006). 

Furthermore, K29-linked chains were also implicated in the ubiquitin fusion degradation 

pathway where the E3 Ufd5 is responsible for their generation (Johnson et al., 1995). In 

addition, it was shown that the DUB TRABID preferentially cleaves K29-linked chains (Virdee 

et al., 2010) providing an indirect hint that ubiquitin of this linkage type might play a role in 

the Wnt-pathway where TRABID was found to play a role (Tran et al., 2008). Finally, several 
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members of the AMP-activated protein kinase (AMPK) family are inactivated by K29-linked 

ubiquitination as this modification seems to prevent the phosphorylation required for 

kinase activity (Al-Hakim et al., 2008). 

2.1.2.2.5 K33-linkages 

Although they are not well characterised, K33-linked chains were found to collaborate with 

K29-linked chains in the regulation of AMP kinases (Al-Hakim et al., 2008). Furthermore, a 

role in TCR-signalling for this linkage type was suggested. Here, TCR was reported to be 

targeted by Casitas B-lineage lymphoma proto-oncogene b (Cbl-b) and ITCH with the 

resulting ubiquitination inhibiting phosphorylation of TCRand preventing its association 

with the downstream tyrosine kinase (zeta-chain associated protein of 70kDa) ZAP-70 

thereby restricting TCR signalling (Huang et al., 2010).  

2.1.2.2.6 K48-linked ubiquitin chains 

Ubiquitin chains conjugated via K48 represent the best characterised linkage type. It was 

recognised early on in ubiquitin research that ubiquitin’s function as a tag targeting proteins 

for proteasomal degradation is usually not mediated by the conjugation of single ubiquitin 

molecules but by attachment of K48-linked chains consisting of at least 4 ubiquitin 

molecules (Chau et al., 1989; Thrower et al., 2000). This can be mediated by a variety of E2-

E3 combinations amongst them those involving the K48-specific E2s UBE2R1 or UBE2K 

(Haldeman et al., 1997; Petroski and Deshaies, 2005). Once modified the ubiquitinated 

protein is recognised by a set of specific ubiquitin-binding proteins, Rad23, Dsk2, and Ddi1, 

which bind ubiquitin via UBA-domains whereas their N-terminal UBL-domain binds the 

proteasome (Chen and Madura, 2002; Elsasser et al., 2002; Funakoshi et al., 2002; Rao and 

Sastry, 2002). These ubiquitin receptors may therefore capture substrates remotely and 

then mediate their shuttling to the proteasome (Finley, 2009). In the proteasome itself S5a 

(hRpn10) and Rpn13, two additional ubiquitin receptors that bind ubiquitin via ubiquitin 

interaction motifs (UIMs) or a pleckstrin-like receptor for ubiquitin (Pru) domain might take 

over the binding of the ubiquitin chains (Deveraux et al., 1994; Husnjak et al., 2008; Kang et 

al., 2007; Schreiner et al., 2008; Wang et al., 2005). Alternatively, ubiquitin chains of 

sufficient length may bind shuttling and proteasome intrinsic receptors at the same time or 

stay associated with the shuttling receptors which are in turn bound by the proteasomal 

receptors via their UBL-domains (Finley, 2009). Once a ubiquitinated substrate has been 
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recognised by the regulatory subunit (19S) of the proteasome, ubiquitin chains are removed 

by proteasome intrinsic proteases, the substrate is unfolded and threaded through a narrow 

channel into the core particle (20S) where it is hydrolysed resulting in a variety of peptides 

(Ardley et al., 2001; Goldberg et al., 2002; Groll et al., 2000; Kisselev et al., 1999; Lee et al., 

2002; Lee et al., 2001; Navon and Goldberg, 2001). Thus, due to its role in protein 

degradation, K48-linked ubiquitin impacts diverse processes such as removal of aged or 

misfolded proteins thereby regulating protein homeostasis, the cell cycle which depends on 

specific degradation of different proteins in the different phases of the progression through 

the cycle and different signalling pathways which are regulated both positively and 

negatively by the proteasomal degradation of antagonists or agonists, respectively.  

2.1.2.2.7 Ubiquitin chains conjugated via lysine 63  

K63-linked chains were the first type of polyubiquitin to be shown to have non-proteolytic 

functions when they were found to play role in the DNA damage response (Spence et al., 

1995). An E2 complex consisting of UBE2N and UBE2V2 was shown to specifically generate 

K63-linked chains even in the absence of an E3. This specificity is generated by a non-

covalent interaction between UBE2V2, which structurally resembles an E2 but lacks a 

catalytic cysteine, and the acceptor ubiquitin. The interactions between ubiquitin and the E2 

complex position ubiquitin in a way that results in selective presentation of K63 to the active 

site (Deng et al., 2000; Eddins et al., 2006; VanDemark et al., 2001).  

In addition to its implication in different DNA-damage related pathways (Hoege et al., 2002; 

Spence et al., 1995), K63-linked chains may assist or even replace monoubiquitination in the 

context of endocytosis as they may be recognised more efficiently by the relevant ubiquitin 

receptors (see section 2.1.2.1 and (Duncan et al., 2006; Geetha et al., 2005). A role for K63-

linked chains is further supported by the implication of the K63-specifc DUB AMSH in this 

process (McCullough et al., 2004; Sato et al., 2008). An important field regulated by K63-

linked ubiquitin is that of intracellular signal transduction. This linkage type was suggested 

to play a role in the Wnt- and interferon-response factor signalling pathways (Komander, 

2009) and has a firmly established role in signalling initiated by different cytokines (Harhaj 

and Dixit, 2012; Jiang and Chen, 2011). It was shown that K63-linkages serve as recruitment 

platforms in the context of different receptor associated or -induced complexes (Conze et 

al., 2008; Ea et al., 2006; Kanayama et al., 2004; Oeckinghaus et al., 2007; Wu et al., 2006). 
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Genetic depletion of UBE2N as well as replacement of wild-type ubiquitin with a mutant 

incapable of generating K63-linked chains showed that this linkage type is indispensable for 

IL-1- but not TNF-induced signal transduction, although it may still collaborate with other 

chain types in the context of the latter stimulus (Xu et al., 2009a; Yamamoto et al., 2006). 

Mechanistically it was shown that K63-linked chains are often generated by TRAFs or IAPs 

and that they are responsible for the recruitment of the preformed IKK- and TGF-activated 

kinase (TAK)1-binding protein (TAB)–TAK1-kinase complexes (Ea et al., 2006; Kanayama et 

al., 2004; Lee et al., 2004; Silke and Brink, 2010; Wu et al., 2006). Especially the TAB–TAK1 

complex depends on K63-linked ubiquitin for its recruitment, as its regulatory subunit, TAB2, 

has been shown to preferentially bind this linkage type (Kulathu et al., 2009). Thus, in the 

context of intracellular signal transduction, K63-linked chains are indirectly and possibly also 

directly (Fan et al., 2010) involved in the activation of kinases initiating the NF-B and 

mitogen activated protein kinase (MAPK) pathways.  

2.1.2.2.8 M1-linked or linear chains 

As mentioned in section 1.1 ubiquitin is translated as a polyubiquitin precursor, i.e. in form 

of a polypeptide in which ubiquitin molecules are linked via their C- and N-termini, 

respectively. Co- and posttranslational cleavage of these chains by specific DUBs generates 

the cellular pool of monoubiquitin (Baker and Board, 1987; Finley et al., 1987; Komander et 

al., 2009a; Ozkaynak et al., 1984; Reyes-Turcu et al., 2009; Wiborg et al., 1985). However, it 

was recently shown that a specialised E3 ligase complex referred to as linear ubiquitin chain 

assembly complex (LUBAC) is able to re-establish M1-linked chains from this pool of 

monoubiquitin (Kirisako et al., 2006) thus creating an eighth and uniquely lysine 

independent form of ubiquitin linkage. As M1-linked chains structurally resemble K63-linked 

chains (see section 2.1.2.2) functional similarities could have been anticipated. However, the 

first function of linear chains to be uncovered was their implication in proteasomal 

degradation of a model substrate (Kirisako et al., 2006). This observation was supported by 

studies that found that fusion of a non-cleavable linear tetra-ubiquitin chain to a target 

protein can lead to the degradation of this protein (Prakash et al., 2009; Zhao and Ulrich, 

2010) and that linear chains can bind the same proteasomal receptors as K48-linked chains 

(Thrower et al., 2000). In a signalling context the activity of LUBAC was linked to the 

degradation of TRIM25 and hence to suppression of type I interferon induction following 
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stimulation of RIG-I (Inn et al., 2011). On the other hand it was shown that LUBAC can 

ubiquitinate NEMO (Tokunaga et al., 2009) and that the UBAN (ubiquitin-binding in NEMO 

and ABIN (A20-binding inhibitor of NF-B)-domain of this protein binds M1-linked ubiquitin 

dimers with much higher affinity than K63-linked dimers (Lo et al., 2009; Rahighi et al., 

2009). This selectivity can be explained by contacts between the UBAN domain and surfaces 

of the dimer specific to this linkage type (Rahighi et al., 2009). Presence on and recognition 

by NEMO, the regulatory subunit of the IKK-complex implies that linear chains have a role in 

the NF-B pathway. Indeed, down-regulation or absence of LUBAC-components was found 

to affect signal transduction induced by TNF, IL-1, CD40, lipopolysaccharide (LPS), 

lymphotoxin- receptor (LTR), or by genotoxic stress (Gerlach et al., 2011; Ikeda et al., 

2011; Niu et al., 2011; Tokunaga et al., 2011). Both modification of NEMO with linear chains 

and the ability of this protein to bind M1-linked chains seem to be important in this context. 

Mutants preventing NEMO’s modification (K285,309R) were unable to restore IL-1- or 

LUBAC-induced NF-B induction in NEMO-deficient cells (Tokunaga et al., 2009) whereas 

mutations that abolished NEMO’s ability to bind linear chains without preventing its 

association with K63-linked chains reduce NF-B activation in response to TNF (Hadian et 

al., 2011; Rahighi et al., 2009). Furthermore, mutations affecting ubiquitin binding by NEMO 

are associated with X-linked ectodermal dysplasia and immunodeficiency (Rahighi et al., 

2009). Finally, linear chains may also serve as a recruitment platform for negative regulators 

of signalling processes such as the UBAN-containing proteins ABIN1 and Optineurin which 

were reported to interfere with TNF-induced NF-B activation by competing with NEMO for 

binding to ubiquitinated RIP1 (Zhu et al., 2007) and by assisting the DUBs A20 and CYLD 

(cylindromatosis) in down-regulating TNF-signalling (Harhaj and Dixit, 2011).  

2.1.3 Physiological and pathophysiological roles of the ubiquitin system 

Due to its important regulatory role in a variety of intracellular processes and its 

involvement in many signalling pathways, ubiquitination has an impact on many biological 

processes. This is exemplified by its involvement in defending the organism from invading 

pathogens, where recognition and clearance of the pathogen by the innate immune system 

as well as activation of the adaptive immune response are subject to regulation by the 

ubiquitin system. Recognition of pathogens is often mediated by the binding of pathogen 

associated molecular patterns (PAMPs) by pathogen-recognition receptors of the Toll-like-
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receptor (TLR), the retinoic acid inducible gene I (RIG-I)-like receptor (RLR) or the Nucleotide 

Oligomerisation Domain (NOD)-like receptor (NLR) families. Activation of these receptors 

triggers intracellular pathways leading to NF-B- or interferon regulatory factor (IRF)-

dependent expression of effector molecules such as proinflammatory cytokines or type I 

interferons (IFNs) that counteract the infection directly and indirectly by eliciting an 

adaptive immune response (Jiang and Chen, 2011; Kawai and Akira, 2011). The pathways 

leading to the activation of these transcription factors involve the assembly of multi-protein 

complexes which initiate signalling and which require non-proteolytic ubiquitin chains for 

their assembly and stability (Schmukle and Walczak, 2012). Furthermore, downstream 

signalling may depend on the removal of inhibitory proteins as for example the 

inhibitor of kappa B (IB) which in the unstimulated state binds NF-B dimers and prevents 

their translocation to the nucleus. Following its phosphorylation by the IKK-complex 

(Regnier et al., 1997) IB is recognised by the substrate binding subunit, -transducin 

repeat-containing protein (TRCP), of the Skp, Cullin, Fbox (SCF) E3-complex and is 

subsequently ubiquitinated and degraded by the proteasome (Alkalay et al., 1995; Chen et 

al., 1995; Palombella et al., 1994; Spencer et al., 1999; Tan et al., 1999; Winston et al., 1999; 

Yaron et al., 1997; Yaron et al., 1998). In context of the adaptive immune system, 

intracellular signalling initiated by the T- or B-cell receptors, by CD40- or by BAFF which also 

involves the activation of the NF-B and MAPK pathways is subject to the same type of 

regulation (Jiang and Chen, 2011).  

Furthermore, selective autophagy, which represents a cell-autonomous effector mechanism 

of the innate immune system and fights intracellular bacteria by isolating them in double-

membrane surrounded autophagosomes thus depriving them of nutrients and targeting 

them to microbicidal autolysosomes, depends on ubiquitination (Randow, 2011). 

S.typhimurium, streptococcus pyogenes as well as other bacteria acquire a dense ubiquitin 

coat when entering the cytosol. The ubiquitin molecules may be conjugated to bacterial 

proteins directly or to host-proteins associating with the bacterium by a so far unidentified 

E3. This ubiquitination is sensed by specific autophagy receptors, that, in a manner 

comparable to the proteasome shuttling receptors (see section 2.1.2.2.6), target their cargo 

to the autophagosomes. This process is based on the ability of the autophagy receptors, as 

for example p62, NDP52 and Optineurin (Thurston et al., 2009; Wild et al., 2011; Zheng et 
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al., 2009), to simultaneously bind ubiquitin and LC3/Atg8, a ubiquitin-like protein covalently 

coupled to the membranes of phagophores, the double-membrane precursors of 

autophagosomes (Fengsrud et al., 2000), thus mediating the interaction between cargo and 

engulfing membrane (Randow, 2011).  

Finally, the surface expression and peptide-loading of MHC molecules is regulated by 

ubiquitination. Ubiquitination of MHC class II molecules which present antigenic peptides to 

T-helper cells leads to their endocytosis and lysosomal degradation (Shin et al., 2006; van 

Niel et al., 2008). In addition, incorrectly folded MHC class I molecules are degraded via the 

ER-associated degradation (ERAD) pathway in a ubiquitin-dependent manner (Burr et al., 

2011) and even more importantly the antigenic peptides presented to cytotoxic T-cells by 

MHC class I molecules are generated by proteasomal processing of intracellular proteins 

(Michalek et al., 1993; Rock and Goldberg, 1999).  

On the other hand, pathogens often employ the ubiquitin system to manipulate or evade an 

immune response. Mechanisms involved can include the degradation of host proteins 

critically involved in raising an appropriate immune response as for example components of 

the NF-B or interferon pathways or MHC molecules. Alternatively, pathogens can aim to 

prevent or counteract specific ubiquitination events for example by the expression of DUBs 

(Jiang and Chen, 2011; Randow, 2011; Randow and Lehner, 2009). To mediate these effects, 

pathogens can either express specific proteins suitable for the respective task or adaptor 

proteins allowing them to hijack specific components of the host’s ubiquitination system. 

Specific example for the mentioned schemes, include the ubiquitin dependent degradation 

of the NF-B subunit p65 by the gammaherpesvirus MUHV.4 protein ORF3 (Rodrigues et al., 

2009), the ubiquitination of NEMO that is mediated by the IpaH9.8 protein expressed by 

Shigella felxneri (Ashida et al., 2010) and the degradation of IRF3 and IRF7 which are 

targeted by the rotavirus protein NS1 and the KSHV protein replication and transcription 

activator (RTA) (Barro and Patton, 2005; Bauhofer et al., 2007; Yu and Lai, 2005). 

Furthermore, in a case of E3-hijacking, the highly conserved V-proteins of several 

paramyxoviruses, including mumps virus, human parainfluenza virus type 2 (HPIV2) and 

simian virus 5 (SV5), target signal transducer and activator of transcription (STAT)s, 

important mediators of IFN-signal transduction, for ubiquitination and degradation by 

recruiting them to DNA Damage Binding Protein 1 (DDB1), the substrate binding subunit of 

the Cul4A E3 ligase-complex (Li et al., 2006b; Parisien et al., 2002). 
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To evade the action of cytotoxic T-cells, human CMV (cytomegalovirus) encodes proteins, 

US2 and US11, which, probably indirectly, initiate the ubiquitination and degradation of 

MHC class I molecules via the ERAD pathway (Lilley and Ploegh, 2004; Wiertz et al., 1996; Ye 

et al., 2004). Similarly, K3, a protein expressed by Kaposi’s sarcoma virus (KSHV) and the 

canonical member of the viral RING-CH ligase family, associates with and ubiquitinates MHC 

class I in a post-ER compartment, leading to its internalization, ESCRT-dependent sorting 

and lysosomal degradation (Cadwell and Coscoy, 2005; Lehner et al., 2005; Wang et al., 

2007). Finally, strategies to prevent ubiquitination events generally or specifically are 

employed by bacteria and viruses. The proteins CHBP from Burkholderia pseudomallei and 

its homologue Cif from Escherichia coli deamidate specific glutamine residue within 

ubiquitin and thus prevent the formation of ubiquitin chains (Cui et al., 2010) in general. 

Individual ubiquitination events can be more specifically counteracted by expression of 

DUBs or by adaptor proteins that recruit the host’s proteases to a designated target. An 

example of a virally encoded DUB is UL36USP which by a so far unknown mechanism affects 

pathogenicity but not replication of viruses (Bottcher et al., 2008; Jarosinski et al., 2007). 

Overall this shows that the immune system, as an example of many complex processes is 

highly regulated by ubiquitination and that this can also be exploited by pathogens. 

Due to its implication in intracellular signalling and in the regulation of physiological 

processes, deregulations affecting the ubiquitin system have been associated with a set of 

different diseases. Although the association of a faulty proteasomal degradation process 

with the pathogenesis of different disorders is the best studied aspect of this connection, 

alterations at any stage of the ubiquitination system can have detrimental results.  

Replacement of the C-terminal glycine in ubiquitin itself by a 20-residue extension can result 

from a dinucleotide deletion on the mRNA-level. Expression of this ubiquitin mutant (Ub+1) 

was associated with Alzheimer’s disease (van Leeuwen et al., 1998). Mechanistically, for a 

protein to be degraded by the proteasome, it needs to interact with the proteasomal 

machinery via a ubiquitin moiety and to have a tail that is long enough to be able to reach 

the inner proteolytic chamber. Ub+1 can be incorporated into ubiquitin chains but its C-

terminal extension is too short for the molecule to be degraded. Therefore Ub+1 binds the 

proteasome but cannot be processes, thus exerting an inhibitory effect on the degradation 

machinery which may cause or at least aggravate the accumulation of insoluble protein 

deposits observed in Alzheimer’s disease (Shabek et al., 2009). Alterations in a substrate 
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that changes its ubiquitination pattern can also be the cause for disease as exemplified by a 

mutation in the epithelial Na+ channel ENaC that prevents its interaction with the E3 ligase 

Nedd4-2. This leads to an accumulation of the ion channel and to a deregulation of Na+-

reabsorption. This is associated with a condition referred to as Liddle's syndrome which is 

characterized by early onset of severe hypertension (Rotin and Schild, 2008; Staub et al., 

1997; Zhou et al., 2007). On the other hand, not only disturbances in the covalent 

attachment of ubiquitin chains to specific substrates but also the non-covalent binding to 

nonproteolytic ubiquitin chains can have deleterious effects. Several studies have identified 

mutations in the UBAN motif of NEMO, that inhibit its ability to bind ubiquitin chains and 

alter its specificity of binding linear ubiquitin chains, in patients with anhidrotic ectodermal 

dysplasia and immunodeficiency (Doffinger et al., 2001; Filipe-Santos et al., 2006; Rahighi et 

al., 2009). Although missense mutations in UBA1 are associated with spinal muscular 

atrophy, a motor neuron disorder in which the ubiquitin-dependent degradation of proteins 

in this cell type is affected (Ramser et al., 2008), and mutations in the E2 UBE2A are linked 

with an X-linked mental retardation syndrome (Budny et al., 2010; de Leeuw et al., 2010; 

Nascimento et al., 2006), the most common part of the ubiquitination process to be 

affected are the ubiquitin ligases. This can be attributed to the large number of proteins 

included in this group and to their role of providing the ubiquitination process with 

substrate selectivity. Mutations in different E3s can affect different targets and processes 

and accordingly alterations in particular E3s have been associated with a multitude of 

diseases. Loss of function in the HECT-E3 E6AP is implicated in the development of 

Angelman syndrome, a neurodevelopmental disorder characterised by mental retardation, 

seizures and movement disorders (Kishino et al., 1997; Rougeulle et al., 1997; Vu and 

Hoffman, 1997). On the other hand, a gain of function of this E3 in complex with the viral 

protein E6 leads to the destabilisation of tumour suppressors, most importantly p53, thus 

promoting proliferation, transformation and eventually the development of HPV-induced 

cervical cancer (Scheffner et al., 1993; Scheffner and Staub, 2007).  BRCA1 mutations lead to 

a high incidence of breast and ovarian cancers (Futreal et al., 1994) and alterations in many 

other E3s have also been implicated in causing cancer (Kirkin and Dikic, 2011). This can be 

explained by a multilayered mechanism which includes the ubiquitin-dependent regulation 

of oncogenic proteins and the role of ubiquitin in maintaining a balance between pro-

survival and cell death pathways (Lipkowitz and Weissman, 2011; Vucic et al., 2011). In 
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addition, a loss of function in E3s or an overall down-regulation of proteasomal protein 

degradation has been associated with neurodegenerative disorders such as Parkinson’s 

disease, where mutation of the E3 ligase Parkin causes the accumulation of misfolded, 

insoluble aggregates (Foroud et al., 2003; Kitada et al., 1998; Lucking et al., 2000; Oliveira et 

al., 2003a; Oliveira et al., 2003b; Pankratz et al., 2003). 

2.2 The TNF/TNFR-system  

2.2.1 The TNF/TNFR-superfamilies 

As indicated by its name TNF was originally identified as a product of macrophages that 

causes lysis of tumour cells (Carswell et al., 1975). Its cDNA was cloned in 1984 (Marmenout 

et al., 1985; Pennica et al., 1984) and many related proteins were identified in the following 

years. TNF thus became the founding member of a cytokine family referred to as the TNF-

superfamily (TNF-SF). With the exception of lymphotoxin alpha (LT) and vascular 

endothelial growth inhibitor (VEGI), which are secreted, members of this family generally 

are transmembrane proteins with a single transmembrane domain and a C-terminal 

extracellular domain. They are hence classified as type II transmembrane proteins 

(Aggarwal, 2003). Soluble forms of the different members of the TNF-SF can be generated 

by proteolytic cleavage of the transmembrane proteins by a specific set of proteases (Black 

et al., 1997; Lum et al., 1999; Nocentini et al., 1997; Powell et al., 1999). The extracellular 

part of the transmembrane forms which is retained in the soluble variants and which is also 

referred to as TNF-homology domain is responsible for the ability of the different ligands to 

bind to their respective receptors. It also mediates the assembly of non-covalent ligand-

trimers. The individual chains interact via hydrophobic surfaces and the aromatic residues 

involved account for most of the 20-30 % sequence similarity observed between the 

different members of the TNF-SF (Fesik, 2000; Locksley et al., 2001). Although mono- or 

dimeric forms of the different ligands may exist, their biological activity is mediated by the 

trimeric forms (Black et al., 1997; Cabal-Hierro and Lazo, 2012). This is due to the 

requirement for a 3:3-stoichiometry in ligand-receptor complexes to activate the receptors. 

Both forms of the ligands can engage the respective receptors but depending on the specific 

cytokine and receptor the soluble variant can have agonistic or antagonistic effects 

(Aggarwal, 2003). The receptors mediating the effects of TNF-SF cytokines belong to the 

TNF receptor superfamily (TNFR-SF). They are type I transmembrane proteins that typically 
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contain one to six cysteine rich domains (CRDs) (Wajant et al., 2003). These pseudorepeats 

are usually approximately 40 aminoacids long and contain six highly conserved cysteine 

residues that form three intrachain disulfide bonds (Locksley et al., 2001; Smith et al., 1994). 

The resulting scaffold of disulfide bridges causes the receptor to adopt an elongated 

conformation. This shape allows the receptor to fit in the lateral grooves between 

protomers of the ligand trimer which in turn permits the crosslinking of three receptor 

monomers by a trimeric ligand into an active 3:3-complex (Banner et al., 1993). Although 

ligand-independent assembly of receptors via a pre-ligand assembly domain (PLAD) in their 

distal CRD was observed (Chan et al., 2000; Siegel et al., 2000) the resulting complexes 

assume a conformation that differs from that of the ligand-induced multimers and pre-

assembled receptors therefore still require ligand binding, which might induce 

conformational changes or allow formation of higher order multimers, for their activation 

(Locksley et al., 2001; Naismith et al., 1996; Naismith and Sprang, 1995). As receptors of the 

TNFR-SF generally lack enzymatic activity in their intracellular domains they rely on the 

activation-induced recruitment of adaptor proteins to initiate signalling. Based on the 

differences in their intracellular domains three subgroups of the TNFR-SF, the death domain 

(DD)- and the TRAF-interaction motif (TIM)-containing groups as well as the receptors 

lacking a functional intracellular domain, can be defined which differ in the intracellular 

adaptors recruited (Hehlgans and Pfeffer, 2005; Locksley et al., 2001). The DD-comprising 

receptors, like TNFR1, CD95, TRAILR1 and TRAILR2, recruit TNF receptor associated protein 

with a DD (TRADD) or Fas associated protein with a DD (FADD) and can therefore induce 

both gene-induction and programmed cell death in the form of apoptosis or potentially 

necroptosis (Laster et al., 1988; Vanlangenakker et al., 2012), whereas the second group of 

receptors as for example TNFR2, CD40, fibroblast growth factor inducible 14 (Fn14) or B cell 

activation factor receptor (BAFFR), recruits TRAFs and initiates signalling which is largely 

restricted to prosurvival outcomes. Finally, the third group comprises receptors like 

TRAILR3, TRAILR4 and Osteoprotegerin (OPG) that lack functional intracellular domains. 

Individually and together members of the TNF/TNFR-superfamilies have prominent roles in 

a variety of biological processes including organogenesis and regulation of the immune 

system (Aggarwal, 2003; Hehlgans and Pfeffer, 2005).  
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2.2.2 TNF 

The human TNF gene is located on chromosome 6p21.3 and contains at least four NF- 

binding motifs and cJun N-terminal kinase (JNK)-responsive elements in its promoter region 

(Collart et al., 1990; Tsai et al., 2000). These elements are required for full TNF expression as 

shown by the observation that its transcription is down-regulated both in JNK1/2-deficient 

mouse embryonic fibroblasts (MEFs), macrophages and T-cells (Das et al., 2009a; Ventura et 

al., 2003) and in RelB-deficient macrophages (Weih et al., 1997). Furthermore, TNF 

expression is regulated on the mRNA level by an AU-rich element (ARE) in the 

3’untranlsated region (UTR) which recruits tristetrapolin, a zinc finger protein that 

accelerates the turnover of the mRNA. This destabilising effect can be counteracted by 

binding of different proteins that mediate mRNA stability and translation (Carballo et al., 

1998; Kontoyiannis et al., 1999). Especially the p38 MAPK pathway has been implicated in 

this stabilisation and thus in promoting TNF expression (Dumitru et al., 2000; Hitti et al., 

2006). Translation of the mRNA leads to a generation of a 26 kDa protein consisting of 

233 aminoacids which is directed to the plasmamembrane by a signal peptide comprising its 

first 76 residues (Kriegler et al., 1988; Pennica et al., 1984). The membrane integrated form 

can then be cleaved by a metalloprotease referred to as TNF alpha converting enzyme 

(TACE). This cleavage leads to release from the membrane and thus to the formation of 

soluble TNF (Black et al., 1997; Kriegler et al., 1988). Production of TNF occurs mainly in 

macrophages but also in a variety of other cell types including lymphoid cells, mast cells, 

endothelial cells, fibroblasts and in neuronal tissues (Carswell et al., 1975; Wajant et al., 

2003; Williamson et al., 1983). Due to the stimulation-dependent regulatory mechanisms 

that control the expression of TNF and its role in regulating the innate immune system, TNF 

is produced in response to a variety of proinflammatory stimuli as for example triggering of 

TLRs. The release of large amounts of TNF in response to LPS or other bacterial products is in 

line with a role of this protein in defending the host against invading pathogens. Using 

genetic deletion or neutralisation of TNF with antibodies (e.g. Infliximab) or soluble receptor 

molecules (e.g. Enbrel), it could be shown that infections with different pathogens such as 

Listeria monocytogenes, Mycobacteria tuberculosis, M. avium, Salmonella typhimurium or 

Toxoplasma gondii are exacerbated in the absence of TNF (Bean et al., 1999; Ehlers, 2003; 

Pfeffer et al., 1993). Mechanistically, TNF promotes an efficient immune response by 

inducing the production of proinflammatory cytokines and by increasing the expression of 
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adhesion molecules that are essential for the interaction between endothelial cells and 

lymphocytes and that hence regulate trafficking of circulating immune cells into tissues 

(Roach et al., 2002). Finally, TNF increases the phagocytic ability of macrophages (Bekker et 

al., 2001). In spite of its important role in promoting immune responses, TNF can also be 

harmful to the host. Deregulated, prolonged exposure to TNF can result in chronic 

inflammation, a wasting syndrome referred to as cachexia or, when the TNF-levels are high, 

lead to shock (Beutler et al., 1985a; Beutler et al., 1985b; Kettelhut et al., 1987; Tracey et al., 

1986). Even in the context of an infection TNF is not always beneficial as shown by the 

finding that TNF- or TNFR1-deficient mice show a delayed pathological response when 

challenged with certain pathogens such as Citrobacter rodentium or Mycobacterium bovis 

(Goncalves et al., 2001; Zganiacz et al., 2004). While these opposing effects of TNF in 

different infection models can be attributed to the different pathogens investigated it was 

also show that spatio-temporal differences in TNF production can have decisive effects on 

the outcome. In a mouse model in which caecal ligation and puncture lead to abdominal 

infection and immunoparalysis, it was shown that the effect of TNF-injection during the 

immunoparalysis, which prevents efficient production of endogenous TNF, can be beneficial 

or detrimental depending on location and timing (Echtenacher et al., 2003). Taken together 

this shows that the overall effect of TNF depends on the tissue, on the precise cellular 

context and on the timing and duration of the stimulus (Wajant et al., 2003). In addition to 

its role in promoting and regulating immune responses, TNF also affects organogenesis and 

architecture of lymphoid tissues. Although the development of TNF-deficient mice is largely 

normal, they lack primary B cell follicles, organised follicular dendritic cell (DC) networks and 

germinal centres (Pasparakis et al., 1996; Pasparakis et al., 1997) indicating that TNF is 

essential in establishing these features.  

2.2.3 TNFR1 versus TNFR2 

The multiple biological and pathological effects exerted by TNF are mediated by its binding 

to TNFR1 (also known as p55 TNFR or TNFRSF1a) and TNFR2 (also p75 TNFR or TNFRSF1b) 

which were both cloned in 1990 (Gray et al., 1990; Heller et al., 1990; Loetscher et al., 

1990a; Loetscher et al., 1990b; Schall et al., 1990). These receptors are single membrane 

proteins belonging to the TNFR-SF. They share approximately 28 % homology which can be 

attributed almost exclusively to their extracellular domains (Dembic et al., 1990; MacEwan, 
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2002). Here both receptors contain four CRDs of which CRD1 comprises a PLAD whereas 

CRD2 and CRD3 are responsible for ligand binding (Banner et al., 1993; Chan et al., 2000; Eck 

and Sprang, 1989; Mukai et al., 2010). However, structural differences between the two 

receptors result in an altered mode of ligand recognition (Mukai et al., 2010) which could be 

a possible explanation as to why soluble TNF can efficiently activate TNFR1 but not TNFR2 

(Grell et al., 1998; Grell et al., 1995; Krippner-Heidenreich et al., 2002) although both 

receptors can bind soluble and membrane-bound TNF. The different half-lives of the 

resulting receptor-ligand complexes could contribute to the specific activation of TNFR2 by 

the membrane-bound form of the ligand and might also be responsible for the kinetic 

differences observed regarding the activation of the two receptors (MacEwan, 2002). 

Furthermore, the two receptors also differ in their expression patterns with TNFR1 being 

constitutively and widely expressed whereas the expression of TNFR2 is highly regulated 

and restricted to certain cell types which mostly belong to the immune system (Dembic et 

al., 1990; Erikstein et al., 1991; Hohmann et al., 1990; Naume et al., 1991; Tannenbaum et 

al., 1993). Most importantly the intracellular domains of TNFR1 and TNFR2 differ 

significantly. While TNFR1 contains a globular bundle of -helices in its C-terminus that form 

a DD, a sequence of a few aminoacids in TNFR2 can be bound by adaptor proteins through 

charged residues and thus serves as a TIM (Locksley et al., 2001; Rothe et al., 1994b; 

Tartaglia et al., 1993a). Therefore the two receptors belong to different subgroups of the 

TNFR-SF and signal transduction and biological outcomes initiated can differ significantly. 

Nevertheless there are overlapping functions and crosstalk between the receptors and it 

thus depends on the context if TNFR1 and TNFR2 have similar, distinct or even opposing 

outcomes (Cabal-Hierro and Lazo, 2012; Faustman and Davis, 2010; MacEwan, 2002). 

Overall activation of the two receptors has been implicated in both physiological and 

pathophysiological situations. TNFR1-deficient mice show enhanced sensitivity to certain 

pathogens as for example Mycobacteria tuberculosis, Lysteria monocytogenes or Leishmania 

major (Flynn et al., 1995; Rothe et al., 1994a; Vieira et al., 1996). It was also found that 

TNFR1-/- mice die from necrotising encephalitis when orally infected with a strain of 

toxoplamsa gondii that displays low virulence and does not kill wild-type or TNFR2-deficient 

mice (Deckert-Schluter et al., 1998). This indicates that TNF’s role in defending the host 

against these pathogens is mediated by TNFR1. In addition, this receptor seems to be 

involved in liver regeneration following partial hepatectomy (Yamada et al., 1997). On the 
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other hand TNFR2 also has specific protective roles as for example by regulating antigen 

induced differentiation of T cells (Grell et al., 1999; Kim et al., 2006; Kim and Teh, 2001), by 

contributing to the elimination of autoreactive T cells in diabetic immunity thereby 

facilitating pancreatic regeneration (Kodama et al., 2005; Ryu et al., 2001) and by playing a 

role in angiogenesis (Goto et al., 2006). Furthermore, TNFR2 seems to have a role in 

cardioprotection as demonstrated by the findings that TNFR2-/- mice are more prone to 

heart failure and show reduced survival after infarction (Monden et al., 2007) and that 

TNFR2 signalling protects heart cells from ischemia in isolated heart preparations from 

female mice (Wang et al., 2008). Another beneficial role of TNFR2 may be relevant in 

demyelating disorders as for example multiple sclerosis. Systemic blocking of TNF in patients 

suffering from this kind of disorder increased lesions in the central nervous system and 

disease activity (Kassiotis and Kollias, 2001) indicating that TNF has a protective role in this 

context. This beneficial effect could be mediated by TNFR2 as it was shown that 

regeneration of oligodendrocyte precursors, that form myelin, can be induced in a TNFR2-

dependent manner (Arnett et al., 2001). In addition, it was found that TNFR2 is involved in 

the repair of the striatum following viral encephalitis in a mouse model (Rodriguez et al., 

2009) and that it promotes neuroprotection in the context of retinal ischemia in mice 

(Fontaine et al., 2002). In the former model TNFR1 serves a similar but locally distinct 

function by mediating the repair of the hippocampus (Rodriguez et al., 2009). On the other 

hand it seems to counteract TNFR2 in retinal ischemia as it was associated with 

neurodegeneration in this context (Fontaine et al., 2002). However, activation of TNFR2 

does not have an exclusively beneficial role and polymorphism and deregulation in the 

expression of this receptor have been implicated in a variety of pathological conditions. This 

included familiar rheumatoid arthritis, Cohn’s disease, ulcerative colitis and systemic lupus 

erythematosus (SLE) (Barton et al., 2001; Dieude et al., 2002; Komata et al., 1999; Pierik et 

al., 2004; Sashio et al., 2002). TNFR2 was also found to play a role in experimental hepatitis, 

in graft-versus-host-disease and in the neurovascular damage arising in a model of cerebral 

malaria (Ishikawa et al., 2002; Kusters et al., 1997; Stoelcker et al., 2002). Furthermore, an 

up-regulation of TNFR2 correlates with a bad prognosis in renal cell carcinoma (Al-Lamki et 

al., 2010).  

All the distinct but overlapping functions of TNFR1 and TNFR2 are initiated by intracellular 

signal transduction cascades that emanate from the receptors upon TNF-stimulation. As in 
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their functional outcomes the two TNF receptors share the activation of certain common 

signalling events such as the NF-B and MAPK-pathways, but also differ in certain aspects as 

for example the direct induction of programmed cell death.  

2.2.3.1 TNFR1 signalling 

Binding of a TNF-trimer to TNFR1 induced trimerisation of the receptor. It was shown that 

the receptor multimers formed upon activation exclusively contain TNFR1 and that no 

heterotrimerisation with TNFR2 could be observed (Idriss and Naismith, 2000; Locksley et 

al., 2001; Moosmayer et al., 1994). In addition to promoting trimerisation ligand binding 

potentially also triggers conformational changes in preformed receptor multimers. The 

activated receptors then initiate intracellular signalling cascades which eventually result in a 

biological outcome. Depending on the cellular context, TNFR1 activation can lead to 

induction of proinflammatory cytokines, cell proliferation, differentiation or cell death (Chen 

and Goeddel, 2002; Wajant et al., 2003). Because TNFR1, like other members of the 

TNFR-SF, does not exhibit enzymatic activity it relies on the recruitment of cytoplasmic 

proteins which form a receptor-associated complex from which all signalling pathways 

emanate and which is thus referred to as receptor signalling complex (RSC).  

2.2.3.1.1 The TNFR1-SC 

Upon stimulation TRADD is recruited to the intracellular domain of TNFR1 via homotypic 

interactions of their DDs (Hsu et al., 1995). The serine threonine kinase receptor interacting 

protein 1 (RIP1) can associate with TNFR1 in an equivalent manner (Ermolaeva et al., 2008; 

Haas et al., 2009; Pobezinskaya et al., 2008) but could also indirectly bind to the receptor via 

TRADD (Hsu et al., 1996a). The latter protein serves as an adaptor for TRAF2 and this 

interaction is mediated via the C-terminal TRAF-domain present in TRAF2 which is also 

responsible for homotrimerisation (Hsu et al., 1996b; Shu et al., 1996). Indeed, TRAF2 forms 

mushroom-shaped trimers in which each off the protomers is capable of interacting with 

one TRADD molecule (Park et al., 2000). An alternative mode of TRAF2 recruitment seems to 

exist as suggested by the observation that TRAF2 is absent from the TNF-RSC in TRADD-

deficient MEFs (Ermolaeva et al., 2008; Haas et al., 2009; Pobezinskaya et al., 2008) but not 

in TRADD-deficient macrophages (Pobezinskaya et al., 2008). It was suggested that in this 

case RIP1 may be the relevant adaptor. However, in presence of TRADD, RIP1 is dispensable 

for TRAF2 recruitment in MEFs (Haas et al., 2009). The TRAF2 related protein TRAF5 is often 
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referred to as a component of the TNF-RSC although its recruitment has not been shown to 

date (Wajant and Scheurich, 2011). TRAF2 associates with the cIAP1 and cIAP2 with high 

efficacy and thus serves as an adaptor for their association with the TNF-RSC (Mace et al., 

2010; Shu et al., 1996; Zheng et al., 2010). Structural studies revealed that a TRAF2 trimer 

interacts with one cIAP2 molecule in an asymmetric manner and it was also shown that a 

cIAP-interaction motif (CIM) comprising aminoacids 283-293 of TRAF2 and the BIR1-domain 

of cIAP mediate this interaction and are thus required for the recruitment of cIAP to the 

TNFR (Samuel et al., 2006; Varfolomeev et al., 2008; Vince et al., 2009). Once this core 

complex is assembled several components are modified by ubiquitin chains of a non-

proteolytic nature. TRAF2, cIAP1 and cIAP2 have all been suggested to be the relevant E3 

involved in generating these ubiquitin chains (Bertrand et al., 2008; Ea et al., 2006; 

Varfolomeev et al., 2008; Wertz et al., 2004). However, the ability of TRAF2 to contribute to 

these modifications is controversial (Alvarez et al., 2010; Yin et al., 2009a). Functionally, 

these ubiquitination events are a prerequisite for the recruitment of downstream 

components such as the TAB/TAK- and IKK-complexes (Ea et al., 2006; Kanayama et al., 

2004; Li et al., 2006a; Wu et al., 2006). Especially, K63-linked chains on RIP1 have been 

implicated in this task but several lines of evidence suggest that ubiquitinated RIP1 may not 

be responsible for recruiting downstream effectors on its own. It was found that the activity 

of UBE2N as well as K63-linkages are dispensable for TNF-induced IKK-activation (Xu et al., 

2009a), components of the TNF-RSC other than RIP1 were shown to be ubiquitinated 

(Bertrand et al., 2008; Fan et al., 2010; Li et al., 2009a; Shi and Kehrl, 2003) and additional 

ubiquitin linkages, including K11-linked chains (Dynek et al., 2010; Gerlach et al., 2011) were 

found in the complex. It is however established that ubiquitin is responsible for or at least 

considerably contributes to the recruitment of kinase complexes and thus to the initiation of 

signal transduction (Chen, 2012; Gautheron and Courtois, 2010; Kanarek and Ben-Neriah, 

2012; Wajant and Scheurich, 2011). The assembly of the TNF-RSC and ubiquitination events 

mediated by cIAP and possibly TRAF2 are depicted schematically in Figure 8. 
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Figure 8: Schematic representation of the TNFR1 associated signalling complex. Upon crosslinking by TNF, 
TNFR1 recruits TRADD and RIP1 via homotypic interaction of the respective DDs. TRADD then serves as an 
adaptor for recruitment of TRAF2 which in turn recruits cIAP1 and cIAP2. These E3s then mediate 
ubiquitination of different complex components with several types of ubiquitin chains including K63- and K11-
linkages. These non-proteolytic poly-ubiquitins then act as a recruitment platform for the preassembled 
TAB/TAK- and IKK-complexes which upon their activation initiate downstream signalling. 

 

2.2.3.1.2 TNFR1-induced signal transduction 

TNFR1 activation induces a variety of downstream signalling pathways. The best studied are 

the activation of NF-B and MAPKs, especially p38 and JNK (Karin and Gallagher, 2009) and 

the induction of programmed cell death. However, other events such as the activation of 

AKT (protein kinase B, PKB) or protein kinase C (PKC) have been reported as well (Osawa et 

al., 2001; Ozes et al., 1999; Schutze et al., 1990; Wiegmann et al., 1992).  

The term NF-B refers not to a single protein but to a family of homo- and heterodimeric 

transcription factors formed by the combination of members of the Rel family which 

comprises RelA (p65), RelB, cRel, p52 and p50 (Hoffmann and Baltimore, 2006; Oeckinghaus 

and Ghosh, 2009). All five Rel proteins are characterised by a Rel homology domain (RHD) 

which confers the ability to dimerise and to bind DNA (Chen et al., 1998; Ghosh et al., 1995; 

Muller and Harrison, 1995; Muller et al., 1995). In addition, RelA, RelB and cRel contain a 

transactivation domain (TAD) which is absent from p52 and p50 (Hayden and Ghosh, 2008). 
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Therefore, some of the potential NF-B dimers lack transcriptional activity and thus serve an 

inhibitory function unless they gain the ability to act as a transcription factor by association 

with additional components (Ballard et al., 1992; Bours et al., 1993; Franzoso et al., 1992; 

Kunsch et al., 1992; Mercurio et al., 1992; Ryseck et al., 1992; Schmid et al., 1991; Schmitz 

and Baeuerle, 1991). In a resting state, preformed NF-B dimers exist but they are 

prevented from translocating to the nucleus and exerting their transcriptional activity by 

members of the IB family (Baeuerle and Baltimore, 1988; Baeuerle et al., 1988; Kanarek et 

al., 2010). Proteins of this family are characterised by five to seven ankyrin repeats and 

include the typical members IB, IB, IB, the atypical proteins IB and BCL3 as well as 

p100 and p105 which are the precursors of the NF-B subunits p52 and p50 respectively 

(Ghosh et al., 1990; Meyer et al., 1991; Naumann et al., 1993a; Naumann et al., 1993b; 

Oeckinghaus and Ghosh, 2009; Schmid et al., 1991). Hence, the essential step in NF-B 

activation is freeing the dimeric transcription factor from its inhibitor. This process involves 

phosphorylation, ubiquitination and proteasomal degradation of IB. Once the kinase 

complex consisting of IKK, IKK and the regulatory subunit NEMO has been recruited to 

the TNF-RSC via the interaction of NEMO with ubiquitin chains and potentially with RIP1 (Ea 

et al., 2006; Wu et al., 2006; Zhang et al., 2000) the kinase subunits are activated. 

Mechanistically this may involve conformational changes induced in NEMO when it binds to 

ubiquitin that translate onto the kinase subunits, trans-autophosphorylation of IKKs 

favoured by clustering of kinases in the TNF-RSC or phosphorylation of IKK by an upstream 

kinase (Oeckinghaus and Ghosh, 2009; Rahighi et al., 2009; Tang et al., 2003a). Although 

RIP1 itself is a kinase, its activity was shown to be dispensable for NF-B activation (Lee et 

al., 2004) and therefore the kinases responsible for IKK phosphorylation and activation have 

been suggested to be MAPK/ERK kinase kinase 1 (MEKK1), MEKK2, MEKK3 or TAK1 (Lee et 

al., 1998; Schmidt et al., 2003; Shim et al., 2005; Yang et al., 2001). While absence or down-

regulation of each of these kinases individually or in combination affects TNF-induced NF-B 

activation, there is currently no clear understanding of their interplay or potential 

redundancy. Once IKK, the main IKK in the canonical pathway of NF-B activation (Chu et 

al., 1999; Hacker and Karin, 2006; Hu et al., 1999; Li et al., 1999) has become 

phosphorylated in its activation loop and is thus active, it phosphorylated IB at serines 32 

and 36 (Brown et al., 1995; DiDonato et al., 1996; Ghosh and Baltimore, 1990; Traenckner et 
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al., 1995). Other canonical IBs are targeted in a similar manner and in all cases 

phosphorylation generates a degron motif that is recognised by the SCFTRCP-E3 complex 

which then mediates the conjugation of K48-linked ubiquitin to lysines 21 and 22 of IB 

(Hatakeyama et al., 1999; Kanarek et al., 2010; Scherer et al., 1995; Shirane et al., 1999; Wu 

and Ghosh, 1999; Yaron et al., 1997; Yaron et al., 1998). Ubiquitinated IBs are recognised 

and degraded by the 26S proteasome thereby uncovering the nuclear localisation sequence 

of previously bound NF-B dimers and allowing them to translocate to the nucleus where 

they can bind specific B-sites and initiate the transcription of target genes (Kanarek et al., 

2010). Among these targets are several inhibitors of NF-B activation which in a negative 

feedback loop ensure the timely termination of the signal as failure to down-regulate NF-B 

activity can result in chronic inflammation and tumour formation (Ben-Neriah and Karin, 

2011). These negative regulators include IBwhich can bind NF-B dimers and lead to 

their export from the nucleus via its nuclear export sequence (NES) (Huxford et al., 1998; 

Jacobs and Harrison, 1998; Le Bail et al., 1993; Malek et al., 1998), as well as A20 and CYLD, 

two DUBs that remove non-proteolytic ubiquitin chains from the apical complex. This results 

in interactions with downstream components being lost and eventually in termination of the 

signal (Brummelkamp et al., 2003; Heyninck and Beyaert, 2005; Jono et al., 2004; Kovalenko 

et al., 2003; Krikos et al., 1992; Trompouki et al., 2003; Wertz et al., 2004).  

In parallel to activating NF-B, TNF also induces different MAPK pathways. MAPKs are serine 

threonine kinases that can be activated by a variety of cellular stresses and stimuli in a 

hierarchical cascade of phosphorylation events (Cargnello and Roux, 2011; Schaeffer and 

Weber, 1999; Wajant et al., 2003). Specific scaffolding proteins mediate the interaction 

between different components of the pathway thus allowing the downstream MAPK to be 

phosphorylated within a conserved Threonine-X-Tyrosine motif by a specific MAPK kinase 

(MAPKK, MAP2K, MAPK/ERK kinase (MEK), MKK) which in turn was activated by its MAPKK 

kinase (MAPKKK, MAP3K, MEKK). Once activated MAPKs can regulate downstream kinases 

and initiate activation of transcription factors thus translating extracellular stimuli into a 

wide range of cellular responses. In mammalian cells several MAPK modules, including the 

extracellular signal regulated kinases 1/2 (ERK1/2)-, the JNK- and the p38-cascades, have 

been identified (Cargnello and Roux, 2011). In the context of TNFR1 signalling the most 

potently activated MAPKs are JNK and p38 (Karin and Gallagher, 2009). Following TNF 
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stimulation different JNK isoforms, especially the widely expressed JNK1 and JNK2 which are 

also known as stress-activated protein kinase (SAPK) and SAPK, respectively, are 

phosphorylated and activated (Derijard et al., 1994; Kyriakis et al., 1994; Westwick et al., 

1994).  This depends on the MAP2Ks MKK4 and especially MKK7 as shown by the finding 

that although MKK4 is required for maximal JNK activation it cannot carry out this activation 

on its own in MKK7-deficient MEFs (Derijard et al., 1995; Tournier et al., 2001; Tournier et 

al., 1997). The upstream MAP3K for this pathway has not been unambiguously identified 

but a role for TAK1, MEKK1 or MEKK3 has been suggested (Blank et al., 1996; Minden et al., 

1994; Ninomiya-Tsuji et al., 1999; Xia et al., 2000). Furthermore, an additional class of 

kinases, the MAP4Ks may contribute to JNK activation by phosphorylating the MAP3Ks. For 

example it was shown over-expression of group I germinal centre kinases (GCKs), which can 

be differentiated from group II GCKs by the their regulatory domains, can lead to MAP3K 

phosphorylation and that GCK and GCK-related (GCKR) can activate MEKK1 (Kyriakis, 1999; 

Shi and Kehrl, 1997; Yao et al., 1999; Yuasa et al., 1998). The system is further complicated 

by a second phase of prolonged JNK activation that depends on a different set of proteins, 

including apoptosis signal-regulating kinase 1 (ASK1) (Tobiume et al., 2001). Whereas the 

first transient wave of JNK signalling leads to the activation of AP-1, a family of 

heterodimeric transcription factors composed of Jun, Fos, JDP and ATF proteins, prolonged 

activation of this MAPK has been associated with production of reactive oxygen species 

(ROS) and the induction of cell death (Roulston et al., 1998; Tobiume et al., 2001; Ventura et 

al., 2004; Ventura et al., 2003).  

Activation of the MAPK p38 follows the same scheme of events but involves different 

kinases. Although there are four p38 isoforms (,,,), p38is the most widely and highly 

expressed variant and therefore the best characterised member of this subgroup of MAPKs 

(Cuadrado and Nebreda, 2010; Han et al., 1994; Jiang et al., 1996; Jiang et al., 1997; Lee et 

al., 1994; Mertens et al., 1996; Rouse et al., 1994). As in the case of the JNK-module, 

MEKK1-3, TAK1, ASK1 and other potential MAP3Ks have been implicated in the initiation of 

the p38 pathway (Blank et al., 1996; Ninomiya-Tsuji et al., 1999); (Cargnello and Roux, 2011; 

Minden et al., 1994; Xia et al., 2000). The MAP2Ks activating p38 by phosphorylating it in its 

activation loop are MKK3, MKK6 and to a certain extent MKK4 (Derijard et al., 1995; Enslen 

et al., 1998; Han et al., 1996; Johnson and Lapadat, 2002; Stein et al., 1996). Once activated 

p38 phosphorylates a multitude of cytoplasmic and nuclear proteins, amongst them, as in 
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the case of JNK, components of AP-1 transcription factors which then mediate the manifold 

outcomes of this pathway as for example the production of proinflammatory cytokines 

(Cuadrado and Nebreda, 2010). Importantly, the NF-B and MAPK pathways following TNF 

stimulation are not independent events but regulate the biological outcome of the stimulus 

by a complex crosstalk and interplay (De Smaele et al., 2001; Papa et al., 2004; Schwabe and 

Brenner, 2006; Tang et al., 2001). This overall effect is also determined by a different arm of 

TNF-signalling which, in contrast to the gene-inducing pathways that mainly result in a pro-

survival outcome, induces cell death in the form of apoptosis or necroptosis (Figure 9). 

 

Figure 9: Schematic representation of TNF-signalling. Upon cross-linking by TNF, TNFR1 recruits TRADD, RIP1, 
TRAF2, cIAP1/2 and the TAB/TAK- and IKK-complexes. This receptor associated complex (TNF-RSC or complex I) 

initiates pathways inducing the activation of NF-B and MAPKs which eventually leads to the expression of 
pro-survival genes. Extended TNF stimulation can result in the formation of secondary, death-inducing 
complexes (complex II and complex IIB) and kill the cell in two different ways which are referred to as 
apoptosis or necroptosis, respectively. See text for details. 

 

Both forms of programmed cell death are initiated not at the TNF-RSC itself but at 

secondary cytoplasmic complexes (Cho et al., 2009; He et al., 2009; Micheau and Tschopp, 

2003; Zhang et al., 2009). Upon dissociation from TNFR1, TRADD can either recruit or be 

replaced by FADD thus allowing procaspases 8 and 10 to associate with the complex, which 
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is referred to as complex II, where they are activated (Micheau and Tschopp, 2003). The 

active initiator caspase dimers can then directly cleave and activate effector caspases as for 

example caspase 3 or by cleaving Bid can engage a mitochondrial amplification loop. The 

latter induces the permeabilisation of the outer mitochondrial membrane and via the 

release of cytochrome C from the mitochondria leads to formation of the apoptosome, an 

activation platform for the initiator caspase 9 which can again activate effector caspases 

(Kantari and Walczak, 2011). These effectors can then cleave a great number of substrates 

thereby executing a form of cell death, called apoptosis, which is characterised by no 

intracellular content being released and which is thus considered non-immunogenic. 

Alternatively, a different secondary death-inducing complex, referred to as complex IIB or 

necrosome, can be formed especially in situations when the activity of caspases is blocked. 

In this case the main mediators of death induction are the kinases RIP1 and RIP3. The cell 

death pathway emanating from complex IIB is less well characterised than apoptosis 

induction by complex II but is thought to involve phosphorylation of downstream 

components and the production of ROS. Overall this pathway induces a type of cell death 

that is referred to as necroptosis and that results in bursting of the cell and therefore 

creates a pro-inflammatory milieu (Cho et al., 2009; Festjens et al., 2006; He et al., 2009; 

Vanlangenakker et al., 2012; Zhang et al., 2009). The transition from the TNF-RSC 

(complex I) to either of the death-inducing complexes has not been characterised well to 

date. The formation of the secondary complexes occurs upon prolonged stimulation with 

TNF and the deubiquitination of RIP1 seems to be an essential step in this process 

(O'Donnell et al., 2007). In addition, the formation of the necrosome and the induction of 

necroptosis requires the kinase activities of RIP1 and RIP3 (Cho et al., 2009; He et al., 2009; 

Holler et al., 2000; Vandenabeele et al., 2010). Other factors controlling the formation of 

death inducing complexes and the execution of cell death programmes include the crosstalk 

between the different TNF-induced signalling pathways. Pro-survival proteins that are up-

regulated via the gene expression inducing pathways activated upon TNF stimulation can 

prevent aberrant death of a cell. This group includes the cellular FLICE like inhibitory protein 

(cFLIP) which on the one hand is recruited to complex II where it prevents the activation of 

caspase 8 homodimers thereby blocking the apoptosis pathway and which on the other 

hand, in a heterodimer with caspase 8, mediates RIP1 cleavage thus preventing necroptosis 

(Hu et al., 1997; Kreuz et al., 2001; Oberst et al., 2011). Overall TNF induces a complex 
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network of signalling pathways (Figure 9) that allows this cytokine to initiate its various 

biological effects. For the correct balance between the different arms to be maintained a 

tight regulation is required and many of the regulatory mechanisms are dependent on 

ubiquitination or deubiquitination events mediated by E3s such as cIAP1/2 or TRAF2 or 

DUBs like A20 or CYLD (Harhaj and Dixit, 2012; Wajant and Scheurich, 2011).  

2.2.3.2 TNFR2 signalling 

Although some of the components contributing to both TNFR1- and TNFR2-mediated signal 

transduction were first found to be associated with TNFR2, the complex associated with this 

receptor and the signalling pathways emanating from this protein assembly are much less 

understood than in the case of TNFR1. It was shown that TRAF2 interacts directly with the 

intracellular domain of TNFR2 and can thus serve as an adaptor for TRAF1, TRAF3, cIAP1 and 

cIAP2 (Rothe et al., 1995b; Rothe et al., 1994b). It can be assumed that the TAB/TAK- and 

IKK-complexes could be recruited in a similar ubiquitin-dependent manner as described for 

TNFR1-signalling although little data exists to support this hypothesis. Downstream of the 

signal initiating complex there are many similarities between TNFR1- and TNFR2-induced 

signalling. Like TNFR1, TNFR2 was reported to trigger the activation of NF-B and JNK 

although with different kinetics and possibly less efficiently (Haridas et al., 1998; Jupp et al., 

2001; Laegreid et al., 1994; Rothe et al., 1995b; Vandenabeele et al., 1995). In contrast to 

TNFR1, TNFR2 can also activate the non-canonical pathway of NF-B activation (Rauert et 

al., 2010). Here, TRAF2 and cIAP1 are degraded in a cIAP1- and K48-ubiquitination 

dependent manner. Because they are components of a destruction complex targeting the 

NF-B inducing kinase (NIK), this kinase is stabilised and can mediate phosphorylation of 

IKK and p100 thereby initiating p100 processing to p52 and thus the generation of an 

active transcription factor (Li et al., 2002; Wu et al., 2005). In addition, TNFR2 can modulate 

TNFR1-induced cell death (Fotin-Mleczek et al., 2002; Grell et al., 1999; Vercammen et al., 

1995; Weiss et al., 1997). Multiple mechanisms could contribute to this crosstalk. One of 

them is referred to as “ligand-passing” and suggests that by binding TNF, TNFR2 increases 

the local concentration of this cytokine in the vicinity of TNFR1 and eventually transfers the 

ligand to this receptor thereby favouring its prolonged stimulation and hence the induction 

of cell death (Tartaglia et al., 1993b). Another model includes the induction of TNF 

expression by activation of gene-expression inducing pathways upon TNFR2 stimulation. The 
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TNFR2 mediated degradation of TRAF2 and cIAP may in addition cause a shift in the balance 

between pro-survival and death-inducing signalling induced by TNFR1 and thus sensitise 

cells to TNFR1 induced cytotoxicity (Grell et al., 1999; Vercammen et al., 1995). In spite of its 

more restricted expression pattern TNFR2 can therefore significantly alter the outcome of 

TNF stimulation and changes in the TNFR1:TNFR2 ratio caused by an increase or decrease in 

the highly regulated expression of TNFR2 may therefore be a mechanism in controlling the 

overall signalling output (Wajant et al., 2003).  

2.3 Three novel components of the TNF-RSC 

In spite of the regulatory role exerted by TNFR2 most aspects of TNF-signalling are mediated 

by TNFR1 and all the different pathways contributing to the signal transduction network 

initiated by this receptor emanate from the receptor associated complex. A detailed 

knowledge of all the components of this multi-protein assembly is therefore crucial to gain 

an understanding of how signalling is initiated and regulated upon TNF stimulation. In an 

attempt to fully elucidate the composition of this complex, the native TNF-RSC was purified 

using a modified tandem affinity purification (moTAP) procedure. A form of TNF that 

contained a triple FLAG-tag followed by a PreScission cleavage site and a biotinylated Avi-

tag was used to stimulate U937 cells and to isolate the TNFR-associated complex in a two-

step precipitation process (Haas et al., 2009). Mass-spectrometric analysis of the purified 

complex identified not only most of the previously known TNF-RSC constituents but also 

revealed the presence of three novel components, SHANK-associated RH domain protein 

SHARPIN), heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1) and HOIL-1 interacting protein 

(HOIP) (Gerlach et al., 2011; Haas et al., 2009).  

2.3.1 SHARPIN 

SHARPIN is a protein of 387 aminoacids that was first identified as an interactor of SHANK1 

in a yeast-two-hybrid screen of a rat brain cDNA library (Lim et al., 2001). It was found that 

SHARPIN interacts with the ankyrin repeats of SHANK1 via its C-terminal part that contains 

an NZF- and an UBL-domain (Figure 10) while its N-terminal part mediates 

homodimerisation. It was therefore suggested that SHARPIN plays a role in regulating the 

complexity of the SHANK-based protein network in the postsynaptic density of excitatory 

synapses in the brain (Lim et al., 2001). However, expression of SHAPRIN is not restricted to 
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the brain and the first study investigating this protein in mice found it to be up-regulated in 

the gastric fundus of W/WV mice that have a mutation in the tyrosine kinase KIT and a role 

for SHARPIN in the function of the interstitial cells of Cajal (ICC), which are gastrointestinal 

(GI) pacemaker cells that generate and propagate electrical slow waves, was suggested 

(Daigo et al., 2003). Later a spontaneous mutation in the Sharpin gene was found to be 

causative for the chronic proliferative dermatitis mutation (cpdm) phenotype (Wang et al., 

2012). Cpdm mice are characterised by severe inflammation of several organs, especially 

the skin, by eosinophil accumulation, defects in lymphoid organ development and an 

altered Th1-Th2 balance with an increase of type 2 cytokines and impaired Th1 cytokine 

production (HogenEsch et al., 1993; HogenEsch et al., 1999; HogenEsch et al., 2001). In line 

with this SHARPIN was reported to be important for the production of proinflammatory 

cytokines and for the induction of Th1 differentiation by dendritic cells (Wang et al., 2012). 

On the intracellular level SHARPIN was reported to be a regulator of several different 

signalling pathways. It was found to associate with the phosphatase eyes-absent (EYA-1) 

which can also act as a transcriptional cofactor and to enhance its activity. This interaction 

was reported to be important for craniofacial development in zebrafish (Landgraf et al., 

2010). In addition SHARPIN was reported to regulate the mitochondrial apoptosis pathway 

(Liang and Sundberg, 2011) and to be required for TLR2 induced signalling as shown by 

alterations in the phosphorylation of ERK and the translocation of p65 to the nucleus in the 

absence of SHARPIN (Zak et al., 2011). On the other hand, SHARPIN was also described to 

inhibit NF-B activation (Liang et al., 2011) and to act as a negative regulator of integrin 

signalling by associating directly with the intracellular region of -integrins thus impairing 

their binding to talin and kindlin thereby preventing 1-integrins from switching into their 

active conformation (Rantala et al., 2011). Furthermore, it was shown to negatively affect 

the phosphatase activity of PTEN in human tumour cell lines and to promote tumorigenesis 

(He et al., 2010). 
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2.3.2 HOIL-1 

HOIL-1 was identified as an E3 ligase for oxidised iron regulatory protein 2 (IRP2) of 

498 aminoacids (Yamanaka et al., 2003) and as a hepatitis B virus X-associated protein 

(XAP3) (Cong et al., 1997). Following a yeast two-hybrid screen of a rat cDNA library it was 

described as a RBCC protein interacting with PKC (RBCK1) (Tokunaga et al., 1998a) and 

finally it was found as a UbcM4-interacting protein (UIP28) in a murine system (Martinez-

Noel et al., 1999). In addition, another start codon was identified in the mRNA of RBCK1 10 

codons upstream of the original initiation site and the resulting protein was dubbed HOIL-1L 

(Kirisako et al., 2006). However, there is very limited data on differential expression patterns 

or functions of the two forms and the terms RBCK1 and HOIL-1 are widely used to refer to 

the longer form even by protein databases. In this thesis the 510 aminoacid form of the 

protein will be referred to as HOIL-1. Structurally, this protein includes an N-terminal UBL-

domain, an NZF, two RING domains and an IBR domain (Figure 10), making it part of the 

RBR-family (Kirisako et al., 2006; Marin et al., 2004). The structures of the UBL- and NZF 

domain were solved and it was shown that the UBL assumes a ubiquitin fold followed by an 

-helical segment (Uekusa et al., 2011) while the NZF contains a zinc-coordinating core and 

an additional -helical NZF tail. This combination allows it to bind to M1-linked ubiquitin 

specifically by interacting with the Ile44 patch on the distal ubiquitin and a Phe4 centred 

hydrophobic patch on the proximal ubiquitin (Sato et al., 2011). Functionally, different 

activities have been reported for HOIL-1. It was described to shuttle between nucleus and 

cytoplasm and to possess transcriptional activity (Tatematsu et al., 1998; Tatematsu et al., 

2005; Tokunaga et al., 1998b). Reported targets include estrogen receptor (ER) alpha and 

cyclin B1 which mediate an effect of HOIL-1 on cell cycle progression and on proliferation in 

ER positive breast cancer cells (Gustafsson et al., 2010). This transcriptional activity was 

reported to be inhibited by the splice variant RBCK2, which lacks the RING domains of 

HOIL-1 and by tethering its active counterpart in the cytoplasm prevents it from acting as a 

transcription factor (Tokunaga et al., 1998b; Yoshimoto et al., 2005). Furthermore, 

transcriptional activity was described to be enhanced by PKA and to be repressed by MEK1 

or MEKK1 (Tatematsu et al., 1998). Finally, phosphorylation by PKC was reported to cause 

auto-ubiquitination of HOIL-1 leading to its proteasomal degradation (Tatematsu et al., 

2008). This ability to attach supposedly K48-linked chains to target proteins is the other 

activity by which HOIL-1 affects signalling. Targets include the transcription factors Bach-1 
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(Zenke-Kawasaki et al., 2007) and interferon regulatory factor (IRF3) (Zhang et al., 2008) as 

well as TAB2 and TAB3 (Tian et al., 2007). Degradation of these proteins was reported to 

cause an inhibitory effect of HOIL-1 on the antiviral interferon production and on NF-B 

signalling, respectively (Tian et al., 2007; Zhang et al., 2008). Like the transcriptional activity 

the ability of HOIL-1 to act as an E3 is regulated by interaction with RBCK2 and by 

phosphorylation by PKC which was reported to lead to cleavage and thus inactivation of 

HOIL-1 (Nakamura et al., 2006; Tatematsu et al., 2008).  

2.3.3  HOIP 

HOIP which is also known as RNF31, zinc IBR finger UBA domain (ZIBRA) or putative 

ARIADNE like ubiquitin ligase (PAUL) was identified as a potential E3 ligase which is highly 

expressed on the mRNA level in different kinds of cancers (Thompson et al., 2004) and as an 

interactor of the muscle-specific receptor tyrosine kinase (MuSK) (Bromann et al., 2004). 

Like HOIL-1 it contains two RING-domains and an IBR-domain which makes it a member of 

the RBR-family of E3 ligases (Marin et al., 2004). In addition, HOIP contains a ZnF-, two NZF- 

and a UBA-domain (Figure 10). It was reported that HOIP associates with the atypical 

orphan receptor DAX-1 and in complex with this protein acts as a corepressor at the 

promoters of the StAR and CYP19 genes by interacting with the nuclear orphan receptor 

steroidogenic factor 1 (SF-1). Thus HOIP was suggested to regulate metabolism and steroid 

hormone synthesis and was also implicated in the transcriptional regulation of the Wnt 

pathway (Ehrlund et al., 2009; Ehrlund et al., 2012). Furthermore, HOIP was found to be 

recruited to the CD40-RSC and experiments using cells deficient in HOIP or expressing a 

variant lacking E3 activity showed that HOIP is required for NF-B- and JNK-activation by this 

receptor (Gerlach et al., 2011; Hostager et al., 2010; Hostager et al., 2011).  

2.3.4 LUBAC 

In 2006 it was found that HOIL-1 and HOIP interact and form an E3-complex of 

approximately 600 kDa. The interaction was mapped to their UBL- and UBA-domains 

respectively (Kirisako et al., 2006) and structural analysis revealed that the two domains 

bind to each other in a non-canonical manner using different surfaces than the ones usually 

involved in UBL-UBA-interactions (Yagi et al., 2012). The distinguishing property of this E3-

complex is that it can generate M1-linked ubiquitin chains as demonstrated by its ability to 

use lysine-less (K0) but not methylated ubiquitin as a substrate. Due to this role in 
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generating linear ubiquitin chains, the complex was dubbed linear ubiquitin chains assembly 

complex (LUBAC) (Kirisako et al., 2006). It was found that the E3-activity of the complex 

resides in the RING-domains of HOIP but not HOIL-1 (Kirisako et al., 2006). As described in 

section 2.1.2.2.8 linear chains were first described to have a role in proteasomal 

degradation and LUBAC was thereby implicated in the regulation of the RIG-I pathway and 

of conventional PKC (Inn et al., 2011; Kirisako et al., 2006; Nakamura et al., 2006; Prakash et 

al., 2009; Thrower et al., 2000; Zhao and Ulrich, 2010). Later it was found that LUBAC is a 

positive regulator of NF-B activation in the context of different stimuli such as TNF, IL-1 

and genotoxic stress (Haas et al., 2009; Niu et al., 2011; Tokunaga et al., 2009) and that it 

also regulates other signalling pathways such as the activation of JNK downstream of TNF-

stimulation (Haas et al., 2009). 

 

 

Figure 10: Schematic representation of the domain structures of SHARPIN, HOIL-1 and HOIP. There is 
significant sequence homology (45 % identity) between the carboxyl terminus of SHARPIN and the amino 
terminus of HOIL-1 (Lim et al., 2001), each of which contains a UBL- and an NZF-domain. Both HOIL-1 and HOIP 
contain an RBR-motif making them members of the RBR-family of E3s (Marin et al., 2004). It was found that 
these two proteins interact via their UBL- and UBA-domains respectively thereby forming the E3 complex 
referred to as LUBAC (Kirisako et al., 2006). ZnF: zinc finger; NZF: Npl4 zinc finger; UBL: ubiquitin-like domain; 
UBA: ubiquitin-associated domain; IBR: in-between RING domain. RING: really interesting new gene. 
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3 Aims 

The identification of peptides for SHARPIN together with HOIL-1 and HOIP in the mass-

spectrometric analysis of the native TNF-RSC raised the question whether it is a functional 

component of this complex. 

This study therefore aimed to investigate whether SHARPIN, along with the other two novel 

components found by mass-spectrometry, i.e. HOIL-1 and HOIP, is recruited to TNF-

receptors in a stimulation-dependent manner and to unravel which other components of 

the complex this recruitment depends on. In this context the question how SHARPIN 

influences TNF-induced signalling was to be answered.  

Furthermore, the presence of SHARPIN alongside the LUBAC-components HOIL-1 and HOIP 

together with the similarity of its sequence to that of HOIL-1 indicated the possibility that 

SHARPIN might affect the activity of LUBAC. To test this hypothesis it was to be investigated 

whether SHARPIN interacts with this E3-complex. In case such an interaction was identified, 

a potential role for SHARPIN as a modulator of LUBAC’s activity was to be analysed.  

In brief the aims of this study were to 

1. investigate the mechanism by which SHARPIN, HOIL-1 and HOIP are recruited to the 

TNF-RSC 

2. test the influence of SHARPIN on TNF-induced signalling 

3. analyse a potential role of SHARPIN as an active part or an inhibitor of LUBAC 

4. further characterise the activity of LUBAC 
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4 Materials and Methods 

4.1 Materials 

4.1.1  Chemicals and reagents 

All chemicals and biologically reactive reagents were purchased from Roth, Sigma/Aldrich 

(Fluka), Merck (Calbiochem), Invitrogen (Gibco; Molecular Probes), AppliChem, Pierce, 

Honeywell (Riedel-de Häen) or Amersham Biosciences in pA quality unless indicated 

otherwise. 

4.1.2  Specific inhibitors 

4.1.2.1 Inhibitors used in the purification of recombinant proteins 

All protease inhibitors used in the purification of recombinant proteins were purchased 

from Sigma. Specifically the following inhibitors were used: AEBSF, Aprotinin, E-64, 

Leupeptin and Pepstatin. 

4.1.2.2  Inhibitors used in the lysis of eukaryotic cells 

Proteases were inhibited by using the Complete Protease Inhibitor Cocktail obtained from 

Roche; Phosphatase Inhibitor Cocktail from Sigma was employed to impair the activity of 

phosphatases. 

4.1.3 Buffers and solutions 

4.1.3.1 General buffers 

- 1x PBS:      137 mM NaCl 
8.1 mM Na2HPO4 
2.7 mM KCl 
1.5 mM KH2PO4 
pH 7.4 

4.1.3.2 Buffers used in the cloning and purification of recombinant proteins 

- TAE buffer (10x):     400 mM Tris/HCl 
200 mM Acetic Acid 
10 mM EDTA 
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- Bacteria lysis buffer (GST-purification):  1x PBS 
70 μM AEBSF 
5 μM E-64 
1.2 μg/mL Aprotinin 
1 μM Pepstatin 
1 mM DTT  

- GST-wash buffer:     1x PBS 
      1 mM DTT 

- GST-elution buffer:    1x PBS 
50 mM reduced glutathione 

- PreScission cleavage buffer:   50 mM Tris-HCl 
150 mM NaCl 
1 mM EDTA 
1 mM DTT 
pH 7.0 

- Dialysis buffer (ligands)    50 mM Trizma Base 
100 mM NaCl 
0.02 % Tween 20 (v/v) 
2 mM DTT 
0.5 M L-Arginine 

- Dialysis buffer (other proteins):  1x PBS 
      1 mM DTT 

- Bacteria lysis buffer (His-tagged proteins): 50 mM  Tris/HCl 
      200 mM NaCl 
      100 mM KCl 
      10 %  Glycerol (v/v) 
      0,5 %  Triton X100 
      2 mM  β-Mercaptoethanol         
      70 µM  AEBSF 
      5 µM  E-64 
      1.2 µg/mL Aprotinin 
      1 µM  Pepstatin A 

- His-wash buffer    50 mM Tris/HCl 
      300 mM NaCl 
      25 mM imidazole 
      pH 7.5 

- His-elution buffer    50 mM Tris/HCl 
      300 mM NaCl 
      500 mM imidazole 
      pH 7.5 
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4.1.3.3. Buffers used for freezing, transfecting and lysing eukaryotic cells 

- Freezing medium:    90 % FCS (v/v) 
10 % DMSO (v/v) 

- 2x HBS:     50 mM HEPES 
280 mM NaCl 
1.5 mM Na2HPO4 x 2 H2O 
pH 7.0 

- IP-lysis buffer:     30 mM Trizma Base  
120 mM NaCl 
2 mM EDTA 
2 mM KCl 
10 % Glycerol (v/v) 
1 % Triton X-100 (v/v) 
pH 7.4 
+ Complete protease inhibitor cocktail 

4.1.3.4. Buffers used for gelfiltration 

- Lysis buffer gelfiltration:   50 mM Tris/HCl (pH 7.5) 
1 mM MgCl2 
1 mM DTT  
+ Complete protease inhibitor cocktail 

- Running buffer gelfiltration:   50 mM Tris/HCl (pH 7.5) 
1 mM MgCl2 
1 mM DTT  
150 mM NaCl 
+ Complete protease inhibitor cocktail 

 

4.1.3.5. Buffers for SDS-PAGE and western blotting 

- Running buffer (MOPS)   1:20 dilution of 20x MOPS (Invitrogen) 

- Transfer buffer:     192 mM Glycine 
25 mM Trizma Base 
0.01 % EDTA (w/v) 
20 % Methanol (v/v) 

- Blocking buffer:     1x PBS 
5 % milk powder (w/v) 
0.05 % Tween-20 (v/v) 

- Wash buffer:     1x PBS 
0.05 % Tween-20 (v/v) 

- Stripping buffer:    50 mM Glycine 
pH 2.3  
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4.1.3.6. Buffers for Luciferase assays 

- Passive lysis buffer:     1:5 dilution of 5x passive lysis buffer (Promega) 

- Luciferase assay buffer A:    20 mM HEPES 
33.3 mM DTT 
8 mM MgCl2 
130 μM EDTA 
530 μM ATP 
470 μM Luciferin 
270 μM Coenzyme A 
pH 7.8 

 
- Luciferase assay buffer B:   15 mM Na4P2O7 

7.5 mM NaOAc 
400 mM NaSO4 
10 mM CDTA 
25 μM APMBT 
1 % Methanol (v/v) 
2 μM Benzyl-Coelenterazin 
pH 5.0 

- MTT solution:     2.5 mg/mL MTT in PBS 

4.1.3.7 Buffers for ubiquitin-related in-vitro assays 

- Pull-down buffer:     150 mM NaCl 
50 mM Trizma Base (pH 7.5) 
5 mM DTT 
0.1 % NP-40 (v/v) 

- Ubiquitylation buffer:    20 mM Trizma Base (pH 7.5) 
5 mM MgCl2 
2 mM DTT 

- DUB dilution buffer:     150 mM NaCl 
25 mM Tris (pH 7.5) 
10 mM DTT 

- 10x DUB reaction buffer:    500 mM NaCl 
500 mM Tris (pH 7.5) 
50 mM DTT    
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4.1.4 Antibodies 

4.1.4.1  Primary antibodies 

Table 1: Primary antibodies. WB: western blotting; IP: immunoprecipitation 

antibody isotype Source application(s) 

anti-Actin (A5441) mIgG1 Sigma WB 

anti-cIAP2 rat Gift from John Silke WB 

anti-cIAP Pan (MAB3400) mIgG2a R&D Systems WB 

anti-FLAG (M2) mIgG1 Sigma WB, IP 

anti-GAPDH mIgG1 Abcam WB 

anti-GST goat GE Healthcare WB 

anti-HOIL-1 mIgG2a Produced in the lab WB, IP 

anti-HOIP rabbit Sigma WB, IP 

anti-HOIP rabbit Eurogentech WB 

anti-IB (C-15) mIgG1 Santa Cruz WB 

anti-myc (9E10) mIgG1 Abcam WB, IP 

anti-NEMO (FL419) rabbit Santa Cruz WB 

anti-NEMO (B3) mIgG1 Santa Cruz WB 

anti-pIB (5A5) mIgG1 Cell Signaling WB 

anti-pJNK (98F2) 

(98F2)  

 

(98F2)  

 

(98F2)  

 

(98F2)  

 

rabbit Cell Signaling WB 

anti-pp38(3D7) rabbit Cell Signaling WB 

anti-RIP1 mIgG1 Pharmingen IP 

anti-RIP1 (clone 38) mIgG2a BD Biosciences WB 

anti-SHARPIN mIgG1 Produced in the lab WB, IP 

anti-SHARPIN rabbit Gift from Ivan Dikic WB 

anti-TNF-R1 (H-5) mIgG2b Santa Cruz WB, IP 

anti-TNF-R1 (ab19139) rabbit Abcam WB 

anti-TNFR2 rabbit Cell Signaling IP 

anti-TNFR2 rat Pharmingen WB 

anti-TRADD (clone 37) mIgG1 BD Biosciences WB 

anti-TRADD (H-278) rabbit Santa Cruz WB 

anti-TRAF2 (C-20) rabbit Santa Cruz WB 

anti-TRAF2 (AP1040) rabbit Calbiochem WB 

anti-TRAF6 IgG1 Cell Signaling WB 

anti-TRAF6 rabbit Epitomics WB 

anti-UBE2D3 IgG1 Abnova WB 

anti-Ubiquitin (FK1) mIgM Biomol WB 

anti-Ubiquitin (FK2) mIgG1 Biomol WB 

anti-Ubiquitin (#07-375) rabbit Millipore WB 

anti-V5 (V5-10) rabbit MBL WB, IP 

anti-V5 mIgG2a Santa Cruz WB 
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4.1.4.2 Secondary antibodies 

- Goat-anti-mIgG1-HRP (SouthernBiotech) 

- Goat-anti-mIgG2a-HRP (SouthernBiotech) 

- Goat-anti-mIgG2b-HRP (SouthernBiotech) 

- Goat-anti-mIgM-HRP (SouthernBiotech) 

- Goat-anti-rat-HRP (SouthernBiotech) 

- Rabbit-anti-goat-IgG-HRP (Santa Cruz) 

- Goat-anti-rabbit-IgG-HRP (SouthernBiotech) 

4.1.5 Beads for precipitations 

- anti-Myc agarose (Sigma)  

- anti- NEMO beads (Santa Cruz) 

- anti-V5 Agarose (clone V5-10) (Sigma)  

- FLAG M2 affinity Gel (Sigma)  

- glutathione beads (GE Healthcare) 

- Protein G Sepharose (GE Healthcare) 

- ubiquitin-coupled agarose (Boston Biochem) 

4.1.6 Recombinant proteins 

- K48-linked tetra-ubiquitin (Enzo Life Sciences) 

- K63-linked tetra-ubiquitin (Enzo Life Sciences) 

- linear tetra-ubiquitin (Enzo Life Sciences) 

- PreScission Protease (GE Healthcare) 

- Thrombin (GE Healthcare) 

- TRAF2 (Signal Chem) 

- USP2 catalytic domain (Enzo Life Sciences) 

- UBE1 (Enzo Life Sciences) 

- E2s (Enzo Life Sciences) 

4.1.7 Commercially available kits and solutions 

- ABsolute QPCR ROX Mix (ABgene) 

- BCA Protein Assay (Pierce) 

- ECL Western Blotting Detection (GE Healthcare) 
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- ECL Western Blotting Detection Plus (GE Healthcare) 

- Chemoluminescent Substrate SuperSignal West Dura (Pierce) 

- Chemoluminescent Substrate SuperSignal West FEMTO (Pierce) 

- E.Z.N.A. Plasmid Mini Kit (Omega Bio-Tek) 

- E.Z.N.A. Plasmid Maxi Kit (Omega Bio-Tek) 

- QIAquick Gel Extraction kit (Qiagen) 

- QIAquich PCR purification kit (Qiagen) 

- RevertAidTMH Minus first strand cDNA synthesis kit (Fermentas) 

- TNT Quick coupled Transcription/Translation System (Promega) 

- TrypanBlue (Serva) 

- pcDNA3.1V5/His TOPO Directional Expression kit (Invitrogen) 

- SuperScript III Reverse Transcriptase (Invitrogen) 

- tissue lysates (IMGENEX) 

4.1.8 Bacteria strains 

DG1 chemically competent cells (Eurogentech) were used for plasmid amplification and 

expression of recombinant proteins was performed in BL21(DE3) cells (Invitrogen). 

4.1.9 Cell culture media and antibiotics 

- Ampicillin (Roth) 

 - β-mercaptoethanol (Invitrogen) 

- Dulbecco’s Modified Eagle Medium (Invitrogen)  

- Hygromycin B (Boehringer) 

- Insulin (Sigma) 

- Penicillin/Streptomycin (Invitrogen) 

- RPMI 1640 (Invitrogen)  

- Sodium Pyruvate (Invitrogen)  

- Trypsin/EDTA solution (Invitrogen) 
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4.1.10 Cell lines 

Table 2: Cell lines 

cell line Description reference 

HEK 293T 
Human embryonic kidney cells transformed with 

sheared adenovirus 5 DNA. 
(Graham et al., 1977) 

HEK293-  

NF-B 

Cell line purchased from Panomics that was 

obtained by cotransfection of a luciferase reporter 

construct containing multiple copies of the NF-B 

response element and a hygromycin selection 

marker into HEK293 cells, followed by hygromycin 

selection. 

Panomics 

HeLa 
Cell line isolated from an adenocarcinoma of the 

cervix in 1952. 
(Scherer et al., 1953) 

HT1080 
Sarcoma cell line, derived from a 35-year-old male 

with fibrosarcoma. 
(Rasheed et al., 1974) 

HaCat 

Cell line resulting from spontaneous in-vitro 

transformation of keratinocytes from histologically 

normal skin. 

(Boukamp et al., 1988) 

Saos-2 

Osteosarcoma cell line with epithelial morphology 

that was isolated from an 11-year-old female 

patient. 

(Fogh et al., 1977a; 

Fogh et al., 1977b) 

IGROV-1 
Cell line originating from an ovarian carcinoma of a 

47-year-old woman. 
(Benard et al., 1985) 

DKO-4 

Colorectal adenocarcinoma cell line derived from 

DLD-1 cells by targeted disruption of its mutant 

Ki-Ras allele. 

(Shirasawa et al., 1993) 
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DU145 

Cell line that was originally derived from a human 

prostate adenocarcinoma that metastasized to 

the brain. 

(Stone et al., 1978) 

A549 
This line was initiated in 1972 by culturing of lung 

carcinomatous tissue from a 58-year-old male. 
(Giard et al., 1973) 

MCF-7 
Cell line obtained by pleural effusion from a 

female patient with metastatic breast cancer. 
(Brooks et al., 1973) 

JA-3 

The Jurkat cell line was first established from the 

peripheral blood of a 14-year old boy suffering 

from T cell leukemia. 

(Schneider and Schwenk, 

1977; Schneider et al., 

1977) 

Raji 

Human lymphoblast-like cell line which was 

established from a Burkitt’s lymphoma of the left 

maxilla of an 11-year-old male. 

(Pulvertaft, 1964) 

U937 

Cell line derived from malignant cells obtained 

from the pleural effusion of a patient with 

histiocytic lymphoma. Terminal monocytic 

differentiation can be induced. 

(Sundstrom and Nilsson, 

1976) 

THP-1 

Cell line with distinct monocytic markers that was 

derived from the peripheral blood of a patient 

with acute monocytic leukemia. 

(Tsuchiya et al., 1980) 

MEF 

Wt and knockout MEFs were generated from E15 

embryos in accordance with standard procedures 

and were infected with SV40 large T antigen-

expressing lentivirus. Cells with inducible 

expression of cIAP1 or TRAF2 were described 

previously. 

(Feltham et al., 2010; 

Mace et al., 2008; Vince 

et al., 2009) 
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4.1.11 Additional materials 

- Cuvettes (Greiner Bio One) 

- Cryogenic vials (Nunc) 

- Dialysis Membrane 12,000-14,000 MWCO (Roth) 

- GSTrap FF (GE Healthcare) 

- HisTrap FF (GE Healthcare) 

- Hybond ECL Nitrocellulose Membrane (Amersham Bioscience) 

- NuPAGE 4-12 % Bis-Tris Gels (Invitrogen) 

- 4x LDS-Sample buffer (Invitrogen) 

- PCR tubes (StarLab) 

- Plastic pipettes (5 mL, 10 mL and 25 mL) (StarLab) 

- Pipette tips (0.1-10, 1-200, 101-1000 μL) (StarLab)  

- 50 mL Reagent Reservoir (Corning Inc.) 

- Safe-Lock Reaction Tubes (1.5mL, 2 mL) (Eppendorf) 

- SeeBlueTM Plus2 Pre-Stained Standard (Invitrogen) 

- SmartLadder DNA Standard (Eurogentech) 

- Sterile filter (0.22 μm and 0.45 μm pore size) (Millipore) 

- Superdex 200 10/300 GL column (GE Healthcare) 

- Tissue culture equipment (TPP) 

- Whatman paper (Schleicher&Schuell) 

- X-Ray film HyperfilmTM ECL (Amersham Bioscience) 

4.1.12 Instruments 

- Biofuge Stratos (Heraeus) 

- Blotting equipment X cell IITM (Novex) 

- Electrophoresis chamber (Biorad) 

- GelSystem Flexi 4040 Biostep 

- Hyper Processor X-Ray film Developer (Amersham Bioscience) 

- Incubator Stericult 200 (Forma Scientific) 

- Microscope Axiovant 25 (Zeiss) 

- Mithras Luminometer LB 940 (Berthold Technologies) 

- Multifuge 3S-R (Heraeus) 
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- Multiskan Ascent (Thermo Labsystems) 

- Multitron Incubator Shaker (Appropriate Technical Resources) 

- NanoDrop Spectrophotometer ND-1000 (NanoDrop Technologies) 

- Photometer Ultrospec 3100 pro (Amersham Bioscience) 

- Sonifier (Branson Ultrasonics Corporation) 

- Mastercycler Pro (Eppendorf) 

- Äkta Purifier (GE Healthcare) 

- peristaltic pump P1 (Pharmacia Fine Chemicals) 

 

4.2 Methods  

4.2.1  Methods in Molecular Biology 

4.2.1.1 RNA purification 

Total RNA was isolated using Trizol (Invitrogen) according to the manufacturer’s 

instructions. Trizol was removed by addition of 0.2 mL chloroform followed by isopropanol 

precipitation. The concentration and purity of RNA was determined with a ND-1000 

Spectrophotometer (NanoDrop). 

4.2.1.2 cDNA preparation 

A reverse transcription was performed on 5 μg total RNA for 1 h at 42°C using the 

RevertAidTM H Minus first strand cDNA synthesis kit (Fermentas) according to the 

manufacturer’s instructions. 

4.2.1.3 Quantitative Real-time PCR 

Quantitative Real-time PCR was performed with the ABI PRISM 7900 HT Sequence Detection 

System (Applied Biosystems) using the ABsoluteTM QPCR ROX Mix (ABgene). The 

ProbeFinder software (Roche) was used to design the optimal assay, comprising the 

respective labelled probe of the Universal ProbeLibrary (Roche) and gene-specific primers. 

For the RT-PCR reaction, cDNA was diluted 1:10. Amplification was carried out in stages of 

incubation at 95°C for 15 min following 40 cycles of 95°C for 15 s and 60°C for 60 s. The 

mRNA levels were measured as double determinations and normalised with reference to 

the amount of housekeeping gene transcripts (GAPDH or HPRT1). The following gene-

specific primers were used: HOIP: cttctgtgtgcgctgcaa and ttctggaagtcctcacagctc;  
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HOIL-1: gcctgaggtctccccaac and ggtgacggtgtgcatctg; SHARPIN: cggaagcctccacactca and 

tccctgccagctcttctc; GAPDH: agccacatcgctcagaca and gcccaatacgaccaaatcc; HPRT1: 

tgaccttgatttattttgcatacc and cgagcaagacgttcagtcct.  

4.2.1.4 Polymerase Chain Reaction (PCR) 

All PCRs were set up in a volume of 50 μL, which contained 1-50 ng plasmid-DNA or cDNA as 

template, 0.4 μM of each oligonucleotide, 200 μM of each dNTP, 2.5 U Polymerase in 1x 

Polymerase Buffer. The polymerase used was PfuUltra (Stratagene). If possible, the 

synthetic oligonucleotides were designed with 40-60 % GC content, no internal structure or 

complementarity at the 3’-ends. Annealing temperatures were chosen ~5-10°C lower than 

the melting temperature Tm and elongation times were calculated based on an elongation 

rate of 1 kb/min.  

The following oligonucleotides were used: 

Table 3: Oligonucleotides used in PCR reactions. Restriction sites are underlined, stop codons are in bold print 
and reverse primers are presented in upper case. 

insert vector Primers 
restriction 
sites used 

SHARPIN 
pcDNA3.1
D/V5-His-

TOPO 

- CACCatggcgccgccagcg 
- GGTGGAAGCTGCAGCAAGGG 

TOPO 
cloning 

SHARPIN pGEX6-p2 
- atggcgccgccagcgggc 
- atatGCGGCCGCtcaGGTGGAAGCTGCAGCAAGGGGGTCC 

SmaI + NotI 

SHARPIN-
V5 

pGEX6-p2 
- atggcgccgccagcgggc 
- atatGCGGCCGCtcaCGTAGAATCGAGACC 

SmaI + NotI 

HOIL-1 
pcDNA3.1
D/V5-His-

TOPO 

- CACCatggacgagaagaccaagaaagc 
- GTG GCA GTT CTG ACA GCT TGG 

TOPO 
cloning 

HOIL-1 pGEX6-p2 
- atggacgagaagaccaagaaagc 
- atatGCGGCCGCtcaGTG GCA GTT CTG ACA GCT TGG 

SmaI + NotI 

HOIL-1-
V5 

pGEX6-p2 
- atatGAATTCatatggacgagaagaccaagaaagc 
- atatATTTAAATtcaCGTAGAATCGAGACCGAGGAGAGG 

EcoRI + SwaI 
(PCR) / SmaI 

(vector) 

HOIP pGEX6-p2 
- atgccgggggaggaag 
- atatGCGGCCGCtcaCTTCCGCCTGCGGG 

SmaI + NotI 

HOIP-V5 pGEX6-p2 
- atatGAATTCatatgcccgggggaggaagagg 
- atatATTTAAATtcaCGTAGAATCGAGACCGAGGAGAGG 

EcoRI + SwaI 
(PCR) / SmaI 

(vector) 

HOIP ZnF 
only 

pGEX6-p2 
- agtgctcatttgccctggcactgtgc 
- atatGCGGCCGCtcaACAGCCTCGGGGCCGATCACAGG 

SmaI + NotI 

HOIP 
NZF1 
only 

pGEX6-p2 
- gcacggggtcggtgggcc 
- atatGCGGCCGCtcaGGCCAGCCGAGGTCGCTCACATATGG 

SmaI + NotI 
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HOIP 
NZF2 
only 

pGEX6-p2 
- agagtcaagtctggtactgtattcactgtacc 
- atatGCGGCCGCtcaGGGGCTACTAGTCCGGTTGC 

SmaI + NotI 

cIAP1 pGEX6-p2 
- atgcacaaaactgcctccc 
- atatGCGGCCGCtcaAGAGAGAAATGTACGAACAGTACCC 

SmaI + NotI 

cIAP2 pGEX6-p2 
- atgaacatagtagaaaacagcatattcttatcaaatttg 
- atatGCGGCCGCtcaTGAAAGAAATGTACGAACTGTACCCTT    

SmaI + NotI 

RNF5 pGEX6-p2 
- atggcagcagcggaggaggagg 
- atatGCGGCCGCtcaaatactgagcagccaaaaaaagaagaagatgg 

SmaI + NotI 

PARKIN pGEX6-p2 
- atgatagtgtttgtcaggttcaactcc 
- atatGCGGCCGCtcaCACGTCGAACCAGTGGTC 

SmaI + NotI 

PARKIN 
RBR only 

pGEX6-p2 
- atgcggaacatcacttgcattacg 
- atatGCGGCCGCtcaCCACTCGCAGCCAC 

SmaI + NotI 

ARIH1 
RBR only 

pGEX6-p2 
- atggcacaggatatgccttgtc 
- atatGCGGCCGCtcaCCATGGGCCAAGACAC 

SmaI + NotI 

ARIH2 pGEX6-p2 
- atgtcagtggacatgaatagccag 
- atatGCGGCCGCtcaGGTGTCATGGAAATCTTTCAGCAG 

SmaI + NotI 

ARIH2 
RBR only 

pGEX6-p2 
- atgcctcaccactgtgcag 
- atatGCGGCCGCtcaCCAATCTCCTAGACACATCC 

SmaI + NotI 

RNF19A pGEX6-p2 
- atgcaagaacaagaaataggttttatctctaaatataatg 
- atatGCGGCCGCtcaAATTTCAGTCTGAATTGCAACTTTTAATTCC 

SmaI + NotI 

RNF144B pGEX6-p2 
- atgggctcagctggtagg 
- atatGCGGCCGCtcaGGTTGTGGATGGGTCGTG 

SmaI + NotI 

RNF216 pGEX6-p2 
- atggaagagggaaacaacaatgaag 
- atatGCGGCCGCtcaGAAGCGATGCCGCGG 

SmaI + NotI 

RNF14 pGEX6-p2 
- atgtcgtcagaagatcgagaagc 
- atatGCGGCCGCtcaGTCTTCTACCTCATCTTCCCAAATATCG 

SmaI + NotI 

PTEN 
pcDNA3.1
D/V5-His-

TOPO 

- CACCatgacagccatcatcaaagagatcgttagc 
- GAC TTT TGT AAT TTG TGT ATG CTG ATC TTC ATC AAA AGG 

TOPO 
cloning 

ABIN-1 
pcDNA3.1
D/V5-His-

TOPO 

- CACCatggaagggagaggaccgtaccg 
- CTG AGG CCC CTC ACG GTC ATT TTT TGG 

TOPO 
cloning 

 

4.2.1.5 Site-directed Mutagenesis 

To introduce deletions or point mutations by PCR, primers containing the point mutation 

were designed. These oligonucleotides contained the desired mutations with ~10-15 bases 

of correct sequence on both sides. Following the PCR, the reaction was treated with DpnI 

endonuclease for 1 hour at room temperature to cut unmethylated DNA. The linearised, 

mutated plasmid was then transformed into competent bacteria (Section 4.2.1.10). 
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The oligonucleotides used to introduce mutations were: 

 Table 4: Oligonucleotides used to introduce mutations. Restriction sites are underlined; introduced 
mutations are shown in upper case and bold print. 

 

4.2.1.6 DNA digestion and restriction analysis 

Sequence-specific cleavage of DNA molecules was performed using specific restriction 

endonucleases of the FastDigest® system obtained from Fermentas. Restriction reactions 

were incubated at 37°C for 1 hour. 

4.2.1.7 Agarose gel electrophoresis of nucleic acids 

The analysis or separation of DNA fragments was performed by agarose gel electrophoresis. 

Gels were prepared by dissolving 1-2 % agarose (w/v) in TAE buffer. DNA fragments were 

resolved by electrophoresis which was performed in a gel chamber filled with TAE buffer at 

10 Volts per cm of electrodal distance. After electrophoretic separation the gel was 

incubated for 30 min in TAE buffer + ethidium bromide (400 ng/mL) and DNA fragments 

were visualised by UV light ( = 254 nm). 

4.2.1.8 Gel extraction of DNA fragments 

The appropriate bands were cut out from the agarose gel and the isolation of DNA was 

achieved using the QIAquick Gel Extraction kit (Qiagen) according to manufacturer’s 

protein mutation  primers 

SHARPIN 
deletion of 

UBL-domain 
- caggatggggaccctgctttcctc 
- ggggccaggtgggaagcaggcctc 

SHARPIN 
deletion of 

NZF-domain 
- acttgggacccccttgctgcagcttc 
- tggactgggcaggctggaggcagc 

SHARPIN C353,356S 
- ccagctggtcctCtccttcctCcaccttcatcaatgcc 
- ggcattgatgaaggtgGaggaaggaGaggaccagctgg 

SHARPIN C367,370S 
- ccagaccgccctggctCtgagatCtgtagcacccagagg 
- cctctgggtgctacaGatctcaGagccagggcggtctgg 

HOIP 
deletion of 
the UBA-
domain 

- cgcctagagcccttccgccag 
- gccatgacgatccagccaggc 

HOIP C699,702S 
- cgcttgcttgcccaggagtCtgccgtgtCtggctgggccctgccccac  
- gtggggcagggcccagccaGacacggcaGactcctgggcaagcaagcg 

HOIP C871,874S 
- ggaaaacggcattgactCccccaaatCcaagttctcgtacgcc 
- ggcgtacgagaacttgGatttggggGagtcaatgccgttttcc  

HOIP C885S 
- cgagagcctagagccag 
- atatgcatgcTgcctcctc 
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instructions. DNA was eluted in 30-50 L ddH2O and directly employed in following 

applications. 

4.2.1.9 Ligation of DNA fragments 

Digested vector and insert were mixed in ratios ranging from 1:3 to 1:7. The ligation 

reaction was carried out in 11 μL total volume containing 1 μL T4 DNA ligase (NEB), 1 μL 

PEG4000 and 1.1 μL 10x Ligase buffer (NEB). The reaction volume was brought up to 11 μL 

with ddH2O. Ligation reactions were incubated at room temperature for at least 1 hour and 

between 2 and 5 μL were directly used to transform competent bacteria. 

4.2.1.10 Transformation of competent E. coli bacteria 

Competent bacteria were thawed on ice and an appropriate amount of plasmid DNA or of a 

ligation reaction were added to the bacteria followed by incubation on ice for 30 min. After 

a heat shock that was achieved by incubating the bacteria at 42°C for 1 min the bacteria 

were cooled on ice for 5 min. 300 μL SOC medium were added and the bacteria suspension 

was incubated at 37°C for 1 hour. Afterwards, bacteria were plated on LB agar plates 

containing the antibiotic required for selection and incubated at 37°C overnight. 

4.2.1.11 Isolation of Plasmid-DNA 

For plasmid isolation on an analytical scale 5 mL LB medium (+ antibiotic) were inoculated 

with a single bacterial colony and incubated at 37°C overnight. Next, the plasmid DNA was 

isolated using the QIAprep Spin Mini Kit (Qiagen) according to the manufacturer’s 

instructions. For the production of larger amounts of plasmid DNA, 400-500 mL LB medium, 

supplemented with an appropriate antibiotic, were inoculated and the culture was grown at 

37°C and under constant shaking (170rpm) overnight. The preparation of plasmid DNA was 

carried out with the E.Z.N.A. Plasmid purification Maxi kit (Omega bio-tek) as per 

manufacturer’s protocol. 

4.2.2 Methods of Cell Biology 

4.2.2.1 Cell culturing conditions 

All adherent cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10 % fetal bovine serum (FBS) in a humidified atmosphere containing 

10 % CO2 at 37 °C.  For MCF-7 cells 1 % pyruvate and 0.1 % human insulin were added to the 

cultivation medium, while the medium for DKO-4 and HaCat cells was supplemented with 
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2 mM Glutamine. A 1x Trypsin/EDTA solution was used to regularly detach and dilute the 

adherent growing cells. Suspension cells were maintained in RPMI with 10 % FBS at 5 % CO2 

and 37°C. Cell density was determined with a Neubauer chamber slide. Cells were 

centrifuged with a refrigerated centrifuge (Heraeus Multifuge 3 S-R) for 4 min at 300 x g and 

4°C. 

4.2.2.2 Freezing and thawing of eukaryotic cells 

For freezing, cells were harvested, pelleted and resuspended in freezing medium at a 

concentration of approximately 2x106 cells/mL. The cryogenic vials were then slowly cooled 

down to -80°C and transferred to liquid nitrogen for long-term storage.  

Cells were thawed rapidly to 37°C and fresh culture medium was added immediately. Cells 

were centrifuged and resuspended in fresh medium and transferred to cell culture flasks.  

4.2.2.3 Transfection of adherent cells with plasmid DNA or siRNA 

HEK293 NF-B cells were transfected using FuGene 6 (Roche Applied Science) according to 

the manufacturer’s protocol. HEK293T cells were transfected by the calcium phosphate 

method. For this purpose, 450 μL H2O were added to a solution of plasmid DNA and 50 μL 

CaCl2 (2 M). 500 μL HBS (2x) were added dropwise to the DNA/ CaCl2 mix. After 30 min 

incubation at room temperature, the transfection mixture was added slowly to the cell 

medium which had previously been supplemented with Chloroquine at a concentration of 

25 M. Transient knockdowns were performed using siRNAs obtained from Dharmacon 

(Thermo Fisher) which were transfected using Dharmafect I (Thermo Fisher) according to 

the manufacturer’s protocol. Briefly, per six-well, 1.5 μL Dharmafect were mixed with 

200 μL DMEM without FBS for 10 min at room temperature. Subsequently, 2.2 μL siRNA 

with a concentration of 20 μM were added and incubated for 30 min at RT. The mix was 

added dropwise to the cells and 1 mL of culture medium was added. For the knockdown of 

SHARPIN and HOIL-1 the respective siRNA smartpools were employed whereas for HOIP a 

single siRNA (#4) was used. The shRNA for HOIL-1 had the sequence 

5'-CCACAACACTCATCTGTCAAA-3´. 

4.2.2.4 Inducible Protein Expression 

cIAP1/2-deficient MEFs reconstituted with an inducible lentiviral system for the expression 

of wild-type or mutant cIAP1 as well as TRAF2/5-deficient MEFs containing an inducible 
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system for TRAF2 mutants were kindly provided by John Silke (Mace et al., 2008; Vince et 

al., 2009). Expression of the respective proteins and their mutants was induced by the 

addition of 4-hydroxy-tamoxifen at a final concentration of 20 nM for 20 hours.  

4.2.2.5 Treatment with Smac mimetics 

SM-164 (Smac059) was synthesised and kindly provided by Pierfausto Seneci and Leonardo 

Manzoni (Cossu et al., 2009). Before TNF stimulation, cells were pre-treated with SM-164 at 

a final concentration of 100 nM in cell culture medium for 2 hours at 37°C. 

4.2.3 Biochemical methods 

4.2.3.1 Determination of protein content 

To determine the protein concentration of cell lysates, the bicinchoninic acid (BCA)- 

containing protein assay was applied (Pierce). For this purpose, 2.5 μL of the lysate was 

incubated in 0.5 mL BCA solution at 60°C for 20 min, followed by measuring light absorption 

at 540 nm. 

4.2.3.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Separation of proteins was performed using 4-12 % Bis-Tris-NuPAGE gels from Invitrogen. 

Samples were mixed with LDS Sample buffer containing a final concentration of 200 mM 

DTT and heated for 10 min at 75°C. The SeeBlueTM Plus2 Pre-Stained marker (Novex) was 

used as a molecular weight standard. The electrophoretic separation was carried out at a 

constant voltage of 125 V for 10 min and subsequently 185 V for 55 min using MOPS as a 

running buffer. For samples resulting from in-vitro ubiquitylation assays the second 

separation step was reduced to 47 min at 175 V.  

4.2.3.3 Western blotting 

Western blotting was performed using the NOVEX gel-system based on the method of 

Towbin (Towbin et al., 1979). Proteins from SDS-PAGE gels were transferred onto 

nitrocellulose membranes (Amersham Pharmacia) by application of a constant voltage of 

30 V and a maximum current of maximum 200 mA per gel for 2 hours and 15 minutes. 

Afterwards, membranes were incubated for 1 hour with blocking buffer at room 

temperature to occupy non-specific protein binding sites. 

Subsequently, membranes were subjected to immunoprobing with primary and secondary 
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horseradish-peroxidase (HRP)-conjugated antibodies. Proteins were visualised using the 

ECL® detection system (Amersham Biosciences). 

4.2.3.4 Stripping of immunoblot membranes 

If nitrocellulose membranes had to be incubated with alternative antibodies, bound 

immunoglobulins were removed by incubating the nitrocellulose membranes with stripping 

buffer at room temperature for 12 min. The membranes were then rinsed with PBST, 

followed by incubation in blocking solution and probing as described in 4.2.3.3. 

4.2.3.5 Quantification of band intensities 

Intensities of the bands obtained by western blotting were quantified using the ImageJ 

software. Briefly, using the rectangle selection tool a rectangle (higher than wide) was 

drawn around the band of interest. This box was then copied until all bands to be analysed 

were selected. In a profile plot, the peak representing the actual band was separated from 

the background using the straight line selection tool. The area under these peaks as given by 

the programme was taken as the intensity of the respective band. These intensities were 

used to normalise the intensities of the HOIL-1 bands in lysates and IPs to the intensities of 

the bands corresponding to ACTIN in the lysates and SHARPIN in the IP respectively. Based 

on these normalised values the down-regulation of HOIL-1 in the lysates was compared to 

the percentage that remained associated with SHARPIN. 

4.2.3.6 Generation and in-vitro translation of SHARPIN and HOIP mutants 

For in vitro binding assays, V5-His-tagged versions of SHARPIN, HOIP and different deletion 

mutants (HOIP C terminus (residues 1–654), HOIP UBA (deletion of residues 564–615), 

HOIP N-terminus (residues 494–end), SHARPIN UBL (deletion of residues 219–289), 

SHARPIN NZF (deletion of residues 348–377), SHARPIN NZFmut1 (point mutations of 

cysteines 353 and 356 to serine) and SHARPIN NZFmut2 (point mutations of cysteines 367 

and 370 to serine) were generated by PCR and cloned into pcDNA3.1 (Invitrogen). The 

specific point-mutants were obtained by site-directed mutagenesis. All mutations and 

deletions were verified by sequencing and the proteins were generated in vitro using the 

TNT Quick Coupled Transcription/Translation System (Promega) according to the 

manufacturer’s instructions. Briefly, 1.2 μg of each expression vector was added to an 

aliquot of the TNT Quick MasterMix and incubated in a reaction volume of 50 μL at 30°C for 
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80 min. Equal protein production was controlled by western blotting (input: 1 μL of reaction 

mix). 

4.2.3.7 Expression and Purification of GST-tagged recombinant proteins 

Recombinant proteins and their mutants (SHARPIN-UBL-only (residues 218–314), HOIP-ZnF- 

only (residues 298–329), HOIP-NZF1-only (residues 350–379), HOIP-NZF2-only (residues 

408-438), Parkin-RBR-only (residues 234-453), ARIH1-RBR-only (residues 181-379), ARIH2-

RBR-only (residues 136-330)) were expressed from a pGEX-6P2-vector (GE Healthcare Life 

Sciences). The DNA constructs were transformed into E. coli BL21(DE3) (Invitrogen) and 

500 mL LB/Amp medium were inoculated with 10 mL overnight culture of a single BL21 

colony and grown until an OD600 of approximately 0.6. Protein expression was induced with 

1 mM IPTG (Isopropyl--D-thiogalactoside). For proteins containing many zinc-coordinating 

domains the growth medium was supplemented with 200 mM ZnSO4. The bacteria 

suspension was incubated at 18°C and 170 rpm for 16 hours, centrifuged at 4600 rpm and 

4°C for 15 min, and the supernatant was discarded. The bacterial pellet was resuspended in 

10 mL Bacteria lysis buffer and the lysate was incubated on ice for 15 min after addition of 

lysozyme (50 μg/mL). The bacteria were sonicated six times for 20 s, incubated on ice for 

10 min and centrifuged at 15000 rpm and 4°C for 30 min. The supernatant was then filtered 

using 0.45 μm syringe filters and applied to a 1 mL GSTrap column (GE Healthcare) which 

had been equilibrated with 10 mL PBS + 1 mM DTT.  After application of the sample which 

was performed at a flow rate of 0.5 mL/min, the column was washed with 10 mL GST-wash 

buffer. Elution of the GST fusion proteins was carried out at 4°C using 10 mL GST-elution 

buffer and the eluate was collected in 1 mL fractions.  Alternatively, 160 u PreScission (GE 

Healthcare Life Sciences) were loaded onto the column in 1 mL cleavage buffer and 

incubated for at least 4 hours at 4°C. Protein elution was determined by Coomassie staining. 

Protein containing fractions were dialysed in 5 L of dialysis buffer overnight. If the protein 

had been eluted using the elution buffer the GST-tag could be removed by incubation with 

1 u PreScission protease per 100 g protein.  

4.2.3.8 Expression and Purification of human HF-TNF 

His-Flag-tagged TNF was expressed from a pQE32 expression vector (Qiagen). Protein 

expression was performed as described above and the bacterial pellet was resuspended in 

bacterial lysis buffer for His-tagged proteins. Lysis and sample preparation were performed 
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as described for GST-tagged proteins and His/FLAG-TNF (HF-TNF) was purified using a 

HisTrap FF Agarose column (GE Healthcare Life Sciences) according to manufacturer's 

instructions. The expression and purification of HF-TNF was controlled by SDS-PAGE and 

Coomassie staining. Dialysed fractions, containing HF-TNF in dialysis buffer containing L-

Arginine were stored at -80°C. 

4.2.3.9 TNF-RSC precipitation 

For analytical RSC analysis, 2-5 x 107 U937 or HeLa cells per sample were either treated with 

1 g FLAG-tagged TNF per mL stimulation medium or left untreated. Cells were then lysed in 

IP-lysis buffer for 30 min at 4°C on a head-to-head shaker. Afterwards, the lysates were 

centrifuged at 15.000 x g for 30 min, protein content was assessed using the BCA-assay 

(section 4.2.3.1) and protein concentrations for the different samples were adjusted. 0.5 μg 

FLAG-TNF was added to the non-stimulated control. FLAG-TNF was precipitated using M2 

beads (Sigma) for 16 hours. Alternatively, 2 g anti-TNFR1 or anti-TNFR2 antibody were 

precoupled to ProteinG beads for at least 2 hours at room temperature, unbound antibody 

was washed off and the antibody-coupled beads were used to precipitate the TNF-RSC. In all 

cases the beads were washed 5 times with 1 mL IP-lysis buffer and eluted with SDS-Sample 

buffer. The TNF-RSC were analysed by immunoblotting using the indicated antibodies. 

4.2.3.10 Treatment of the TNF-RSC with recombinant USP2 

The TNF-RSC was precipitated from 2x108 U937 cells as described under 4.2.3.9. Following 

the precipitation, the beads were washed 5x in DUB reaction buffer and split into 4 samples. 

As controls, one sample was left untreated and one was incubated in 1x DUB reaction buffer 

for 2 hours at 37°C. The remaining two samples were subject to DUB treatment as described 

previously (Komander et al., 2009b). For this purpose, the catalytic domain of USP2 (Enzo 

Life Sciences) was diluted to a concentration of 0.2 g/L in DUB dilution buffer and pre-

incubated for 10 min at room temperature. The TNF-RSC coupled beads were treated with 

2 or 4 g of the activated DUB in a total volume of 30 L for 2 hours at 37°C. The reaction 

was stopped by addition of reducing sample buffer and analysed by western blotting. 

4.2.3.11 Size exclusion chromatography 

HeLa cells were lysed in lysis buffer for gelfiltration by repeated passing through a syringe 

needle. After adding an equal volume of lysis buffer containing 300 mM NaCl, lysates were 
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centrifuged at 100,000 g for 60 min to obtain S100 lysates. S100 lysates were separated via 

a Superdex 200 10/300 GL column (GE Healthcare Life Sciences) in gelfiltration running 

buffer using an ÄKTA chromatography system (GE Healthcare Life Sciences). 

4.2.3.12 Protein interaction studies 

For in-vivo interaction studies, 7 x 106 HEK293T cells were transfected with 5 μg of the 

respective DNAs by standard calcium phosphate transfection. Cells were harvested 24 hours 

post transfection and lysed in 1 mL IP-lysis buffer for 30 min at 4°C. Subsequently, lysates 

were centrifuged at 15,000 x g for 30 min. Beads coupled to antibodies specific for a tag or 

one of the transfected proteins itself were used for immunoprecipitations which were 

performed at 4°C for 16 hours. The beads were washed 5 times with IP-lysis buffer and the 

proteins were eluted in 35 μL 2x LDS sample buffer containing DTT as a reducing agent. 

Precipitated proteins were analysed by immunoblotting. 

4.2.3.13 Ubiquitin pull-down assays 

Lysates from unstimulated HeLa or U937 cells were incubated with control beads or 

ubiquitin-coupled agarose (Boston Biochem) at 4°C overnight. The beads were washed and 

dried and the proteins were eluted using 2x LDS Sample buffer. Binding was assessed by 

western blotting. The mapping of the ubiquitin binding domain in SHARPIN was performed 

in a similar manner. Here the ubiquitin-coupled beads were used to precipitate in-vitro 

translated SHARPIN or mutants thereof. Investigation of linkage specificity was performed 

by incubating 10 μg of purified C-terminally V5-tagged SHARPIN, HOIL-1 or HOIP with anti-

V5-beads in 600 μL Pull-down buffer (PDB) at 4°C for 6 hours. Beads were washed three 

times with PDB, split into aliquots and incubated at 4°C overnight with 2 μg recombinant 

K48-, K63- or linear-linked ubiquitin chains in 450 μL PDB. The beads were washed five times 

with PDB. The bound proteins were eluted using 2x LDS sample buffer and subsequently 

subjected to SDS-PAGE and immunoblotting using ubiquitin specific antibodies. 

4.2.3.14 NF-B Luciferase assay 

HEK293-NF-B cells were seeded into 6-well plates and cultured for 10 to 12 hours in DMEM 

+ 10 % FCS before transfection. Cells were cotransfected with 1 g/well of the pCMV-RLuc 

plasmid (Stratagene) and the plasmids encoding the respective LUBAC components using 

FuGENE 6 (Roche). Alternatively transient knockdown was performed as described in 
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section 4.2.2.3. 16 to 24 hours after transfection with plasmid DNA or 72 hours after siRNA 

transfection, cells were detached and seeded in 96 well plates. The next day cells were 

stimulated with TNF for 4 hours or left untreated. Afterwards, cells were lysed with 1x 

Passive lysis buffer (Promega) and the luminescence was measured using a microplate 

reader (Mithras LB940; Berthold Technologies). Firefly luciferase data were either 

normalised to values obtained in a MTT-viability assay (knock-down experiments) or to 

Renilla luciferase activity (over-expression experiments). 

4.2.3.15 MTT-viability assay 

The MTT [3-(4,5-Dimethylthiazol-2-yl) 2,5-diphenyl-tetrazoliumbromide] method is based on 

the reduction of the yellow soluble tetrazolium salt by mitochondrial dehydrogenases of the 

respiratory chain leading to the formation of blue formazan crystals (Gerlier and Thomasset, 

1986). Cells were seeded on a 96 well plate in parallel with those required for the luciferase 

assay. After the addition of 25 L MTT solution, the cells were incubated at 37°C for 2 hours. 

Afterwards, the medium was discarded and the MTT reaction was stopped by adding 100 L 

of an acetic acid solution (5 % acetic acid in isopropanol). The reduction of the substrate was 

assessed by measuring the absorption at a wavelength of 570 nm. 

4.2.3.16 In-vitro ubiquitylation assay 

For in-vitro ubiquitylation assays, 0.8 mg recombinant E3 were incubated with 5 g 

ubiquitin (wild-type, His-tagged or K0), 200 ng E1 (UBE1), 300 ng E2, 1x ERS (Boston 

Biochem) in ubiquitylation buffer. If TRAF2 was used as an E3, sphingosine-1-phosphate was 

added to a final concentration of 100 nM. After 2 hours incubation at 37°C the reaction was 

stopped by adding reducing sample buffer. The samples were analysed by western blotting. 

For in-vitro ubiquitylation of potential target proteins 293T cells were transfected with 

plasmids encoding a tagged version of the respective protein using calcium phosphate and 

proteins were immunoprecipitated using beads coupled to antibodies specific for either the 

tag or the protein itself. The beads were washed, dried and added to the reaction mix. The 

assay was performed as described above. 
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5 Results 

5.1 SHARPIN, HOIL-1 and HOIP are recruited to TNFR1 upon stimulation 

A first step in the investigation of the three novel components identified by mass 

spectrometry was to verify their presence in the TNF-RSC and to test whether they are 

recruited in a stimulation-dependent manner or if they are already associated with 

unstimulated receptors. For this purpose U937 cells were stimulated with His-FLAG (HF)-TNF 

for different times and the receptor complex was precipitated by an anti-FLAG 

immunoprecipitation. To control for unspecific, stimulation-independent binding or a direct 

interaction between LUBAC and TNFR1, TNF was also added post lysis to the lysate of 

untreated cells. Analysis by western blotting revealed that recruitment of SHARPIN, HOIL-1 

and HOIP is a stimulation-dependent event (Figure 11).  

 

Figure 11: SHARPIN, HOIL-1 and HOIP are recruited to the TNF-RSC in a stimulation-dependent manner. 

5x10
7 

U937 cells per sample were stimulated with 1g/mL HF-TNF for the indicated times. The TNF-RSC was 
precipitated using anti-FLAG beads and analysed by western blotting for the presence of both the three novel 
proteins and of bona-fide components of this complex using specific antibodies. The asterisk indicates an 
unspecific band recognised by the anti-SHARPIN-antibody. 
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It also showed that the three proteins are already present after two minutes of stimulation 

and are recruited with similar kinetics. Their levels reach a maximum at five minutes and 

start decreasing after about 15 minutes. This coincides with the recruitment of other 

components like RIP1, cIAP1/2 and NEMO, which also reach maximal levels, and in the case 

of RIP1 and cIAP1/2 maximal modification after five minutes and which start disappearing 

from the complex after 30 minutes of stimulation. The kinetics of recruitment for TRADD 

seem to be slightly different. The latter protein seems to reach its maximum levels already 

at two minutes of stimulation whereas. Overall this result shows that, together with other 

components of the TNF-RSC, SHARPIN, HOIL-1 and HOIP are recruited to the TNF receptor in 

a stimulation-dependent manner.  

As the mass spectrometric analysis was performed on the TNF-RSC isolated from U937 cells, 

a cell line which expresses both TNFR1 and TNFR2 (Haridas et al., 1998; Shu et al., 1996), the 

question arose which of the two receptors is essential for the recruitment of SHARPIN, 

HOIL-1 and HOIP. In line with the finding that soluble TNF fully activates TNFR1 but not 

TNFR2 (Grell et al., 1998; Grell et al., 1995; Krippner-Heidenreich et al., 2002), only peptides 

for TNFR1 were identified in the mass-spectrometric analysis of the TNF-RSC which had 

been precipitated using soluble TNF (Gerlach et al., 2011; Haas et al., 2009). This provides a 

good indication that SHARPIN, HOIL-1 and HOIP are recruited to TNFR1 rather than TNFR2. 

However, for a more direct analysis of this aspect, the TNF-RSC precipitated from U937 cells 

was compared to that of HeLa cells which, in contrast to U937 cells, only express TNFR1 

(Haridas et al., 1998; Shu et al., 1996);  PhD thesis Dr. C. H. Emmerich). In spite of much 

lower expression levels of HOIL-1 in HeLa cells, SHARPIN, HOIL-1 and HOIP were detectable 

in the TNF-RSC isolated from these cells (Figure 12), indicating that TNFR2 is not essential for 

their presence in TNF-precipitations. 
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Figure 12: SHARPIN, HOIL-1 and HOIP are recruited to the TNF-RSC of both U937 and HeLa cells. U937 or 

HeLa cells were stimulated with 1g/mL TNF for ten or thirty minutes. After lysis, protein levels were adjusted 
to the same levels and the TNF-associated complex was pulled out in an anti-FLAG immunoprecipitation. The 
resulting TNF-RSC was analysed by western blotting using the indicated antibodies. 

To further investigate this point, lysates of U937 cells stimulated with TNF for five, fifteen or 

thirty minutes were divided into two parts and each fraction was subject to precipitation of 

either TNFR1 or TNFR2 using specific antibodies. Comparable levels of TRAF2, a protein that 

was described to associate with both TNFR1 and TNFR2 (Shu et al., 1996), were detectable 

in both receptor complexes after fifteen minutes (Figure 13). In the precipitation of TNFR1, 

TRAF2 was already present after five minutes and could hardly be detected anymore after 

thirty minutes. On the other hand, the levels of TRAF2 detectable in the TNFR2-complex 

after five minutes were very low but the association remained stable at thirty minutes. A 

similar picture could be observed for cIAPs, additional components common to the two 

receptor complexes (Shu et al., 1996), although the levels recruited to TNFR2 were lower 

than the ones detectable on TNFR1. This indicates that the kinetics of complex formation 

differ between the two receptors, with TNFR2 showing a slight delay in recruitment of 

intracellular proteins. Another difference between the two complexes is constituted by the 

fact that SHARPIN, HOIL-1 and HOIP, like RIP1, a specific component of the TNFR1- but not 

the TNFR2-associated complex (Hsu et al., 1996a), could only be detected in the 
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precipitation of TNFR1. Overall, these findings establish that SHARPIN, HOIL-1 and HOIP are 

recruited to TNFR1. However, a potential recruitment to TNFR2, especially under conditions 

in which this receptor is efficiently stimulated by membrane-bound TNF, cannot be fully 

excluded on the basis of these results.  

 

Figure 13: SHARPIN, HOIL-1 and HOIP are not present in the TNFR2-SC. U937 cells were stimulated with TNF 
for the indicated times. Lysates were separated into two parts and subject to precipitation using antibodies 
specific for TNFR1 or TNFR2, respectively. The proteins associated with the two receptors were analysed by 
western blotting. Black rhombi indicate the position of the heavy chain and unspecific bands recognised by the 
anti-SHARPIN and anti-TRAF2-antibodies respectively are marked by asterisks. 

5.2 Down-regulation of SHARPIN, HOIL-1 or HOIP inhibits TNF-signalling 

Having identified SHARPIN, HOIL-1 and HOIP as components of the TNF-RSC, the next step 
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any of the three proteins decreased luciferase expression following TNF-stimulation with 

knockdown of HOIP being the most efficient in inhibiting TNF-induced NF-B activation. At 

100 ng/mL TNF HOIP knockdown decreased luciferase-activity to 44 % of the control 

whereas RNAi for SHARPIN and HOIL-1 led to a reduction to 66 % and 49 %, respectively.  

 

Figure 14: Down-regulation of SHARPIN, HOIL-1 or HOIP reduces TNF-induced NF-B activation.  HEK293-

NF-B cells were transfected with siRNAs targeting SHARPIN, HOIL-1 or HOIP, respectively. A: TNF-induced 

NF-B activation was assessed in a luciferase-reporter assay, following stimulation with the indicated 
concentrations of TNF for four hours.  Values were normalised to the values obtained in a MTT-viability assay 
and values reached for stimulation with 100 ng/mL TNF were set to 100 %. Results are shown as mean +/- 
SEM, n=4. B: Knockdown efficiency was determined by qPCR. Results for one representative experiment are 
shown. 

In line with this, phosphorylation of p38, JNK and IB were almost completely abolished 

when HOIP expression was down-regulated in HeLa cells (Figure 15A), indicating that not 

only the activation of NF-B but also that of other TNF-induced signalling pathways is 
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as efficient in blocking the different pathways. However, the phosphorylations indicating the 
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target effect of the siRNA, as the qPCR analysis did not show an effect of the siRNA on the 

mRNA levels of SHARPIN or HOIL-1 (Figure 15B). Furthermore a similar down-regulation on 

protein- but not on mRNA level was described to occur in mouse embryonic fibroblasts 

(MEFs) deficient for SHARPIN or HOIL-1 (Gerlach et al., 2011; Tokunaga et al., 2011). Overall 

this demonstrates that a decrease in levels of SHARPIN, HOIL-1 or HOIP but especially their 

co-down-regulation efficiently inhibits TNF-induced signalling cascades. This suggests that 

recruitment of the three proteins to TNFR1 is an event essential for TNF-induced signalling 

to occur at its full strength. 

 

Figure 15: Other TNF-induced signalling cascades are also affected by down-regulation of SHARPIN, HOIL-1 
and HOIP. A: Protein levels of SHARPIN, HOIL-1 and HOIP were down-regulated in HeLa cells using RNA 
interference. Cells were then stimulated with 25 ng/mL TNF for five or fifteen minutes and events indicating 
the activation of signal transduction were analysed using western blotting. B: Down-regulation of SHARPIN and 
HOIL-1 by HOIP knockdown is not an off-target effect. As determined by qPCR the knockdown of either 
SHARPIN, HOIL-1 or HOIP does not lead to co-down-regulation of the other two on mRNA-level. 
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isolated from these cells and compared to that of cells that had been treated with DMSO as 

a control. This comparison revealed that in absence of cIAP1/2 neither HOIL-1 nor SHARPIN 

or HOIP are recruited (Figure 16).  

 

Figure 16: SHARPIN, HOIL-1 and HOIP are recruited to the TNF-RSC in a cIAP-dependent manner. HeLa cells 
were pre-treated for two hours with the Smac-mimetic compound SM-164 (100 nM) which leads to 
degradation of cIAP1 and cIAP2. The TNF-RSC was precipitated following TNF-stimulation using an anti-TNFR1-
antibody and compared to that of control treated cells (DMSO).  

As cIAPs are E3s able of generating ubiquitin-chains on RIP1, themselves and potentially 

other components of the TNF-RSC (Bertrand et al., 2008; Lopez and Meier, 2010; 
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mutants of this protein that cannot dimerise (F610, V576E) or bind their corresponding E2 
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modification or HOIL-1 recruitment, indicating that not only presence of cIAPs but also their 

activity is required for either of these events to occur. Due to technical limitations in the 

detection of SHARPIN and HOIP in the murine system, recruitment of these proteins was not 

investigated in this assay.  

 

Figure 17: Recruitment of HOIL-1 to the TNF-RSC depends on the activity of cIAP. A: Expression of cIAP1 was 
induced in cIAP1/2

-/- 
MEFs containing constructs for the re-constitution with either wild-type (wt) cIAP1 or 

mutants of this protein that are unable to dimerise (V576E, F610A) or to bind the corresponding E2 
(V567A/D570A) (Feltham et al., 2011; Feltham et al., 2010; Mace et al., 2008) by incubation with 20nM 4-
hydroxy-tamoxifen. B: The TNF-RSC was precipitated from cIAP1/2

-/- 
MEFs reconstituted with different cIAP1 

mutants and the recruitment of HOIL-1 was analysed by western blotting. 

Making use of a similar inducible system, in which expression of TRAF2 or its mutants can be 

switched on using tamoxifen, it was shown that cIAP requires presence of TRAF2 and 

specifically of a cIAP-interaction motif (CIM) within TRAF2 for its recruitment to the TNF-RSC 

whereas the RING-domain of TRAF2 is dispensable (Figure 18). These results also indicate 

that the RING-domain of TRAF2 is insufficient to mediate the modification of RIP1 and that 

TRAF2 instead serves a role in recruiting cIAP1, which in turn is responsible for 

ubiquitinating RIP1. 
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Figure 18: cIAP requires a cIAP-interaction motif (CIM) within TRAF2 for its recruitment to the TNF-RSC. 
TRAF2/5

-/-
 MEFs reconstituted with constructs for the tamoxifen-inducible expression of TRAF2 mutants (Vince 

et al., 2009), were used to precipitate the TNF-RSC in presence or absence of 4-HT. Modification of RIP1 and 
recruitment of cIAP in presence of the different mutants was assessed by western blotting. 

Together this indicates that recruitment of HOIL-1 and potentially of SHARPIN and HOIP 

depends on the activity of cIAPs, which in turn are recruited to the TNFR-complex via their 

interaction with TRAF2. As cIAPs generate ubiquitin chains and this activity is required for 

recruitment of HOIL-1, it was next investigated whether SHARPIN, HOIL-1 and HOIP have 

ubiquitin-binding properties. As a first approach to this question, ubiquitin-coupled agarose 

beads were compared to control beads in their ability to precipitate SHARPIN, HOIL-1 and 

HOIP from unstimulated lysates of HeLa (Figure 19A, left panel) or U937 (Figure 19A, right 

panel) cells. It could be shown that all three proteins associate specifically with ubiquitin-

coupled but not with the control beads. To further investigate this property of SHARPIN, 

HOIL-1 and HOIP recombinant versions of the three proteins with an N-terminal GST- and a 

C-terminal V5-tag were produced in E.coli. After it had been used for purification, the GST-

tag was removed and the proteins were precipitated via their C-terminal V5-tag. The 

predominant non-proteolytic ubiquitin linkage reported to be generated by cIAPs are K63-

linked chains. Therefore, K63-linked tetra-ubiquitin was added to immobilised SHARPIN, 

HOIL-1 and HOIP and the co-precipitation of K63-linked ubiquitin chains was analysed by 

western blotting (Figure 19B). Association of ubiquitin with all three proteins but not with 

anti-V5-beads alone was detectable, indicating that SHARPIN, HOIL-1 and HOIP all have the 

ability to bind K63-linked ubiquitin. However, it can be observed that although the levels of 

HOIP are much lower than those of SHARPIN and HOIL-1, the amount of ubiquitin co-
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precipitated with the former protein is the highest. This suggests that HOIP has a greater 

overall affinity for ubiquitin or that SHARPIN and HOIL-1 preferentially bind other ubiquitin 

chain types.  

  

Figure 19: SHARPIN, HOIL-1 and HOIP can bind to ubiquitin. A: Control beads and ubiquitin-coupled agarose 
were compared in their capacity to precipitate SHARPIN, HOIL-1 and HOIP from lysates of unstimulated HeLa 
(left panel) or U937 cells (right panel). Association of the three proteins with the two types of beads was 
analysed by western blotting. B: C-terminally V5-tagged forms of SHARPIN, HOIL-1 and HOIP were coupled to 
anti-V5 beads, K63-linked tetra-ubiquitin (Ub4 K63) was added and co-precipitation was determined on 
western blot level. 

Indeed, a recent report demonstrated that the NZF-domain of HOIL-1 shows a strong 

specificity for linear chains (Sato et al., 2011). In order to investigate whether a similar 

preference exists for SHARPIN, the recombinant protein was precipitated using a specific 

antibody. K48-, K63- or linearly linked tetra-ubiquitin chains were added and co-

precipitation was assessed by western blotting (Figure 20). This analysis revealed that K63-

linked and linear chains were co-precipitated with SHARPIN, whereas binding of K48-

linkages could not be detected (Figure 20A). It is important to note that different linkage 

types are not equally well detectable with antibodies recognising total ubiquitin 

(Figure 20B). 
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Figure 20: SHARPIN shows a preference for K63- and M1-linked tetra-ubiquitins. A: Untagged recombinant 
SHARPIN purified from E.coli was precipitated using a specific antibody and tetra-ubiquitin of different linkage 
types was added as indicated. To assess binding of the different linkages, precipitations were separated by 
SDS-PAGE and the corresponding western blots were probed with two anti-ubiquitin-antibodies (clones FK1 
and FK2, Biomol) and an anti-SHARPIN antibody. B: Ubiquitin-chains of different lengths and linkage types 
were resolved by SDS-PAGE, transferred to membranes by western blotting and the corresponding 
membranes were probed with different anti-ubiquitin antibodies. Equivalent loading was verified by staining 
with PonceauS. 

Although no band representing K48-linked tetra-ubiquitin was visible in the lanes 

corresponding to co-precipitation of this linkage type in the western blots shown in Figure 

20A, a strong band was present in the input samples, suggesting that the lack of detectable 

co-precipitation of K48-linkages was not due to a problem with antibody specificity. Instead 

it indicates a preference of SHARPIN K63- and linearly linked ubiquitins which is in line with 

a recent publication (Sato et al., 2011). The ubiquitin-binding motifs of HOIL-1 and HOIP 

were allocated to their NZF- and NZF1- domains, respectively (Ikeda et al., 2011). To map 

the parts of SHARPIN involved in ubiquitin binding, ubiquitin-coupled agarose beads were 

used to precipitate in vitro-translated versions of SHARPIN, in which deletion- or point-

mutations had been introduced (Figure 21A). This assay showed that both the wild-type 

protein and a mutant in which the UBL-domain had been deleted (UBL) efficiently bound 

to the ubiquitin-beads (Figure 21B). In contrast, much lower levels of mutants in which the 

NZF-domain had been deleted (NZF) or in which specific residues within that domain had 

been mutated (NZF1mut: C353,356S; NZF2mut: C367,370S) were found to be associated 

with the beads. This indicates that SHARPIN binds ubiquitin mainly via its NZF domain.  
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Figure 21: SHARPIN binds to ubiquitin via its NZF-domain. A: Schematic representation of SHARPIN and 
mutant employed in C. B: Ubiquitin-coupled agarose beads were used to assess the binding of V5-tagged in-
vitro translated versions of SHARPIN to ubiquitin. Cysteines 353 and 356 were mutated to serine in NZFmut1 
and NZFmut2 is a C367,370S mutant of SHARPIN. Co-precipitation was analysed by western blotting. 

The observations that SHARPIN, HOIL-1 and HOIP are recruited to the TNF-RSC with similar 

kinetics (Figure 10) and that all three proteins require cIAPs and potentially ubiquitin chains 

generated by this E3 for their presence in the TNFR-associated complex (Figures 16-21), led 

me to investigate whether their recruitment is interdependent.  

 

Figure 22: SHARPIN and HOIP are still recruited to the TNF-RSC in absence of HOIL-1. The TNF-RSC was 
isolated using an anti-TNFR1-antibody from HeLa cells in which expression of HOIL-1 was stably down-
regulated by shRNA. Levels of SHARPIN and HOIP in the complex were compared to those associated with the 
receptor in control cells by western blotting. The asterisk indicates an unspecific band that is recognised by the 
anti-SHARPIN antibody. 

To assess the role of HOIL-1 in association of SHARPIN and HOIP with the TNF-induced 
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shRNA. The TNF-RSC isolated from these cells was then compared to that of control cells 

(Figure 22). Comparative western blotting shows that, even though HOIL-1 expression was 

efficiently down-regulated, the levels of SHARPIN and HOIP remain within the same range as 

in control cells indicating that HOIL-1 is dispensable for their recruitment. 

A similar approach was taken to investigate a potential role for SHARPIN as an adaptor for 

HOIL-1 and HOIP. Again, the levels of the other two proteins within the TNF-RSC were not 

markedly reduced in comparison to the control (Figure 23). In addition, a similar analysis in 

SHARPIN-deficient MEFs, isolated from cpdm mice, supports a SHARPIN-independent 

mechanism of recruitment for HOIL-1 and HOIP (Gerlach et al., 2011). 

 

Figure 23: Knockdown of SHARPIN does not prevent recruitment of HOIL-1 and HOIP to the TNF-RSC. 
SHARPIN-expression was transiently down-regulated in HeLa cells by siRNA. Following stimulation with HF-
TNF, the TNF-RSC was pulled out using anti-FLAG-beads and levels of complex-components present in the 
precipitation were analysed by western blotting. Asterisks mark cross-reactive bands detected by the anti-
SHARPIN and anti-HOIP antibodies, respectively. 

Lastly, HOIP was transiently down-regulated using RNA interference in HeLa cells and 

recruitment of all three proteins to the TNF-RSC was analysed by western blotting. As shown 

in Figure 24, absence of HOIP prevented the association of SHARPIN and HOIL-1 with the 

complex, demonstrating that HOIP acts an adaptor for the other two.  
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Figure 24: HOIP is required for the recruitment of SHARPIN and HOIL-1 to the TNF-RSC. HOIP expression was 
down-regulated in HeLa cells using RNA interference and the TNF-RSC was precipitated and analysed as in 
Figure 13. Asterisk marks an unspecific band detected by the anti-SHARPIN antibody. 

 

5.4 SHARPIN, HOIL-1 and HOIP form a stimulation-independent complex 

This central role of HOIP raised the question whether SHARPIN, HOIL-1 and HOIP form a 

complex in the absence of stimulation, which is then recruited to the TNF-RSC as a pre-

formed unit. To address this, lysates of unstimulated HeLa cells were separated by 

gelfiltration chromatography and protein containing fractions (Figure 25, upper panel) were 

analysed by western blotting for the presence of SHARPIN, HOIL-1 and HOIP. An 

unseparated lysate control was included on all blots to ensure equal exposure times. While 

especially HOIP and SHARPIN partially eluted in the fractions corresponding to the 

molecular weights of their monomeric forms (fractions 22-25 and 33+34, respectively), all 

three proteins were also present in high molecular weight fractions (fractions 13-17), 

suggesting that even in the absence of a stimulus they are present in a pre-formed protein 

complex (Figure 25, lower panel). On the other hand the unspecific band recognised by the 

anti-SHARPIN antibody remained in the low molecular weight fractions. This is in line with a 

previous report showing that HOIL-1 and HOIP are present in a complex of about 600 kDa in 

unstimulated HeLa and SH-SY5Y cells and that exogenous co-expression of HOIL-1 and HOIP 

shifts both proteins to these high-molecular weight fractions (Kirisako et al., 2006).  
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Figure 25: SHARPIN, HOIL-1 and HOIP co-elute in high molecular-weight-fractions. S100 lysates of 
unstimulated HeLa cells were separated on a Superdex 200 10/300 GL column (GE Healthcare Life Sciences). 
The upper panel represents the elution profile with elution volume and fraction numbers being shown on the 
horizontal axis, whereas the vertical axis presents protein content in arbitrary units. The lower panel shows 
analysis of protein containing fractions by western blotting. 

To further test the possibility of a stimulation-independent interaction of SHARPIN with 

HOIL-1 and HOIP, an N-terminally myc-tagged version of SHARPIN, was over-expressed in 

HEK293T cells either alone or in combination with C-terminally V5-tagged forms of HOIL-1 

and HOIP. Immunoprecipitation with anti-V5 coupled beads followed by western blotting 

revealed that SHARPIN was co-precipitated with HOIL-1 and even more strongly with HOIP 

(Figure 26A). In order to verify this interaction in a more physiological setting, U937 cells 

were left untreated or stimulated with TNF for five minutes. The lysates of these cells were 

split into five parts of which three were used to precipitate SHARPIN, HOIL-1 and HOIP using 

specific antibodies, respectively, whereas the other two served as controls for unspecific 

binding to the beads or the antibodies. As shown in Figure 26B, precipitation of any of the 
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three proteins also pulled out the other two and the levels of the co-precipitated protein did 

not change upon TNF-stimulation. This demonstrates that in an unstimulated state 

endogenous SHARPIN, HOIL-1 and HOIP are associated with each other. However, this data 

was insufficient to judge whether the interaction between the three is direct. To clarify 

whether another factor is required to mediate the association of the three, recombinant 

versions of SHARPIN, HOIL-1 and HOIP were precipitated using specific antibodies and co-

precipitation of the other two was analysed by western blotting (Figure 26C).  

 

Figure 26: SHARPIN, HOIL-1 and HOIP interact in a direct and stimulation-independent manner. A: V5-tagged 
forms of HOIL-1 and HOIP were over-expressed in HEK293T cells either alone or in combination with SHARPIN 
and precipitated using anti V5-beads. Co-precipitation of SHARPIN was assessed on western blot level. B: U937 
cells were stimulated with TNF for five minutes or left untreated. Lysates were split into five parts and 
precipitations using empty beads, an isotype control (IgG2a) or anti-SHARPIN, anti-HOIL-1 or anti-HOIP 
antibodies. Presence of the three proteins in the different pulldowns was determined by western blotting. C: 
Recombinant forms of SHAPRIN, HOIL-1 or HOIP were added to either the precipitations of the respectively 
other two or to beads containing the specific antibodies used for pull-down but not their specific antigen. The 
heavy chain as detected by PonceauS staining is used as a loading control. Black rhombi mark bands 
representing the heavy chain.  

Both HOIL-1 and HOIP were associated with SHARPIN (lanes 3 and 4) but were not 

detectable on beads coupled to the anti-SHARPIN antibody (lanes 1+2), indicating that a 

specific and direct interaction occurs between the proteins. Similarly, interaction of 

SHARPIN and HOIL-1 with recombinant HOIP (lanes 7+8) and of SHARPIN and HOIP with 
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HOIL-1 (lanes 11+12) could be detected. These results demonstrate that SHARPIN, HOIL-1 

and HOIP can associate with each other in a direct manner and that this interaction occurs 

in cells in a stimulation-independent manner. However, the data are not sufficient to 

distinguish between the existence of one complex containing all three proteins and that of 

different complexes containing only two of the proteins, respectively. Since SHARPIN and 

HOIL-1 show high sequence similarity (Lim et al., 2001) it seemed possible that HOIP 

associated with either of the two in a tissue- or cell line specific manner. Expression of 

HOIL-1 in a variety of tissues (Tokunaga et al., 1998b) and its association with HOIP in 

several cell lines (Kirisako et al., 2006; Tokunaga et al., 2009) were reported.  

To test, whether SHARPIN shows a similar expression pattern, lysates of different human 

tissues were analysed by western blotting. Although quantitative statements are not 

possible due to different expression levels of GAPDH and ACTIN in the tissues analysed, the 

western blot depicted in Figure 27 shows that SHARPIN is widely expressed across tissues.  

 

Figure 27: SHARPIN is widely expressed in normal human tissues. Lysates of normal human tissues 
(IMGENEX) were analysed by western blotting for the presence of SHARPIN. Membranes were probed with 
anti-GAPDH and anti-ACTIN antibodies as a loading control. 

To test whether SHARPIN, HOIL-1 or HOIP exclusively binds only one of the other two in 

certain tissues, fourteen cell lines of different tissue origins (table 1) were used to 

precipitate each of the three proteins using specific antibodies respectively.  
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Table 5: Origin of cell lines used in Figure 28. Information according to ATCC, Benard et al and Boukamp et al. 

(Benard et al., 1985; Boukamp et al., 1988). 

 

Although expression levels seem to differ slightly between cell lines, with very low levels of 

HOIL-1 in HEK293T and HeLa cells being the most notable difference, precipitation of any of 

the three proteins led to the co-precipitation of the other two in all cell lines tested 

(Figure 28). 

While a tissue-specific formation of different dipartite complexes cannot be fully excluded 

on the basis of this result, it is a clear indication that stimulation-independent association of 

SHARPIN, HOIL-1 and HOIP is not a cell type specific event. Based on these results, a further 

investigation of the interactions between the three proteins was undertaken. 

cell line disease organ / cell type

HEK 293T -
human embyonic

kindey

HeLa adenocarcinoma cervix

HT1080 fibrosarcoma connective tissue

HaCat - skin/keratinocyte

Saos-2 osteosarcoma bone

IGROV-1 carcinoma ovary

DKO-4
colorectal 

adenocarcinoma
colon

Du145 carcinoma prostate

A549 carcinoma lung

MCF-7 adenocarcinoma
mammary gland, 

breast

JA-3 acute T cell leukemia T lymphocyte

Raji Burkitt's lymphoma B lymphocyte

U937 histiocytic lymphoma
monocyte / 

macrophage

THP-1
acute monocytic

leukemia
monocyte
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Figure 28: SHARPIN, HOIL-1 and HOIP co-precipitate in a variety of cell lines. Lysates of the indicated fourteen 
cell lines of different tissue origins were employed to assess protein levels of SHARPIN, HOIL-1 and HOIP by 
western blotting (lower right panel) or to precipitate each of the three proteins using specific antibodies. 
Association of the remaining two proteins with beads coupled to the third was again analysed on western blot 
level.   

It can be noted in Figure 26A that more SHARPIN was co-precipitated with HOIP than with 

HOIL-1. To follow up on this point, HOIP expression was down-regulated using siRNA and 

the amount of HOIL-1 bound to SHARPIN, which was pulled out using a specific antibody, 

was estimated by western blotting (Figure 29A). In absence of detectable HOIP, the amount 

of HOIL-1 associated with SHARPIN was clearly decreased. However, as observed previously 

(Figure 15), down-regulation of HOIP severely affected the levels of SHARPIN and HOIL-1. To 

account for this co-down-regulation and to be able to judge whether there is a role for HOIP 

in mediating the interaction between SHARPIN and HOIL-1, the bands representing HOIL-1 

were quantified using the ImageJ software (Figure 29B and C). The intensities were then 

normalised to those representing ACTIN in the lysates or SHARPIN in the 

immunoprecipitations. When the band intensities of the control were set to 100 % in both 

lysates and precipitations the amount of HOIL-1 in HOIP knockdown cells was reduced to 

29 % and 18 %, respectively. This shows that although the absence of HOIP already leads to 

a down-regulation of HOIL-1 (by 71 %) in total cell extracts the interaction between 

SHARPIN and HOIL-1 is even further influenced by the absence of HOIP (82 % reduction) 
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compared to control cells. Although it cannot be distinguished if a direct binding between 

SHARPIN and HOIL-1 is taking place in the knockdown situation or if the remaining HOIP is 

sufficient to mediate this association, this result indicates that HOIP increases the 

interaction between the other two. 

 

Figure 29: HOIP enhances the interaction between SHARPIN and HOIL-1 in HeLa cells. Expression levels of 
HOIP were down-regulated in HeLa cells and SHARPIN was precipitated using a specific antibody. A: Western 
blot showing the co-precipitation of HOIL-1 in presence or absence of HOIP. B and C: Quantification of bands 
from A and calculation of relative HOIL-1 levels in immunoprecipitations and lysates. 

This was confirmed by co-precipitation of recombinant HOIL-1 with V5-tagged SHARPIN in 

absence or presence of increasing amounts of HOIP. Again, a weak direct interaction 

between HOIL-1 and SHARPIN could be detected and an increase in this association was 

observed in the presence of HOIP indicating that this protein can mediate the interaction 

between the other two (Figure 30). 
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.  

Figure 30: HOIP increases the interaction of HOIL-1 and SHARPIN in vitro.  10g of recombinant V5-tagged 

SHARPIN per sample were used to couple the protein to beads. 3g of HOIL-1 were added to either empty 
beads (first lane) or to the SHARPIN-coupled beads in the absence of HOIP (second lane) or in presence of 

different amounts (0.05g, 0.5g, 5g) of HOIP. Co-precipitation was assessed on western blot level.  

This provides additional evidence for the existence of a tripartite complex. Furthermore, it 

raised the question as to how HOIP binds to SHARPIN and HOIL-1 at the same time. The 

interaction between HOIL-1 and HOIP was reported to be mediated via their UBL- and UBA-

domains respectively (Kirisako et al., 2006). In order to map which parts of HOIP are 

involved in binding SHARPIN, in-vitro-translated versions of HOIP lacking the UBA-domain, 

the N-terminus or the C-terminus (Figure 31A), were tested for their ability to bind 

recombinant SHARPIN.  

 

Figure 31: The NZF2-domain in the N-terminal part of HOIP is sufficient to mediate the interaction with 
SHARPIN. A: Schematic representation of HOIP mutants employed in B. B: In-vitro translated mutations of 
HOIP lacking the UBA-domain, the N-terminus or the C-terminus were tested for their ability to bind 
recombinant SHARPIN in a co-precipitation assay using a specific anti-SHARPIN antibody (left panel). Right 
panel: recombinant forms of the ZnF, NZF1 and NZF2 domain of HOIP were pulled down via their N-terminal 
GST-tag, recombinant SHARPIN was added and binding was assessed by western blotting.  
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As shown in Figure 31B deletion of its N-terminus abolished co-precipitation of HOIP, 

indicating that this part is essential for the association with SHARPIN. To further allocate the 

SHARPIN-binding motif to one of the three zinc-fingers present in the N-terminal part of 

HOIP, GST-tagged versions of these domains were purified from E.coli, coupled to 

glutathione-beads and tested for co-precipitation of SHARPIN (Figure 31C). This experiment 

revealed that the NZF2-domain was sufficient to pull down recombinant SHARPIN, whereas 

no binding of this protein to the ZnF- or NZF1-domain could be detected. 

To identify the corresponding domain in SHARPIN that is recognised by HOIP’s NZF2, 

recombinant HOIP was coupled to beads using a specific antibody and co-precipitation of in-

vitro-translated SHARPIN mutants (Figure 32A) was analysed by western blotting. As shown 

in Figure 32B, binding efficiency was greatly reduced when the UBL-domain of SHARPIN was 

deleted.

 

Figure 32: Deletion of SHARPIN’s UBL-domain prevents its interaction with HOIP. A: Schematic 
representation of SHARPIN and of mutants employed in this assay. B: Recombinant HOIP was pulled down 
using a specific antibody and tested for its capacity to co-precipitate mutants of SHARPIN in which the UBL-
domain or the NZF had been deleted or in which zinc-coordinating cysteines had been mutated to serine 
(NZFmut1= C353,356S; NZFmut2= C367,370S).  

Indeed a GST-tagged recombinant form of this domain was sufficient to bind V5-tagged 

HOIP in precipitations performed using glutathione- (Figure 33, left panel) or anti-V5-beads 

(Figure 33, right panel). 
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Figure 33: The UBL-domain of SHARPIN is sufficient to mediate the interaction with HOIP. Anti-V5-beads were 
used to precipitate recombinant HOIP and co-precipitation of GST-only or a GST-tagged form of SHARPIN’s 
UBL-domain was analysed by western blotting (left panel). The reciprocal experiment was performed using 
glutathione-beads to precipitate GST-only or the N-terminally GST-tagged UBL-domain of SHARPIN. Binding of 
HOIP was determined using a specific antibody on western blot level. Precipitation of GST and the UBL-domain 
was controlled by PonceauS-staining. 

Taken together, it could be shown that the interaction between HOIP and SHARPIN is 

mediated via their NZF2- and UBL-domains, respectively. 

5.5 LUBAC exclusively generates linear ubiquitin chains in vitro 

A high-molecular weight complex consisting of HOIL-1 and HOIP was previously described to 

act as an E3 generating linear ubiquitin chains (Kirisako et al., 2006). Furthermore, this 

activity was correlated to the ability of inducing NF-B activation upon over-expression 

(Haas et al., 2009; Tokunaga et al., 2009). To investigate the effect SHARPIN has on the 

processes mediated by LUBAC, the three proteins were ectopically expressed in 

HEK293-NF-B cells and the resulting luciferase expression was assessed in an activity assay. 

As shown in Figure 34, none of the proteins induced NF-B activation when expressed on its 

own and neither did the combination of SHARPIN and HOIL-1. However, combination of 

HOIP with either SHARPIN, HOIL-1 or both induced luciferase expression, providing evidence 

that also in the context of LUBAC’s activity SHARPIN fulfils a role similar to that of HOIL-1.  
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Figure 34: Over-expression of HOIP in combination with SHARPIN and/or HOIL-1 induces NF-B activation in 

a luciferase-reporter assay. HEK293-NF-B cells were transfected with SHARPIN, HOIL-1 and HOIP either alone 
or in combination. Luciferase-expression was measure in a luciferase-assay and normalised to renilla-activity. 
Fold inductions in the relative luminescence units (RLU) were calculated and results are shown as mean +/- 
SEM; n=5 (left panel). The right panel shows a representative western blot to control for successful over-
expression of the three proteins. 

To be able to directly investigate its role in the generation of linear ubiquitin chains by 

LUBAC, an in-vitro ubiquitination assay using recombinant proteins and mono-ubiquitin as a 

model substrate was set up. By stopping the reaction after the times indicated in 

Figure 35A, the incubation time necessary for efficient chain formation was established. The 
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HOIL-1 but not the combination of SHARPIN and HOIL-1 or HOIP alone were active. Thus, 

the capacity to promote formation of poly-ubiquitin conjugates correlated well with the 

ability or inability of these combinations to induce NF-B activation as established in 

Figure 34.  

 

Figure 35: HOIP generates ubiquitin chains when complexed with SHARPIN and/or HOIL-1. A: An in-vitro 
assay was performed as described under 4.2.3.16. Incubation time for in-vitro ubiquitination assays was 
optimised by stopping the reaction catalysed by the E3-complex consisting of HOIL-1 and HOIP after the 
indicated times. Formation of ubiquitin polymers was determined on western blot level. B: Different 
combinations of untagged HOIP and GST-tagged SHARPIN were tested for their ability to mediate the 
conjugation of ubiquitin moieties in the presence or absence of E1 and E2 in an in-vitro assay as described 
under A.  

The E3-complex consisting of HOIL-1 and HOIP, LUBAC, was found to be able to generate 

ubiquitin chains from K0-ubiquitin, in which all lysine residues were mutated to arginine, 

and it was concluded that these chains are linked via the N-terminal methionine (Kirisako et 

al., 2006). It can be observed in Figure 35B, that the bands for the ubiquitin conjugates 

generated by SHARPIN-containing E3-combinations run at the same apparent molecular 

weight as the ones generate by HOIL-1 and HOIP. This indicates that these chains are also 

M1-linked because different linkage types, especially of lower order ubiquitin oligomers, can 

be distinguished due to their different electrophoretic mobilities (Komander et al., 2009b). 

For the purpose of assessing more directly if SHARPIN supports the formation of linear 

chains or if it shifts linkage specificity towards a different type, the active E3-combinations 
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tagged ubiquitin, in which the N-terminal aminogroup of M1 is rendered inaccessible by the 

conjugation of six histidine-residues while all lysine residues remain unchanged, as a 

substrate. Although all E3s were active in promoting the formation of ubiquitin-chains using 

wild-type ubiquitin, conjugation of His-ubiquitin could only be observed for TRAF6 

(Figure 36A). This demonstrates that HOIP in combination with SHARPIN and/or HOIL-1 is 

not only able to generate linear ubiquitin chains but is restricted to catalysing the formation 

of only this linkage type. In line with this strict linkage specificity, addition of increasing 

amounts of His-tagged ubiquitin reduces the formation of poly-ubiquitin chains by HOIL-1 

and HOIP (Figure 36B), indicating that N-terminally tagged ubiquitin acts as a competitive 

inhibitor of LUBAC.  

 

Figure 36: All LUBAC combinations exclusively generate linear linkages. A: HOIP in combination with SHARPIN 
and/or HOIL-1 was compared to TRAF6 in its ability to generate ubiquitin chains from wild-type (wt Ub) or His-
tagged (His Ub) ubiquitin in an in-vitro ubiquitination assay. B: Increasing amounts of His-tagged ubiquitin (0.5, 

1, 2, 10g) were added to reactions of an in vitro-assay of HOIL-1 and HOIP generating polyubiquitin 
conjugates. 

Overall, this data shows that LUBAC is unable to generate any linkage type other than linear 

chains and that SHAPRIN is both a structural and a functional component of this E3 complex. 

The term LUBAC will hence be used from here onwards to refer to the tripartite, linear 

ubiquitin chain generating  complex consisting of SHARPIN, HOIL-1 and HOIP.  
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In addition, in Figure 36B an additional band can be noticed in the anti HOIL-1 blot thus 

creating a pattern that resembles the appearance of HOIL-1 in cell lysates 

(Figures 10, 13, 28). This gave rise to questions concerning the identity, location and 

function of this modification.  

5.6 Modifications of LUBAC components 

A common principle in the regulation of enzymes is the addition of post-translational 

modifications. In several previous analyses it can be noticed that LUBAC-components are 

indeed modified (e.g. Figures 10, 13, 15 and 22). The fact that LUBAC is an E3 together with 

the sizes of the modified proteins in relation to their unmodified forms suggests that the 

type of modification could potentially be ubiquitination. To test this hypothesis, the TNF-RSC 

was precipitated from U937 cells and the precipitate was split into four parts of which two 

were treated with different amounts of the catalytic domain of USP2 (Figure 37). This 

deubiquitinase was described to remove a wide range of ubiquitin linkages while not 

affecting modifications with the ubiquitin-like protein NEDD8 (Kim et al., 2011). Treatment 

with USP2 was efficient as can be seen by the almost complete de-modification of RIP1 and 

cIAP2. Furthermore, modifications of SHARPIN, HOIL-1 and HOIP were also removed by 

DUB-treatment, indicating that LUBAC-components are indeed ubiquitinated within the 

TNF-RSC.  

 

 

 

 

Figure 37: Treatment with the catalytic domain 
of USP2 removes modifications form LUBAC 
components present in the TNF-RSC.  2x10

8
 

U937 cells were stimulated with TNF for five 
minutes. The TNF-RSC was isolated using M2-
beads, the precipitate was split into four parts 
of which one was left untreated, one was 
incubated in DUB-buffer for two hours at 37˚C 
and the remaining two were treated with 2 or 4 

g of the catalytic domain (CD) of USP2 (Enzo 
Life Sciences), respectively. Reactions were 
stopped by addition of reducing sample buffer 
and protein modifications were analysed on 
western blot level. 
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The strength of the band representing modified HOIL-1 in relation to its unmodified form, as 

observed in several experiments, indicates that a higher percentage of this protein is 

modified as compared to SHARPIN and HOIP. Based on this distribution I chose to 

investigate the modification of HOIL-1 in more detail. To study the influence of TNF-

stimulation and to investigate a potential role for SHARPIN and HOIP in mediating this 

modification, HeLa cells in which expression of HOIP (Figure 38A) or SHARPIN (Figure 38B) 

had been down-regulated by siRNA, were treated with TNF for five or fifteen minutes and 

the corresponding lysates were analysed on western blot level. No significant change can be 

observed in the upper band of HOIL-1 upon stimulation with TNF, indicating that HOIL-1 

modification is a stimulation-independent event. However, down-regulation of SHARPIN or 

HOIP led to a clear decrease in this modification (Figure 38A and B). To be able to directly 

compare the effects the down-regulation of the two proteins has on HOIL-1 modification, 

HeLa (Figure 38C, left panel) and A549 cells (Figure 38C, right panel) were transfected with 

siRNAs targeting SHARPIN or HOIP. Again, it could be observed that a decrease of HOIP 

protein levels was accompanied by a strong reduction in the HOIL-1 modification. In HeLa 

cells knockdown of SHARPIN also led to a decrease in the intensity of the band representing 

a modification on HOIL-1, albeit to a lesser degree than down-regulation of HOIP. In 

contrast, in A549 cells this modification seems to be largely unaffected by a decrease in 

SHARPIN levels. This suggests that SHARPIN may have a, potentially cell line specific, role in 

mediating the modification of HOIL-1 but that it is not able to modify HOIL-1 on its own. 

Presence of HOIP on the other hand is essential for HOIL-1 modification to occur. 
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Figure 38: Modification of HOIL-1 depends on HOIP and potentially SHARPIN. A, B: Expression of HOIP (A) or 
SHARPIN (B) was transiently down-regulated in HeLa cells using siRNA. Cells were stimulated with TNF 

[1g/mL] for five or fifteen minutes and the indicated proteins were analysed by western blotting. C: SHARPIN 
and HOIP were knocked down in HeLa (left panel) or A549 cells (right panel). HOIL-1 modification and 
knockdown efficiency were determined on western blot level. 

To further clarify the type of the HOIL-1 modification and to assess the need for HOIP’s 

activity in generating it, an in-vitro assay was performed. The fact that a modification of 

HOIL-1 can also be observed in this in-vitro system (Figure 39) provides further evidence 

that it is a ubiquitination, as other potential modifiers are not present here. 
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Figure 39: Modification of HOIL-1 can be observed in an in-vitro ubiquitination assay. Recombinant HOIL-1 
was combined with the indicated forms of HOIP and SHARPIN, a ubiquitination assay was performed in 
presence of either wild-type or His-tagged ubiquitin and activity of LUBAC as well as HOIL-1 modification were 
assessed by western blotting. 

In contrast to the observations made in cell lines (Figure 38) it could be noted that HOIL-1 

was modified to some extent even in the absence of SHARPIN and HOIP (Figure 39, lane 2) 

and addition of SHARPIN alone was sufficient to increase the intensity of the band 

representing this modification (lane 3). A similar enhancement could be observed when 

inactive mutants of HOIP, alone or in combination with SHARPIN, were added to HOIL-1 

(lanes 6-9) or when LUBAC’s activity was blocked by His-tagged ubiquitin (lanes 11 and 12). 

In the last two lanes a slight increase in the distance between the bands representing the 

two forms of HOIL-1 could be observed which corresponds to the size difference between 

wild-type and His-tagged ubiquitin. This provides further evidence that HOIL-1 is indeed 

mono-ubiquitinated. When active LUBAC was created by adding wild-type HOIP to HOIL-1 in 

absence of presence of SHARPIN (lanes 4 and 5) a laddering pattern indicates that not only 

- - SH
A

R
P

IN
H

O
IP

w
t

H
O

IP
w

t 
+

 S
H

A
R

P
IN

H
O

IP
 R

IN
G

1
/2

m
u

t 
H

O
IP

 R
IN

G
1

/2
m

u
t 

+
 S

H
A

R
IN

H
O

IP
 C

8
8

5
S

H
O

IP
 C

8
8

5
S 

+
 S

H
A

R
P

IN

- H
O

IP
w

t
H

O
IP

w
t 

+
 S

H
A

R
P

IN

HOIL-1

HOIL-1
(long exposure)

Ubiquitin

wt Ub His Ub

51

51

64

64

51

64

97

28

39

14

19

97

39

HOIP

SHARPIN

HOIL-1

HOIL-1 modification

191



5. Results 
  

110 
 

one but several ubiquitin moieties are added to HOIL-1 in this case, which is in contrast to 

the observations made in cell lines where HOIL-1 modification seems to be restricted to 

mono-ubiquitination.  

In spite of the differences between the in-vitro system and the events occurring in cell lines, 

the HOIL-1 modification was sufficiently similar between the two for the in-vitro assay to be 

deemed a suitable system for performing a first characterisation of this ubiquitination 

event. In order to locate the modification site within HOIL-1, I made use of the fact that 

Thrombin cleaves this protein at aminoacid 183. This cleavage creates an N-terminal 

fragment if around 21 kDa that contains the N-terminal aminogroup as well as the -amino-

groups of eight lysine residues as potential ubiquitination sites. Another twelve lysines are 

contained in the C-terminal part which has a predicted molecular weight of approximately 

39 kDa (Figure 40A). To determine which of the two parts comprises the modification sites a 

C-terminally V5-tagged recombinant version of HOIL-1 was subject to an in-vitro 

ubiquitination assay, resulting in modification of the protein. After completion of the 

reaction, each sample was split into two parts of which one was left untreated 

(lanes 1, 3, 5, 7, 9) whereas Thrombin was added to the second part (lanes 2, 4, 6, 8, 10). As 

the anti-HOIL-1 antibody was raised against a peptide in the N-terminal part of this protein, 

both the N-terminal and the C-terminal fragment could be detected after cleavage by 

western blotting using the anti-HOIL-1 and an anti-V5 antibody respectively. This analysis 

revealed that no band was detectable at a molecular weight that could have resulted from 

the addition of a 7kDa ubiquitin molecule to the N-terminal fragment. On the other hand a 

clear double-band was visible in the anti-V5 blot, demonstrating that HOIL-1 is modified 

within its C-terminal part in vitro.  
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Figure 40: HOIL-1 is modified within its C-terminal part in vitro. A: Schematic representation of C-terminally 
V5-tagged HOIL-1 and the cleavage fragments generated by Thrombin. B: An in-vitro ubiquitination assay was 
performed as in Figure 36. After completion of the reaction, each sample was split into two parts of which one 
was treated with Thrombin for another two hours at 37˚C. Afterwards modification of HOIL-1 was assessed on 
western blot level using an anti-HOIL-1 antibody to detect the N-terminal and an anti-V5 antibody to show the 
C-terminal fragment. aa: aminoacid 

Two recent studies reported on the mass-spectrometry based identification of 

ubiquitination sites on a proteome-wide level (Kim et al., 2011; Wagner et al., 2011). In 

combination the two reports found lysines 158, 174, 254 and 342 of HOIL-1 to be modified. 

Because K158 and K174 are N-terminal of the Thrombin cleavage site and because K342 was 

identified by only one of the two studies whereas K254 was reported to be modified by both 

publications, the latter residue seemed to be the most likely candidate for the residue to be 

targeted by mono-ubiquitination. Site-directed mutagenesis was therefore employed to 

generate a mutant of HOIL-1 (referred to as K254R) in which this lysine, that is located 

between its NZF- and RING1-domains, was replaced by an arginine. In an in-vitro assay 

comparing recombinant forms of wild-type and mutant HOIL-1 both variants showed 

equivalent levels of modification when ubiquitin was present in the reaction (Figure 41). The 

band representing this modification could be observed in both the anti-HOIL-1 and the anti-

ubiquitin blot, further confirming that HOIL-1 is ubiquitinated. The lack of a difference 

between wild-type and mutant HOIL-1 in modifiability suggests that K254 is not the 

modification site of HOIL-1 required for its mono-ubiquitination. 
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Figure 41: Mutation of lysine 254 to arginine is insufficient to prevent modification of HOIL-1. Recombinant 
forms wild-type HOIL-1 or a mutant in which lysine 254 had been replaced by arginine (K254R) were employed 
in an in-vitro ubiquitination assay in the presence or absence of ubiquitin and/or SHARPIN. Modification of 
HOIL-1 was assessed by probing the corresponding western blot with the indicated antibodies. 

Another observation that can be made here is the presence of an additional band in the 

anti-ubiquitin blot that only becomes apparent when SHARPIN is added and that runs at an 

apparent molecular weight of just below 51 kDa. It could therefore correspond to a mono-

ubiquitinated form of SHARPIN, which would be in line with a modification of SHARPIN 

present in the TNF-RSC that was shown to be sensitive to DUB-treatment (Figure 37). 

Overall, these data indicate that all three LUBAC components are subject to modifications 

that due to their size and their DUB-sensitivity are likely to be ubiquitinations. Whereas 

modification of HOIP seems to be a stimulation-dependent event as seen by the appearance 

of additional bands following TNF-stimulation (Figure 10), ubiquitination of HOIL-1 is already 

present in an unstimulated state but depends on presence of HOIP and to a lesser degree of 

SHARPIN (Figure 38). The location of the HOIL-1 modification occurring in vitro could be 

mapped to its C-terminal part although the identification of the exact ubiquitination site will 

require further investigation (Figures 40 and 41). 
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5.7 LUBAC modifies NEMO in vitro and differs from other E3s in its 

linkage specificity 

The ability of LUBAC to induce NF-B activation when over-expressed and its role in TNF-

induced signalling together with its activity as an E3 suggested that its effect on signal 

transduction is accomplished by modification of proteins relevant to the respective 

signalling cascades. To investigate which protein may be a target, different components of 

the TNF-RSC were ectopically expressed in HEK293T cells and precipitated via their 

respective tags or using specific antibodies. The immobilised proteins were then divided into 

five parts and incubated with the different LUBAC-combinations in an in-vitro ubiquitination 

assay (Figure 42). 

 

Figure 42: All three LUBAC-combinations modify NEMO in vitro. Different components of the TNF-RSC and 
PTEN, a protein that was described to interact with SHARPIN (He et al., 2010), were precipitated from 
transfected or untreated HEK293T cell. Precipitates were split into five samples that were either left untreated 
or employed as a substrate in an in-vitro ubiquitination assay using different combinations of untagged 
recombinant HOIP or SHARPIN and GST-tagged HOIL-1 as E3s. Modification was assessed on western blot level 
by probing the membrane with an antibody specific for the potential target. Activity of all three LUBAC 
combinations was demonstrated by probing with an anti-ubiquitin antibody. 
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Detection of bands at higher molecular weights by the antibody specific for the respective 

target protein in LUBAC-treated samples, that were not present in the 

immunoprecipitations left untreated (Figure 42, first lanes) or incubated with E1 and E2 only 

(second lanes) indicated that a modification mediated by LUBAC and not by an E3 co-

precipitated with the target was taking place. This analysis revealed that all three LUBAC 

versions were capable of ubiquitinating NEMO in vitro whereas none of the other TNF-RSC 

components or PTEN, a protein that was described previously to be inhibited by SHARPIN 

(He et al., 2010), was modified to a significant extent. The identification of NEMO as a target 

of all LUBAC-combinations is in line with a report describing modification of this protein by 

HOIL-1 and HOIP (Tokunaga et al., 2009) and could also be corroborated by the mass-

spectrometry based finding that linearly ubiquitinated forms of NEMO are present in the 

native TNF-RSC (Gerlach et al., 2011). 

Because HOIL-1 and HOIP belong to the RING-in-between-RING (RBR)-family of E3s (Marin 

et al., 2004) I next investigated whether the property of exclusively generating linear 

ubiquitin chains is an intrinsic characteristic of this protein family. For this purpose, the RBR-

ubiquitin ligases Parkin (PARK2), ARIH2 (ariadne homolog2, also known as TRIAD1), RNF19A 

(Dorfin), RNF144B (ring finger protein 144B or IBR domain-containing protein 2 (IBRDC2)), 

RNF216 (also known as triad domain-containing protein 3 (TRIAD3) or zinc finger protein 

inhibiting NF-kappa-B (ZIN)) and RNF14 (androgen receptor-associated protein 54 (ara54) or 

TRIAD2) (Figure 43) were produced in E.coli. 

 

Figure 43: Schematic representation of RBR-family members. Proteins and their domains are not drawn to scale. UBL: 
ubiquitin-like; UIM: ubiquitin-interacting motif; TM: trans-membrane; TIM: TRAF-interaction motif; PRO-RICH: Proline-rich, 
Modified from (Marin et al., 2004).  
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The purified proteins were then tested for their ability to use wild-type or His-tagged 

ubiquitin as a substrate. Figure 44A shows that, in contrast to LUBAC, these E3s were not 

compromised in their activity by the N-terminal tag in ubiquitin, indicating that they are able 

to use lysine residues to conjugate ubiquitin moieties. However, this result does not exclude 

the possibility that linear linkage can be formed by these E3s when that option is available.  

 

Figure 44: Other members of the RBR-family can employ His-tagged but not lysine-less ubiquitin as a 
substrate in in-vitro ubiquitination assays. A: Different members of the RBR-family were compared to HOIP in 
combination with SHARPIN or HOIL-1 in in-vitro ubiquitination assays preformed as described in Section x 
using wild-type (wt) or His-tagged (His) ubiquitin as a substrate as indicated. B: Recombinant forms of the RBR-
domains of ARIH1, PARKIN (without a tag) or ARIH2 (GST-tagged) were compared to LUBAC in their capacity to 
generate ubiquitin chains from wild-type (wt), lysine-less (K0) or His-tagged  (His) ubiquitin. The E2 employed 
in the different reaction is indicated. Combinations of E2 and E3 were chosen based on maximal activity in 
previous assays. 

To investigate this aspect and to exclude effects like the auto-inhibitory influence of Parkin’s 

UBL domain (Chaugule et al., 2011) the RBR-domains of ARIH1 (also known as human 

homolog of Drosophila ariadne-1 (HHARI)), ARIH2 and Parkin were purified and 

ubiquitination assays were performed using wild-type, lysine-less (K0) or His-tagged 

ubiquitin. As expected, the combination of HOIL-1 and HOIP was able to generate 

polyubiquitin from wild-type or K0- but not from tagged ubiquitin (Figure 44B). On the other 
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hand the RBR-domains of the other family members still showed activity in spite of the N-

terminal tag on ubiquitin but were not able to generate ubiquitin-polymers from lysine-less 

ubiquitin to a significant degree. This does not exclude that formation of linear linkages can 

be catalysed by some members of the RBR-family, but it proves that not all proteins 

belonging to this group are capable of or even restricted to generating chains of this linkage 

type. To test whether the linear linkages identified in the native TNF-RSC by mass 

spectrometry (Gerlach et al., 2011) were definitely generated by LUBAC or whether a 

different E3 known to be present in this complex shows the same linkage specificity, 

recombinant forms of cIAP1, cIAP2 and TRAF2 were compared to LUBAC in an in-vitro assay. 

 

Figure 45: Other E3s present in the TNF-RSC are largely unaffected in their capacity to generate poly-
ubiquitin by an N-terminal tag on ubiquitin. Recombinant forms of cIAP1, cIAP2 and TRAF2 were compared to 
the different LUBAC combinations in an in-vitro ubiquitination assay. Their capacity to generate ubiquitin 
conjugates from wild-type (wt) or N-terminally tagged (His) ubiquitin was assessed by western blotting. 
100 nM sphingosine-1-phosphate was added to TRAF2 containing reactions as a cofactor. 
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Because it was reported that TRAF2 requires sphingosine-1-phosphate as a cofactor, this 

substance was added to the reactions containing this E3. In spite of this, only a faint smear 

representing the formation of higher-order ubiquitin conjugates by TRAF2 is visible on the 

western blot shown in Figure 45. Overall this blot shows that all LUBAC combinations are 

again unable to employ tagged ubiquitin as a substrate, whereas chain formation and auto-

ubiquitination by the other E3s is largely unaffected.  

To further corroborate the seemingly unique linkage specificity of LUBAC, another in-vitro 

ubiquitination assay using different E3s in combination with either UBE2D3 or the UBE2N-

UBE2V1-complex was performed (Figure 46A). Mass-spectrometric analysis showed that the 

UBE2N-UBE2V1-complex indeed exclusively generates K63-linked chains when employed 

alone or in combination with any of the E3s investigated (Figure 46B). When combined with 

UBE2D3, cIAP1, cIAP2, TRAF6 and RNF5, of which the latter two are E3s so far not described 

to play a role in TNF-signalling that were used as a control in this assay, promoted the 

formation of K48- and K63- but not of linear chains. By contrast, the LUBAC-combinations 

exclusively generated M1-linkages further confirming the notion that among the E3s tested, 

LUBAC exhibits a special linkage specificity.  

 

Figure 46: LUBAC has a unique linkage specificity. An in-vitro ubiquitination was performed using different E3s 
in combination with either UBE2D3 or the UBE2N/UBE2V2 complex. 10 % of each sample were used to control 
for ubiquitin-conjugation on western blot level (A). The rest was analysed by mass spectrometry for the 
presence of peptides specific for certain linkages types (B).   
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This result also draws attention to the fact that the E2 participating in the generation of 

ubiquitin chains by RING-class E3s is usually the critical factor in determining linkage 

specificity (Nagy and Dikic, 2010). In order to assess the influence of the E2 on ubiquitin 

conjugation mediated by HOIP in combination with SHARPIN or HOIL-1, in-vitro 

ubiquitination assays were performed with a panel of E2s, either alone or in combination 

with these two LUBAC-versions (Figure 47). 

 

Figure 47: LUBAC is active with a panel of different E2s.  The indicated E2s were employed in an in-vitro 
ubiquitination assay as described under section x either alone or in combination with complexes of HOIP and 
SHARPIN or HOIL-1. Conjugation of ubiquitin moieties was assessed by western blotting. 

In accordance with the model that E3s mediate the interaction between substrate and E2 

and substantially increase the rate of ubiquitin discharge from an E2’s active site (Ye and 

Rape, 2009), most E2s were unable to generate ubiquitin-conjugates of more than two 

ubiquitin moieties on their own (left panel of Figure 47). The exception in this was the 

UBE2N-UBE2V1-complex, which in line with the literature (Hofmann and Pickart, 1999, 

2001) and the results shown in Figure 46 indicates that this E2-complex mediates formation 

of K63-linked chains even in the absence of an E3. The other two panels of Figure 47 show 

that HOIP complexed with SHARPIN or HOIL-1 can employ all E2s tested in the generation of 

ubiquitin chains. Inferring from the position of the corresponding bands on the western 
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blot, all chains seem to be linear polyubiquitin conjugates irrespective of the E2 involved in 

their formation. Reactions including UBE2N-UBE2V1, where bands corresponding to both 

presumably linear and K63-linked chains can be observed constitute an exception to this 

observation. This result shows that linkage specificity is an intrinsic property of LUBAC that 

is unaffected by the E2 it collaborates with.  

5.7 LUBAC works via a HECT-like mechanism and its activity is required 

for TNF-induced NF-B activation 

In addition, the data shown in Figure 47 provides evidence that LUBAC is active in 

combination with UBE2L3, an E2 that lacks lysine-reactivity (Wenzel et al., 2011a) and which 

therefore cannot transfer ubiquitin directly onto a substrate. Instead UBE2L3 needs to 

transfer ubiquitin moieties to a cysteine-residue within the catalytic centre of an E3, which 

in turn confers it onto the target protein. This limitation prevents UBE2L3 from working with 

RING-E3s as these do not usually have a catalytic cysteine that could accept the ubiquitin. 

However, a recent publication showed that apart from HECT-ligases also members of the 

RBR-family are capable of forming a thioester-intermediate between ubiquitin and a 

catalytic cysteine (Wenzel et al., 2011a). RBR-E3s that have this catalytic residue within their 

RING2-domain can therefore work via a HECT-like mechanism. To investigate whether 

LUBAC has similar properties, it was compared to different RING-class E3s in an in-vitro 

assay using either UBE2D3 or UBE2L3 as an E2 (Figure 48). In line with UBE2L3 exhibiting 

exclusively cysteine-reactivity, it was unable to act as an E2 for the RING-domain containing 

E3s cIAP1, cIAP2 and TRAF6 as seen by the lack of formation of polyubiquitin chains as well 

as the absence of auto-ubiquitination observed when the respective E3s were combined 

with UBE2D3. On the other hand, ubiquitin conjugation by all three LUBAC combinations 

was supported by both UBE2D3 and UBE2L3, suggesting that like ARIH1 and Parkin (Wenzel 

et al., 2011a) LUBAC also works via a HECT-like mechanism. 
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Figure 48: UBE2L3 is active with the different LUBAC combinations but not with RING-class E3s. UBE2D3 and 
UBE2L3 were compared in an in-vitro ubiquitination assay as described in section 4.2.3.16. Generation of 
ubiquitin chains by the two E2s in combination with the three LUBAC-versions or with different RING-class E3s 
(cIAP1, cIAP2, TRAF6) was analysed by western blotting.  

Interaction studies (Figures 26A, 29 and 30) as well as functional assays (Figure 34 and 

(Figure 35B) indicate that HOIP is the central component of LUBAC both structurally and 

functionally. It was therefore hypothesised that a potential catalytic cysteine should be 

located in HOIP and more specifically within its RING2-domain. The consensus sequence 

surrounding the catalytic centre of RBR-family members as published by Wenzel et al. 

(Wenzel et al., 2011a) was therefore compared to the RING2-domain of HOIP (Figure 49A). 
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Figure 49: C885 of HOIP is required for LUBAC's activity. A: Alignment of the consensus sequence (in blue) 
surrounding the catalytic cysteine in RBR-family members as published by (Wenzel et al., 2011a) with the 
RING2-domain of HOIP (in grey). Identical residues are shown in black. Green letters in italics indicate that the 
aminoacids present in HOIP can also be found in at least one other family member at this position. Residues 
different from all other RBR-E3s analysed are shown in red bold print. B: Interaction of HOIP C885S with 
SHARPIN and HOIL-1 was compared to that of the wild-type (wt) protein. The indicated proteins were over-
expressed in HEK293T cells followed by precipitation of HOIP variants via their V5-tag and western analysis for 
co-precipitation of SHARPIN and HOIL-1. C: Co-precipitation of SHARPIN, HOIL-1 and UBE2D3 with the two 
forms of HOIP in a pulldown using a specific HOIP antibody was investigated using recombinant proteins.  e.v.: 
empty vector 

Although seven of the thirty-six aminoacids aligned did not correspond to either the 

consensus sequence or the residues present in any of the other RBR-E3s, the overall 

similarity was sufficient for a potential catalytic cysteine to be identified as C885. A mutant 

of HOIP in which this residue was replaced by serine was therefore created. By over-

expression of V5-tagged versions of wild-type HOIP or the C885S-mutant together with 

SHARPIN or HOIL-1 followed by precipitation using an anti-V5 antibody, it was found that 

mutation of cysteine 885 does not prevent HOIP from interacting with the other two 

proteins (Figure 49B). This result was corroborated by using recombinant proteins (Figure 

49C). In this assay it was also established that mutated HOIP can still interact with UBE2D3, 

the E2 supplied in most ubiquitination-assays, in vitro. In spite of these intact interactions, 

HOIP C885S was unable to catalyse formation of ubiquitin chains when combined with 

either SHARPIN or HOIL-1 (Figure 50). In this inability it resembles another HOIP mutant, in 

which some of the zinc-coordinating cysteine residues of both RING1 (C699 and C702) and 

RING2 (C871 and C874) had been mutated. This shows that cysteine 885 within the RING2-

domain of HOIP is essential for its activity. Together with LUBAC’s capacity of generating 

poly-ubiquitin when combined with UBE2L3, this suggests that LUBAC works via a HECT-like 
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mechanism that probably involves the formation of a thioester between ubiquitin and 

cysteine 885 within HOIP.  

 

Figure 50: HOIP C885S is inactive in in-vitro ubiquitination assays when combined with SHARPIN or HOIL-1. 
HOIP C885S and HOIP C699,702,871,874S (RING1/2mut)  were compared to wild-type HOIP in an in-vitro 
ubiquitination assay. 

To address whether this activity of HOIP is required in TNF-induced NF-B activation, V5-

tagged versions of HOIP that were either unchanged or contained mutations in the RING-

domains, were expressed in HEK293-NF-B cells (Figure 51, right panel). NF-B activation 

was assessed in a reporter-assay following TNF-stimulation (Figure 51, left panel). Forms of 

HOIP that contained mutations in the RING2-domain, in RING1 and RING2 or in cysteine 885 

significantly reduced the luciferase-activity measured after TNF-stimulation, indicating that 

an intact RING2 domain and presence of C885 are required and that mutants with changes 

in these features exert a dominant-negative effect on TNF-induced signalling.  
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Figure 51: Mutants of HOIP containing alterations in the RING2-domain have a dominant-negative effect on 

TNF-induced NF-B activation. V5-tagged mutants of HOIP were over-expressed in HEK293 NF-B cells and 
luciferase-activity was analysed in a luciferase-assay following stimulation with TNF. Values were normalised to 
renilla-activity and the control was set to 100 %. Results are presented as mean +/- SEM; n=9 and significance 
was calculated using a student’s t-test (left panel). Over-expression of the different HOIP mutants was verified 
by western blotting and the results of two representative experiments are shown (right panel). RING1mut: 
HOIP C699,702S; RING2mut: HOIP C871,874S; RING1/2mut: HOIP C699,702,871,874S.  
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6 Discussion and Outlook 

TNF is a key inflammatory cytokine with great physiological relevance and diverse effects 

ranging from pro-inflammatory to immune-regulatory functions. On a cellular level, TNF can 

induce the production of pro-inflammatory cytokines, cell proliferation, differentiation or 

cell death (Chen and Goeddel, 2002; Hayden and Ghosh, 2008; Kovalenko and Wallach, 

2006; Wajant et al., 2003). In initiating these diverse outcomes, TNF relies on two surface 

receptors, TNFR1 and TNFR2 (Wajant et al., 2003). Since both receptors belong to the TNFR-

superfamily, a group of proteins that generally lack enzymatic activity within their 

intracellular domains (Aggarwal, 2003), they recruit cytoplasmic proteins upon stimulation, 

which in turn initiate downstream signalling events. The receptor-associated multi-protein 

complexes, referred to as receptor signalling complexes (RSCs), represent the apex of all 

signal transduction cascades emanating from the TNF-receptors. Events occurring within 

this assembly of proteins are therefore critical determinants of cellular fate and important 

regulators of diverse biological processes. Hence, it is essential to comprehend the 

composition of these complexes on a molecular level. For this purpose the TNF-RSC was 

isolated by a modified tandem affinity procedure and analysed by mass spectrometry (Haas 

et al., 2009). Next to almost all proteins previously described to form part of the TNF-RSC 

this analysis revealed the presence of three novel components, i.e. SHARPIN, HOIL-1 and 

HOIP, in this complex (Gerlach et al., 2011). Two of these three proteins had been described 

to form an E3 complex that mediates the formation of ubiquitin chains linked via the 

N-terminal methionine (M1) (Kirisako et al., 2006) and that is thus referred to as linear 

ubiquitin chain assembly complex (LUBAC). In this thesis, SHARPIN could be identified as a 

third structural and functional component of LUBAC. Furthermore, it was shown that this 

pre-formed complex is recruited to the TNF-RSC in a stimulation- and cIAP-dependent 

manner and that all potential LUBAC-variants exclusively generate linear ubiquitin chains via 

a HECT-like mechanism.  
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6.1  The role of SHARPIN, HOIL-1 and HOIP in the context of TNF-signalling 

6.1.1 Isolation of the TNF-RSC verifies the stimulation-dependent recruitment of 

SHARPIN, HOIL-1 and HOIP to this complex and shows modification of 

different complex components 

A kinetic study performed on the TNF-RSC of U937 cells showed that the three novel 

components identified by mass spectrometry are not present on unstimulated receptors but 

are recruited in a manner that depends on receptor crosslinking by its ligand. In this 

stimulation-dependency of their recruitment as well as the kinetics of their appearance and 

disappearance from the complex, SHARPIN, HOIL-1 and HOIP resemble each other and most 

other components of the RSC. Only TRADD seems to reach its maximal levels slightly earlier 

than the other proteins, which is in line with a direct interaction between the DD of this 

protein with those present in TNFR1 (Hsu et al., 1995) and with a role for the former as an 

adaptor for other complex constituents like TRAF2 and potentially RIP1 (Hsu et al., 1996a; 

Hsu et al., 1996b; Shu et al., 1996; Tsao et al., 2000). Apart from mere presence of proteins, 

the level of modifications they carry can be an indicator for stage and stability of the 

receptor-complex. The most obvious modifications observed in the TNF-RSC are the 

ubiquitination of RIP1 and cIAP, which like the levels of most components reach a maximum 

after five minutes of stimulation. Both modifications are most likely mediated mainly by the 

E3-activity of cIAP as indicated by the findings that the RING-domain of TRAF2 is not 

sufficient or required for RIP1 ubiquitination to occur and that reconstitution of cIAP1/2-/- 

MEFs with inactive forms of cIAP1 cannot restore this modification. This is in line with 

previous publications that cIAPs can directly target RIP1 in vitro, whereas TRAF2 can not. 

However, the identification of four different types of ubiquitin linkages on RIP1 by mass 

spectrometry (Gerlach et al., 2011) suggests that RIP1 may be modified by several E3s and 

that one of these ligases is LUBAC. The modification of cIAP is likely to be an auto-

ubiquitination, as a similar alteration occurs in in-vitro assays in the absence of another E3. 

This would again be in accordance with literature (Bertrand et al., 2008; Dueber et al., 2011; 

Feltham et al., 2010) but as in the case of RIP1 the contribution of one or several other E3s 

cannot be excluded. Furthermore, the modifications present on RIP1 and cIAP do not seem 

to exclusively consist of ubiquitin-molecules. This is indicated by the finding that the 

catalytic domain of USP2, a DUB that cleaves a wide variety of ubiquitin chains and that is 

able to return all LUBAC components to their apparently unmodified state, cannot 
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completely remove the modifications from RIP1 and cIAP. This shows that USP2 is able to 

also remove the first ubiquitin unit from the target protein and that the remaining 

modification is hence unlikely to be a ubiquitination. The size difference of approximately 

7 kDa of this remaining modification in relation to the unaltered proteins makes a 

modification with a UBL-molecule seem likely. However, no data are available to date to 

support this notion and further investigation, for example by treatment with deconjugating 

enzymes specific for other modifications or by a mass-spectrometry based approach will be 

required to clarify the identity and function of these modifications.  

In addition, smaller shifts in the bands representing the non-ubiquitinated forms of RIP1 and 

TRAF2 can be observed in the TNF-RSC after 15 minutes of stimulation. Due to the fact that 

RIP1 has kinase activity (Hsu et al., 1996a) and that TRAF2 was previously described to be 

subject to that kind of modification (Blackwell et al., 2009; Li et al., 2009a; Thomas et al., 

2009; Zhang et al., 2011), these additional bands might represent phosphorylations of the 

two proteins. Phosphorylation of TRAF2 by PKC was reported to promote its ubiquitination 

with K63-linked chains and to favour the recruitment of the TAB/TAK- and IKK-complexes (Li 

et al., 2009a). However, the upward shift in TRAF2 that could correspond to its 

phosphorylation is only observed after 15 minutes whereas the levels of NEMO, the subunit 

responsible for the recruitment of the IKK-complex (Ea et al., 2006; Wu et al., 2006), reach a 

maximum already after 5 minutes. This could be in line with another report describing the 

phosphorylation of TRAF2 as an event involved in the later stages of IKK-activation 

(Blackwell et al., 2009). Yet, in this context it was reported to form part of a secondary 

cytoplasmic complex, whereas the potentially modified form of TRAF2 observed here is still 

associated with the receptor.  

In case of RIP1 an activity as a serine-threonine kinase that can mediate its auto-

phosphorylation was described (Hsu et al., 1996a). However, it was also shown that this 

kinase activity is dispensable for the activation of the NF-B- and p38-pathways in the 

context of TNF-signalling (Lee et al., 2004). On the other hand, activity of RIP1 is required in 

necroptosis-induction (Holler et al., 2000; Vandenabeele et al., 2010) and in this context 

phosphorylation of RIP1 by RIP3 or possibly another so far unidentified kinase was reported 

(Cho et al., 2009; He et al., 2009). However, modification of RIP1 observed in these studies 

occurs at much later times and again takes place in a secondary complex, suggesting that 

this event differs from the modification seen in the receptor-associated complex. Here, a 



6. Discussion and Outlook 
  

127 
 

shift in the position of the bands representing RIP1 becomes apparent after 15 minutes and 

increases after 30 minutes. At the same time a decrease in the ubiquitination of RIP1 or a 

dissociation of this protein from the complex can be observed. It therefore seems possible 

that RIP1 phosphorylation favours its deubiquitination, a process considered important for 

the formation of secondary death-inducing complexes (O'Donnell et al., 2007). Overall, 

further investigation is required to unravel the identity and function of the non-ubiquitin 

modifications present on TNF-RSC components such as RIP1, TRAF2 and cIAP. It could be 

speculated that they have a role in the disassembly of the receptor-complex and are hence 

required in the termination of signals emanating from stimulated receptors. Another 

possibility is that they function in regulating and maintaining the balance between pro-

survival and death-inducing signalling outputs. 

6.1.2 TNFR1 versus TNFR2 

The identification of SHARPIN, HOIL-1 and HOIP as proteins that are present in TNF-

precipitations from U937 cells raised the question which of the two TNF-receptors 

expressed on the surface of these cells (Haridas et al., 1998; Shu et al., 1996) they are 

recruited to. Generally, most of the manifold effects induced by TNF are mediated via the 

more widely expressed TNFR1 (Wajant et al., 2003). Yet, independent and non-redundant 

roles for TNFR2 as well as cross-talk between the two receptors exist (Faustman and Davis, 

2010; MacEwan, 2002). TNFR1 and TNFR2 recruit distinct but overlapping sets of 

intracellular proteins upon stimulation. Several lines of evidence presented here, including 

the isolation of the TNF-RSC from HeLa cells which do not express TNFR2 (Haridas et al., 

1998; Shu et al., 1996); PhD thesis Dr. C.H. Emmerich) and the precipitation of TNFR1 and 

TNFR2 using specific antibodies, indicate that LUBAC components are recruited to TNFR1 

rather than TNFR2, when soluble TNF is employed as a stimulus. It was shown previously 

that membrane-bound TNF is vastly superior to its soluble form in activating TNFR2 (Grell et 

al., 1998; Grell et al., 1995; Krippner-Heidenreich et al., 2002) and that it may therefore lead 

to not only quantitatively but qualitatively different responses. Based on this and on the 

finding that recruitment of LUBAC to TNFR1 depends on cIAPs which are also associated 

with TNFR2 (Rothe et al., 1995a), it seems possible that SHARPIN, HOIL-1 and HOIP can be 

recruited to TNFR2 when this receptor is efficiently activated. Additional studies using 
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membrane-bound TNF or a cross-linked version of this ligand that mimics membrane 

association, in both wild-type and TNFR1-deficient cells are required to test this hypothesis.  

6.1.3 Mechanism of LUBAC’s recruitment 

In a setting where protein levels of cIAP1 and cIAP2 were down-regulated either genetically 

or by treatment with a Smac-mimetic compound, it could be shown that recruitment of 

LUBAC in HeLa cells or HOIL-1 in MEFs depended on the presence cIAP1/2. As it was 

demonstrated that SHARPIN, HOIL-1 and HOIP form a stimulation-independent complex and 

are therefore recruited in an interdependent-manner, the finding that the activity of cIAP is 

essential for the recruitment of HOIL-1 in MEFs can be extended to the other two LUBAC 

components. This requirement for cIAP’s activity implied a role for ubiquitin in the 

recruitment process. Indeed, all three LUBAC-components can bind to ubiquitin, with HOIP 

displaying the strongest association with K63-linked tetraubiquitin in an in-vitro setting. 

Based on these results and published observations, the following mechanism of recruitment 

seems likely (Figure 52): Upon crosslinking of TNFR1 by trimeric TNF or higher order 

oligomers thereof, the adaptor protein TRADD is recruited via homotypic interaction of its 

DD with that of TNFR1 (Hsu et al., 1995). Although RIP1 can also directly interact with the 

receptor in a DD-dependent manner (Ermolaeva et al., 2008; Haas et al., 2009; Pobezinskaya 

et al., 2008) its recruitment may also be mediated or increased by TRADD (Hsu et al., 

1996a). The latter protein also serves as an adaptor for TRAF2 (Hsu et al., 1996b), which in 

turn has a cIAP-interaction motif that is essential for the recruitment of cIAP1 and cIAP2 by 

binding to their BIR1-domains (Samuel et al., 2006; Varfolomeev et al., 2008; Vince et al., 

2009). Structural studies have revealed that a TRAF2 trimer interacts with one cIAP2 

molecule in an asymmetric manner (Zheng et al., 2010). Once recruited to the TNF-RSC 

cIAPs modify several components, including RIP1, with ubiquitin chains, the majority of 

which serve non-proteolytic functions at this stage as they mainly act as recruitment 

platforms for further components of the RSC (Bertrand et al., 2008; Ea et al., 2006; 

Varfolomeev et al., 2008; Wertz et al., 2004). This includes the TAB/TAK-complex which is 

recruited via TAB2 that specifically binds K63-linked ubiquitin-linkages via its NZF-domain 

(Kulathu et al., 2009) and the IKK-complex that can associate with K63- and possibly K11-

linked chains via its regulatory subunit NEMO. The primary association of LUBAC with the 

receptor complex is likely to also be mediated by K63-linked chains, which are recognised by 



6. Discussion and Outlook 
  

129 
 

the NZF1-domain of HOIP (Ikeda et al., 2011). It can be assumed that this initial recruitment 

is sufficient for LUBAC to modify its targets within the complex. These include but are not 

necessarily restricted to NEMO and RIP1 (Gerlach et al., 2011). The linear linkages could 

stabilise the presence of LUBAC in the complex as the NZF-domains of SHARPIN and 

especially HOIL-1 were shown to preferentially or even exclusively bind ubiquitin chains of 

this linkage type (Sato et al., 2011).  The finding that the NZF-domains of these proteins are 

required for LUBAC’s ability to induce NF-B but not for the generation of ubiquitin chains 

(Ikeda et al., 2011; Sato et al., 2011; Tokunaga et al., 2009) suggests that this interaction 

with the complex or with potential target proteins is an important aspect of the role 

SHARPIN and HOIL-1 play in the context of LUBAC’s function. Furthermore, linear ubiquitin 

increases the recruitment of IKK-complexes as NEMO’s UBAN domain shows an affinity to 

this linkage type that is about 100-fold higher than that to K63-linked chains (Lo et al., 2009; 

Rahighi et al., 2009). Overall this suggests that LUBAC is recruited to the TNF-RSC by binding 

of its central component, HOIP, to cIAP-generated ubiquitin chains. This may not be 

restricted to K63-linked chains as a study based on a ubiquitin-replacement strategy 

reported that this linkage type is dispensable for TNF-signalling (Xu et al., 2009a) and by the 

finding that cIAPs can mediate the formation of different linkage types (Dynek et al., 2010; 

Feltham et al., 2012). The interaction of LUBAC-components and especially of HOIP with 

differentially linked ubiquitin will therefore have to be investigated. Once an interaction 

with the TNF-receptor complex has been established by HOIP, SHARPIN and HOIL-1 that are 

not essential to this initial recruitment may have a function in stabilising this association and 

in retaining LUBAC in the TNF-RSC at later stages. Finally, direct protein-protein interactions 

between LUBAC and other components of the TNF-RSC, such as the binding of HOIP to 

NEMO (Tokunaga et al., 2009) may contribute to LUBAC being recruited to and retained in 

the TNF-RSC although they do not seem to be essential or sufficient to mediate the 

recruitment process (Haas et al., 2009). 
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Figure 52: Schematic representation the process involved in recruiting LUBAC to the TNF-RSC. Upon 
crosslinking by TNF, TNFR1 recruits TRADD and RIP1 to its intracellular death-domain. TRADD serves as an 
adaptor of TRAF2 which in turn recruits cIAPs. Once recruited to the TNF-RSC cIAP attaches ubiquitin chains of 
different linkage types to components of the TNF-RSC including RIP1 and itself (1). These chains allow for the 
recruitment of the TAB-TAK- and IKK-complexes as well as LUBAC. LUBAC then attaches linear ubiquitin chains 
to RIP1, NEMO and possibly other targets (2). This increases the recruitment of IKK-complexes and allows for 

the activation of IKK to occur. This involves phosphorylation of IKKan event that may be mediated by trans-
auto-phosphorylation or by TAK1 (3). 

6.1.4 The Role of LUBAC in TNF-induced signal transduction 

Using both knockdown approaches and the over-expression of dominant-negative mutants 

of HOIP, it could be shown in this thesis that presence and activity of LUBAC are required for 

full activation of TNF-induced signalling. While depletion of HOIP led to a stronger reduction 

in the activation of signalling pathways initiated by TNF than down-regulation of SHARPIN or 

HOIL-1, it was insufficient to fully block signal transduction. The same is true for over-

expression of inactive forms of HOIP which again reduced but did not abolish TNF-induced 

NF-B activation. In both cases it is not possible to distinguish whether the remaining level 
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of active LUBAC is sufficient to mediate signalling or whether LUBAC-independent signalling 

pathways exist. The latter possibility is supported by the finding that TNF can still activate 

the NF-B- and MAPK-pathways in cells derived from cpdm mice, which due to a 

spontaneous mutation lack SHARPIN expression (Seymour et al., 2007) as well as in HOIL-1-/- 

MEFs in which HOIL-1 is genetically deleted (Gerlach et al., 2011; Ikeda et al., 2011; 

Tokunaga et al., 2011; Tokunaga et al., 2009). Even in HOIP-deficient cells, signal 

transduction by CD40, a receptor that also requires LUBAC in its downstream signalling 

(Gerlach et al., 2011) is still possible to a certain extent (Hostager et al., 2011). Taken 

together this indicates that LUBAC is not essential for TNF-signalling but is required for 

signal transduction to occur at its full strength. Although investigation of TNF-induced signal 

transduction in HOIP-deficient cells is required to corroborate this notion, these results 

suggests a role for LUBAC in fine tuning signalling output rather than as an on/off-switch for 

signals emanating from the TNF-RSC. Because LUBAC acts as an E3 and influences TNF-

induced signal transduction it is likely that LUBAC exerts its effect on signalling by modifying 

components of the respective pathways. Its recruitment to the TNF-RSC (Gerlach et al., 

2011; Haas et al., 2009) as well as its effect not only on NF-B activation but also on MAPK-

cascades (Gerlach et al., 2011; Haas et al., 2009; Ikeda et al., 2011) suggests that LUBAC 

targets proteins within this complex that represents the apex of all TNF-induced signalling 

pathways rather than ubiquitinating downstream effectors. In an in-vitro ubiquitination 

assay testing nine TNF-RSC components, only NEMO could be identified as a target for all 

LUBAC-variants. However, this does not exclude that other proteins which were not 

modified by LUBAC in vitro may be targets in vivo, as conformations or previous 

modifications present in the context of the TNF-RSC may not be sufficiently mimicked in the 

in-vitro situation. The modification of NEMO with linear ubiquitin could be verified by mass 

spectrometry (Gerlach et al., 2011). In the same experimental setup M1-linkages were 

found together with RIP1 on a 2D-gel, indicating that this protein is modified with linear 

chains too. In both cases LUBAC is likely to be the relevant E3 as no other ubiquitin ligase 

could so far be shown to generate ubiquitin chains of this linkage type (Verhelst et al., 

2011). There is a report on cIAPs being able to use lysine-less ubiquitin as a substrate 

(Bertrand et al., 2011). However, results presented in this thesis suggest that they do not 

make use of this ability if other possibilities in form of accessible internal lysine residues are 

available. TRAF2, the other E3 known to be present on the TNF-RSC showed very low if any 
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activity in an in-vitro ubiquitination assay even in the presence of S1P, which was reported 

to be an essential co-factor for this ligase (Alvarez et al., 2010). This lack of activity is in line 

with a publication that concluded, based on the structure of the RING- and first zinc-finger 

domains of TRAF2, that this E3 is unable to interact with UBE2N or related E2s and that it 

therefore cannot act as a functional ligase. Taken together these findings suggest that all 

linear linkages present in the TNF-RSC are generated by LUBAC and that NEMO and RIP1 are 

targets of this E3-complex. This could be fully clarified by investigating these modifications 

in the presence or absence of active LUBAC. For this purpose the native TNF-RSC isolated 

from cells in which expression of HOIP has been ablated by a knockout strategy or replaced 

by an inactive mutant in a knockin approach could be compared to that precipitated from 

wild-type cells by mass spectrometry. Absence of M1-linkages on NEMO and RIP1 in cells 

exclusively expressing an inactive form of HOIP would provide the final proof that not only 

LUBAC’s presence but also its activity is required for the ubiquitination of these proteins. It 

has not been fully elucidated how linear ubiquitin chains favour the activation of TNF-

induced signal transduction but several explanations for the connection between linear 

ubiquitination and the regulation of signalling are conceivable. Linear chains on RIP1 and 

NEMO may act as a recruitment platform for other ubiquitin-binding proteins which display 

a preference for this linkage type including NEMO itself. Indeed absence of LUBAC severely 

decreases the association between NEMO and the TNF-RSC (Haas et al., 2009). However, 

linear chains may not only increase the amount of IKK-complexes that are recruited to the 

TNF-RSC but binding of NEMO to ubiquitin attached to another NEMO molecule may also 

result in clustering of these kinase complexes (Rahighi et al., 2009) thereby creating a 

proximity between the kinase-subunits that allows trans-auto-phosphorylation, an event 

that has been implicated in the activation of IKKs (Tang et al., 2003a). Furthermore, it was 

reported that binding to linear ubiquitin induces a conformational change in NEMO (Rahighi 

et al., 2009) which could translate to similar changes in the kinase subunits of the IKK-

complex, again favouring their activation. In addition, the activity of LUBAC leads to an 

overall stabilisation of the TNF-RSC (Haas et al., 2009). This effect that probably depends, at 

least partially, on the modification of RIP1 and NEMO, results in RIP1, TRAF2, cIAP and TAK1 

being retained in the TNF-RSC for a longer period of time and consequently extends the 

half-life of this complex thereby allowing enhanced and prolonged activation of 

downstream signalling. This stabilisation is likely to be caused not only by the linkage 
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specificity of UBDs present in complex components but also by linear ubiquitin chains being 

more refractory to disassembly mediated by DUBs recruited to this complex (Komander et 

al., 2009b). DUBs associated with the TNF-RSC include A20, CYLD, Cezanne and USP21 

(Harhaj and Dixit, 2011) and of these only CYLD and USP21 were shown to cleave linearly 

linked ubiquitin with considerable activity (Komander et al., 2009b; Ye et al., 2011). Binding 

of UBDs to linear chains could make them even more resistant to DUB-mediated cleavage. 

Further to the aforementioned possibilities, LUBAC could also influence signalling by its 

ubiquitination of NEMO. This modification was reported to occur at K285 and K309 and 

reconstitution of NEMO-deficient cells with a mutant in which these lysines had been 

replaced by arginines (K285,309R) was insufficient to rescue NF-B activation induced by 

LUBAC over-expression or IL-1-stimulation (Tokunaga et al., 2009). Mechanistically, this 

modification on the regulatory subunit of the IKK-complex may not only serve as a 

recruitment platform favouring clustering and trans-activation of kinase-complexes but 

might also itself induce a conformational change in NEMO and consequently in the 

associated kinases. Overall, LUBAC could regulate TNF-induced signalling by a tripartite 

mechanism. The first leg of this mechanism is constituted by provision of a binding platform 

that allows recruitment and possibly clustering of downstream components, the second 

aspect is the stabilisation of the TNF-RSC and thirdly LUBAC may induce activating 

conformational changes in the IKK-complex by directly ubiquitinating its regulatory subunit.  

In addition to its positive regulatory effect on TNF-signalling a role for LUBAC in signal 

termination can be envisioned. In this context it is possible that linear chains also recruit 

ABIN-1 and Optineurin which, like NEMO, have a UBAN-domain that was shown to bind M1-

linkages with much higher affinity than K63-linked chains (Lo et al., 2009; Rahighi et al., 

2009). As these proteins were shown to act as adaptors for A20 and CYLD, two DUBs 

implicated in terminating TNF-signalling (Harhaj and Dixit, 2011; Heyninck et al., 1999; 

Mauro et al., 2006; Nagabhushana et al., 2011; Regamey et al., 2003), linear ubiquitin chains 

could also have a role in preventing prolonged signalling. The specific recognition of linear 

ubiquitin chains by particular UBDs will have to be analysed in more depth, additional 

LUBAC targets will have to be identified and the sensitivity of M1-linkages attached to 

certain targets towards cleavage by DUBs will have to be compared to that of chains linked 

via specific lysine residues, if the mechanism by which LUBAC regulates TNF signalling is to 

be fully elucidated.  
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6.2 Functional investigation of LUBAC as an E3-complex 

6.2.1 LUBAC exists as a preformed complex 

HOIL-1 and HOIP were previously reported to form a stimulation-independent protein 

complex of about 600 kDa that, due to its activity as an E3 ligase with exclusive linkage 

specificity, is referred to as LUBAC (Kirisako et al., 2006). Here it could be shown that 

SHARPIN co-elutes with HOIL-1 and HOIP in the high-molecular weight fractions of a 

gelfiltration chromatography and that it directly interacts with the original LUBAC 

components even in the absence of a stimulus. Further evidence for the association 

between the three proteins stems from the observation that down-regulation or absence of 

one of them decreases the protein expression levels of the other two (Gerlach et al., 2011; 

Tokunaga et al., 2011). As no such down-regulation can be observed on the mRNA-level it 

can be concluded that the interaction between SHARPIN, HOIL-1 and HOIP is required to 

maintain their stability on the protein level. The interaction between SHARPIN, HOIL-1 and 

HOIP does not seem to be tissue- or cell line-specific and even though a weak binding 

between SHARPIN and HOIL-1 could be detected, the association seems to be mediated 

mainly via HOIP. Although further data obtained from HOIP-deficient cells are required to 

verify the direct interaction between SHARPIN and HOIL-1, the existence of SHARPIN-HOIL-1 

dimers cannot be excluded and a potential function for this dimeric complex will need to be 

investigated. This combination of proteins could either have an inhibitory role by preventing 

SHARPIN and HOIL-1 from forming active complexes with HOIP or it might itself act as an E3. 

In line with the latter idea HOIL-1 was reported to act as a ubiquitin-ligase conjugating K48-

linked ubiquitin to IRP2 (Yamanaka et al., 2003) and possibly other substrates (Tian et al., 

2007; Zenke-Kawasaki et al., 2007; Zhang et al., 2008). However, this is in is in contrast to 

data obtained in this thesis which show that no activity of HOIL-1 could be detected in in-

vitro ubiquitination assays. On the other hand, Parkin, which is very similar to HOIL-1 in its 

domain structure, was described to be subject to an auto-inhibition. In this protein the auto-

inhibitory back-folding of its UBL-domain needs to be relieved by binding of a cofactor or a 

substrate before Parkin can efficiently catalyse the formation of ubiquitin chains (Chaugule 

et al., 2011). It is possible that HOIL-1 is regulated in a similar fashion and that interaction 

with SHARPIN, or another yet to be identified cofactor, enables it to act as a ubiquitin ligase. 

If SHARPIN and HOIL-1 were to have E3-activity, an additional factor is likely to be required 
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as indicated by the observation that the combination of the two proteins can neither 

generate ubiquitin chains in vitro nor induce NF-B upon over-expression. 

However, data on the co-precipitation of SHARPIN and HOIL-1 in the presence or absence of 

HOIP clearly indicate that the latter protein increases the interaction between the former 

two. This demonstrates that tripartite complexes exist in which the central component HOIP 

interacts with both SHARPIN and HOIL-1 by binding their respective UBL-domains. The 

binding of SHARPIN could be mapped to the NZF2-domain of HOIP, which was reported to 

interact with HOIL-1 via its UBA-domain in an atypical manner (Kirisako et al., 2006; Yagi et 

al., 2012). The use of different domains of HOIP for interacting with its binding partners 

seems to be suitable to support simultaneous interactions with two different proteins. On 

the other hand, UBA-domains can serve as dimerisation- and as ubiquitin-binding motifs 

(Bayrer et al., 2005; Bertolaet et al., 2001; Kozlov et al., 2007; Raasi et al., 2005) and the 

UBA-domain of HOIP may therefore contribute to the interaction with SHARPIN even 

though is not sufficient to mediate it as can be concluded from the observation that deletion 

of this domain only slightly decreases the co-precipitation of HOIP with SHARPIN. A 

structural study of the UBA-domain present in XIAP suggested that different surfaces are 

involved in dimerisation and ubiquitin-binding thereby allowing the domain to fulfil both 

functions at the same time (Tse et al., 2011). Using a similar mechanism, two HOIP 

molecules could dimerise while each associating with the UBL-domains of SHARPIN or 

HOIL-1, respectively. The finding that LUBAC has a molecular weight of around 600 kDa 

(Kirisako et al., 2006), shows that several copies of SHARPIN, HOIL-1 and HOIP need to 

associate. Indeed it was reported that at least three molecules of HOIP are present in LUBAC 

(Tokunaga et al., 2011). Based on the respective molecular weights of approximately 40 kDa, 

57 kDa and 120 kDa for SHARPIN, HOIL-1 and HOIP, several possibilities for the formation of 

the high-molecular weight complex exist and the stoichiometry has not been resolved. It can 

however be assumed that the ability to dimerise via their coiled-coil (Lim et al., 2001), RING- 

(Tatematsu et al., 2008) or UBA-domains allows SHARPIN, HOIL-1 and HOIP to mediate the 

association of the higher order protein assemblies that is required for the formation of 

LUBAC. The interactions between individual proteins within this E3-complex are displayed 

schematically in Figure 53. 
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Figure 53: Schematic representation of the interactions between individual LUBAC-components. HOIP interacts with the 
UBL-domains of SHARPIN and HOIL via its NZF2- and UBA-domains, respectively.  Arrows indicate interactions between the 
proteins. ZnF: Zinc Finger; NZF: Npl4 zinc finger; UBL: Ubiquitin-like domain; UBA: Ubiquitin-associated domain; IBR: in-
between RING domain. RING: really interesting new gene. 

6.2.2 SHARPIN, HOIL-1 and HOIP form an E3-complex with exclusive linkage 

specificity. 

Beside the interaction studies that identified SHARPIN as a structural component of LUBAC, 

activity assays show that it is not only important for the stability of HOIL-1 and HOIP on the 

protein level (Gerlach et al., 2011; Tokunaga et al., 2011) but can also support HOIP in the 

formation of ubiquitin chains. In spite of the fact that SHARPIN lacks an RBR-domain no 

qualitative differences in the ubiquitin conjugation could be detected between SHARPIN-

HOIP and HOIL-1-HOIP-complexes. This suggests that chain formation is mediated by HOIP 

whereas SHARPIN and HOIL-1 have an auxiliary or regulatory role. Indeed, both published 

data and results obtained in this study support this notion by showing that mutations in the 

RING-domains of HOIP but not in those of HOIL-1 abolish LUBAC’s ability to generate 

ubiquitin chains and to activate NF-B upon over-expression (Haas et al., 2009; Kirisako et 

al., 2006; Tokunaga et al., 2009). In contrast to HOIP’s RING-domain and the UBL-domains of 

SHARPIN and HOIL-1, the NZF-domains of the latter two proteins are required for LUBAC 

ability to induce NF-B but not for its ubiquitin chain generating activity (Ikeda et al., 2011; 

Sato et al., 2011; Tokunaga et al., 2009). This suggests that SHARPIN and HOIL-1 do not only 

need to interact with HOIP but that they may also fulfil additional functions in LUBAC’s 

activity. Possible roles for SHARPIN and HOIL-1 might lie in the determination of linkage- or 

target specificity displayed by the different LUBAC variants. However, the chains generated 

by HOIP do not differ in their electrophoretic mobility independently of the binding partner 

involved in formation of the active LUBAC. In addition, assays based on the use of ubiquitin 

mutants or the mass-spectrometric analysis of LUBAC-generated polyubiquitin show that all 
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LUBAC-variants exclusively generate linear linkages even when other possibilities for 

conjugation of ubiquitin moieties, in the form of internal lysine residues, are available and 

an E2 without a strict linkage specificity such as UBE2D3 is used. In this preference LUBAC 

differs from all other E3s investigated so far (Verhelst et al., 2011), even if certain other 

ubiquitin ligases as for example cIAP seem to be able to use the N-terminal methionine as a 

conjugation point when forced to do so  by the absence of alternative attachment points 

(Bertrand et al., 2011). Furthermore, comparison to other members of the RBR-family 

indicates that the linkage specificity is not an intrinsic property of this sequence of RING-

domains. It is possible that certain members of this subclass of RING-E3s can mediate the 

formation of linear linkages in the presence of a suitable partner or cofactor, but in the 

assays performed here RBR-family members were able to employ N-terminally tagged but 

not K0-ubiquitin in the generation of ubiquitin conjugates. This is in line with publications 

that report that the RBR-family member Parkin generates K63- and K48-linked chains (Doss-

Pepe et al., 2005; Lim et al., 2006) and that report on the generation of lysine-linked 

polyubiquitin by other proteins of this family (Marteijn et al., 2009; Nakhaei et al., 2009). 

Although HOIP is not very active as an E3 on its own, it seems that this central component of 

LUBAC is responsible for restricting the activity to the conjugation of ubiquitin molecules via 

their N- and C-terminus (Kirisako et al., 2006). A possible hypothesis is that by binding the 

nascending ubiquitin chain via their NZF-domains SHARPIN and HOIL-1 force it to adopt a 

conformation in which only the N-terminal methionine is accessible as an attachment point 

to HOIP, thereby determining linkage specificity. In case of HOIL-1 this does not seem to be 

the case as the electrophoretic mobility of chains generated by HOIP and HOIL-1 lacking 

their NZF-domains does not differ from those generated by the wild-type proteins. Similarly, 

deletion of SHARPIN’s NZF-domain seems to decrease the overall ubiquitin chains 

generation by LUBAC but does not change the linkage type (Tokunaga et al., 2011). 

Concerning target specificity, NEMO could be identified as a common target for all LUBAC 

variants and hence no data on different target specificities exhibited by SHARPIN- or HOIL-1 

containing LUBAC-combinations exist so far. Yet, due to the differences between SHARPIN- 

and HOIL-1-deficient cells especially in the response to cell death induction by TNF (Ikeda et 

al., 2011), it seems likely that the two proteins might direct HOIP’s activity to overlapping 

but distinct sets of target proteins. On the other hand, LUBAC-independent functions of 

monomeric SHARPIN or HOIL-1 might contribute to these differences as well. Thus, further 
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differentiation between LUBAC-dependent and potential LUBAC-independent effects of 

SHARPIN, HOIL-1 and HOIP will be necessary. Several reports on such complex-independent 

functions exist (Bayle et al., 2006; Ehrlund et al., 2009; He et al., 2010; Jung et al., 2010; 

Rantala et al., 2011; Tatematsu et al., 1998; Tian et al., 2007; Yamanaka et al., 2003; Zenke-

Kawasaki et al., 2007) but in most cases the contribution of the respectively other two 

proteins to the observed effects was not investigated and the independence of LUBAC’s 

linear ubiquitin generating activity is therefore not fully established. LUBAC-dependent and 

-independent roles of the three proteins in these contexts will have to be unravelled and the 

identification of additional LUBAC-targets and the characterisation of their role in signal 

transduction will be necessary to fully understand the role of LUBAC and of its potential 

variants. In this context it is interesting to note that upon knockdown of any of the LUBAC-

components not only the modification pattern of RIP1, which was shown to be modified by 

M1-linked ubiquitin in the native TNF-RSC (Gerlach et al., 2011), but also that of cIAP1/2 

upon recruitment to the TNF-RSC is changed, indicating that cIAP1 and/or cIAP2 could 

potentially be targeted by LUBAC.  

6.2.3 LUBAC acts via a HECT-like mechanism 

LUBAC’s exclusive linkage specificity is not only surprising in that it does not seem to be 

shared by any other E3 investigated so far but also because linkage specificity is usually 

determined by the E2 rather than the E3, at least in reactions involving RING-class ubiquitin 

ligases (Nagy and Dikic, 2010). This is not the case for LUBAC as chains generated by this 

complex in combination of a panel of different E2s do not differ in their electrophoretic 

mobility, indicating that they are of the same linkage type. This intrinsic, E2-independent 

linkage specificity is a feature that can be observed in certain HECT-class E3s (Nagy and 

Dikic, 2010). Ubiquitin ligases of this class, in contrast to RING-E3s, form an obligatory 

thioester intermediate with ubiquitin. A recent study revealed that UBE2L3 requires an E3 

that is able to form an E3~ubiquitin adduct on a catalytic cysteine as this E2 lacks the ability 

to transfer ubiquitin to lysine residues (Wenzel et al., 2011a). The same study also showed 

that ARIH1 and Parkin, members of the RBR-family, can catalyse ubiquitination together 

with UBE2L3 and that ARIH1 indeed forms a thioester intermediate. Comparison of UBE2D3 

and UBE2L3 in in-vitro ubiquitination reactions mediated by LUBAC demonstrated that chain 

formation remains intact when LUBAC is provided as an E3 for UBE2L3 whereas ubiquitin 
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conjugation on monoubiquitin and auto-ubiquitination of the E3 cannot be supported by 

combinations of cIAP1, cIAP2 or TRAF6 with this E2. This suggests that LUBAC contains a 

catalytic cysteine that can accept activated ubiquitin from the E2. Because HOIP was 

identified as the central component of LUBAC both structurally and functionally and 

because the active site identified in ARIH1 was allocated to a highly conserved cysteine 

residues within its RING2 domain (Wenzel et al., 2011a) whereas E2 binding was mediated 

via its RING1-domain (Ardley et al., 2001), it was concluded that a cysteine involved in the 

catalytic activity of LUBAC was most likely to reside in the RING2-domain of HOIP. Mutation 

of cysteine 885 that was identified as a potential candidate by alignment of HOIP’s RING2-

domain with the published consensus sequence indeed abolished HOIP’s ability to generate 

polyubiquitin when combined with SHARPIN or HOIL-1. It was reported that mutation of 

C357, the catalytic cysteine identified in ARIH1, leaves the structure of the RING2-domain 

intact as it is not a zinc-coordinating residue (Wenzel et al., 2011a). Co-precipitation studies 

showed that a cysteine-to-serine-mutation in residue 885 of HOIP does not prevent it from 

interacting with SHARPIN or HOIL-1 and that the interaction with the E2 UBE2D3 which, as 

typical for E2-E3 interactions, seems to be rather weak (Ye and Rape, 2009), was 

maintained. This strongly suggests that the overall structure of HOIP is unaffected by the 

mutation of C885 and therefore provides compelling evidence that LUBAC works via a HECT-

like mechanism.  

Thus the opportunity arises to inhibit LUBAC not only by interfering with its interaction with 

specific targets or competitively by the addition of N-terminally tagged ubiquitin, which 

might prove difficult in settings other than in-vitro assays, but also by inhibitors designed to 

prevent the obligatory formation of an E3~ubiquitin adduct. Such inhibitors targeting the 

active centre of LUBAC might not only be valuable as scientific tools to further investigate 

the role of linear ubiquitin in signalling but might also prove to have therapeutic potential in 

a context where LUBAC’s activity is causing or aggravating a pathological condition. 

Whereas no such disease-causing role of elevated activity of this E3-complex was reported 

to date, increased expression levels of individual LUBAC components have been observed in 

certain types of cancer (Jung et al., 2010; Thompson et al., 2004) and it can be envisioned 

that inhibiting LUBAC and thereby shifting the balance between pro-survival signalling and 

cell death induction towards the latter outcome could prove beneficial in this situation. 

Additional approaches to modulating LUBAC’s activity could be based on mechanisms 
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regulating this E3-complex in vivo as for example a potential regulation by post-translational 

modifications. 

6.2.4 Post-translational modifications of LUBAC-components  

The best studied post-translational modifications occurring in a signalling context are 

phosphorylations and ubiquitinations (Cohen, 2002; Pickart, 2004). Both ubiquitination, in 

the form of attachment of proteolytic or non-proteolytic ubiquitin chains to the E3 in 

reactions catalysed by auto-ubiquitination or by the action of another ubiquitin ligase, and 

phosphorylations were reported to play a role in the regulation of E3 ligases (de Bie and 

Ciechanover, 2011; Kee and Huibregtse, 2007). Although it cannot be excluded at this point 

that other types of modifications are involved in the regulation of LUBAC’s activity, only the 

potential effects of phosphorylations and ubiquitinations will be discussed here. Treatment 

of the TNF-RSC with the catalytic domain of USP2 revealed that ubiquitin-based 

modifications are present on all three components of LUBAC. However, ubiquitination 

patterns differ between the three proteins. Whereas SHARPIN and HOIL-1 are subject to 

mono-ubiquitination, several ubiquitin-molecules seem to be attached to HOIP in the form 

of multi-mono- or polyubiquitination. In addition the modified form of HOIL-1 is already 

present in unstimulated lysates while modification of HOIP occurs in a stimulation-

dependent manner. The ubiquitination of SHARPIN and HOIL-1 can be detected in in-vitro 

assays in the absence of active HOIP or another E3. This suggests that these modifications 

can be mediated by HOIL-1. However, the presence of HOIP is clearly required for HOIL-1 to 

be modified in a cellular context. Experiments based on reconstitution of HOIL-1- or HOIP-

deficient cells with RING-mutants of the respective protein are therefore required to clarify 

which RING-domain is involved in the attachment of ubiquitin to HOIL-1.  

One approach in functionally characterising the individual alterations could be to create 

non-modifiable mutants by site-directed mutagenesis and to test their effect on LUBAC’s 

activity in vitro and their ability to replace the wild-type proteins in TNF-induced signal 

transduction by reconstituting cells deficient for one of the proteins by the respective 

mutant. Identification of the modification sites would be a prerequisite for this type of 

analysis. It could be shown here that the modification of HOIL-1 occurring in vitro takes 

place in its C-terminal part. In addition, mass-spectrometry based approaches aiming to 

identify ubiquitination sites on a proteome-wide scale found several sites in SHARPIN, 
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HOIL-1 and HOIP to be modified. Based on the data obtained in these studies lysines 189 

and 318 of SHARPIN (Kim et al., 2011; Lee et al., 2011; Wagner et al., 2011), lysine 342 of 

HOIL-1 (Wagner et al., 2011) and lysines 458 and 640 in HOIP (Kim et al., 2011; Wagner et 

al., 2011) could serve as good candidates in identifying the respective modification sites. 

Additional lysines were found to be ubiquitinated on HOIL-1 and HOIP but their localisation 

within the N-terminal part of HOIL-1 or the fact that they were identified in only one of the 

studies makes them secondary candidates in comparison to the sites named above. In case 

of HOIP it also needs to be considered that its stimulation-dependent modification could 

occur at a site that is not ubiquitinated in unstimulated cells. Next to the mutagenesis-based 

investigation of modification sites suggested by previous studies a direct analysis of the 

modification status of LUBAC components in the TNF-RSC will be necessary to 

unambiguously identify the lysine residues that are or become modified in this context. The 

latter approach would also be suitable to find other, non-ubiquitin modifications on the 

three proteins. A prime candidate as an additional modification would be the 

phosphorylation of HOIL-1. It was reported that HOIL-1 is targeted by PKC and that 

phosphorylation by this kinase leads to cleavage of HOIL-1 between its NZF- and its RING1-

domain resulting in two fragments of approximately 22 kDa and 42 kDa respectively, 

thereby negatively regulating LUBAC’s activity (Nakamura et al., 2006). A different 

publication suggested S127, T151 and T191 of HOIL-1 as potential sites for phosphorylation 

by PKC (Tatematsu et al., 2008). On western blot level the anti-HOIL-1 antibody detects a 

clear double band in lysates whereas in the analysis of the TNF-RSC the upper of the two 

bands often appears blurry or as a double band in itself. The small distance between these 

bands indicates that they do not represent mono- and di-ubiquitinated forms of HOIL-1. On 

the other hand a phosphorylation event might be a possible explanation for the observed 

shift. Further analysis that could involve two-dimensional gel electrophoresis, potentially in 

combination with phosphatase treatment or mass-spectrometry is required to clarify 

whether it is indeed a phosphorylation event that is responsible for the observed banding 

pattern. If so, use of kinase inhibitors and knockdown of candidate proteins could be first 

steps in identifying the kinase catalysing this phosphorylation and in analysing the function 

of this modification. The observation that only the upper of the two bands of HOIL-1 that 

can be observed in lysates appears to be altered in the TNF-RSC suggests that only the 

ubiquitinated form of HOIL-1 can be further modified. This could have implications for 
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LUBAC’s activity and its regulation. At the moment it cannot be predicted if phosphorylation 

would promote the full activation of LUBAC or limit its E3-activity. No thorough investigation 

of the phosphorylation status of SHARPIN and HOIP upon TNF-stimulation was undertaken 

to date but both proteins were found to be phosphorylated in proteome-wide mass-

spectrometric studies. The residues in SHARPIN reported to be phosphorylated are serines 

165 and 312 (Dephoure et al., 2008; Olsen et al., 2011), whereas HOIP is modified on serine 

466 (Cantin et al., 2008; Chen et al., 2009; Dephoure et al., 2008). As in the case of HOIL-1 

additional work is required to confirm these sites, to identify the responsible kinases and to 

unravel the functions of these phosphorylations. In these investigations it also has to be 

considered that phosphorylations occurring in response to a TNF-stimulus might differ from 

those present in an unstimulated state. 

Although relatively little data is available concerning the potential regulation of LUBAC by 

post-translational modifications, data obtained in this thesis indicate that SHARPIN, HOIL-1 

and HOIP may be ubiquitinated and possibly phosphorylated. Analysis of these 

modifications and unravelling their relevance to LUBAC’s E3 activity and to TNF-induced 

signal transduction could prove to be a fascinating field of investigation in the future.
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IV Abbreviations 

A    Alanine 

aa    aminoacid 

ABIN    A20 binding inhibitor of NF-B 

AKT   V-akt murine thymoma viral oncogene homolog 

AMPK   AMP-activated protein kinase 

AP-1    Activator protein 1 

APF-1   ATP-dependent proteolysis factor 1 

APC/C    Anaphase-Promoting Complex 

ARE    AU-rich element  

ARIH   Ariadne Homolog 

ASK1    Apoptosis signal-regulating kinase 1 

ATG   Autophagy related gene 

BAFF   B-cell-activating factor 

BCA    Bicinchoninic acid 

BIR    Baculoviral IAP repeat 

C   Cysteine 

cpdm   Chronic proliferative dermatitis mutation 

cFLIP    Cellular FLICE-inhibitory protein 

cIAP    Cellular inhibitor of apoptosis protein 

CIM    cIAP1/2 interacting motif 

CLP    Cecal ligation and puncture 

CNS    Central nervous system 

CRDs   Cysteine rich domains 

CYLD    Familial Cylindromatosis Protein 
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DC    Dendritic cell 

DD   Death domain 

DDB   DNA damage binding 

DISC    Death inducing signalling complex 

DMEM   Dulbecco’s modified Eagle’s medium 

DUB    Deubiquitinases 

E   Glutamic acid 

ER    Endoplasmic reticulum 

ER   Estrogen receptor alpha 

ERAD   Endoplasmic-reticulum-associated degradation 

ERK   Extracellular signal regulated kinase 

EYA-1   Eyes absent 1 

F    Phenylalanine 

FADD   Fas-associated protein with a death domain 

Fn14   Fibroblast growth factor inducible 14    

G    Glycine 

GCKs    Germinal centre kinases 

H   Histidine 

HECT   Homologous with E6-associated protein C-terminus 

HEK   Human embryonic kidney 

HF-TNF   His-FLAG-TNF 

HHARI   Human homolog of Ariadne 

HOIL-1   Heme-oxidized IRP2 ubiquitin ligase 1 

HOIP    HOIL-1-interacting protein 

HPIV   Human parainfluenza virus 

HRP    Horseradish-peroxidase 



IV. Abbreviations 
  

145 
 

HT    Hydroxy-tamoxifen 

I    Isoleucine 

IBR    In Between RING 

IBRDC   IBR domain containing protein 

ICAM   Intercellular adhesion molecule 

ICC   Intestinal cells of Cajal 

IFN    Interferon 

IB   Inhibitor of B 

IL    Interleukin 

IPTG   Isopropyl--D-thio-galactoside 

IRF   IFN regulatory factor 

IRP   Iron regulatory protein 

JNK   c-Jun N-terminal kinase 

K    Lysine 

KSHV   Kaposi’s sarcoma associated herpes virus 

L   Leucine 

LB   Lysogeny Broth 

LC3   Microtubule-associated protein1 light chain 3 

LPS   Lipopolysaccharide 

LT   Lymphotoxin 

LTR   Lymphotoxin  receptor 

LUBAC   Linear ubiquitin chain assembly complex 

M    Methionine 

MAPK   Mitogen-activated protein kinase 

MEFs    Mouse embryonic fibroblasts 

MEKK   MAPK/ERK kinase kinase 
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moTAP   Modified tandem affinity purification 

MS    Mass spectrometry 

N   Asparagine 

NEMO    NF-B essential modulator 

NES   Nuclear export sequence 

NF-B    Nuclear factorB 

NIK   NF-B inducing kinase

NLR   NOD-like receptor 

NLS   Nuclear localisation sequence 

NOD   Nucleotide-binding Oligomerisation Domain 

NZF    Npl4-type zinc finger 

P    Proline 

PAMP   Pathogen associated molecular pattern 

PAUL   Putative Ariadne-like ubiquitin ligase 

PDB    Pull-down buffer 

PI3K    Phosphoinositide 3-kinase 

PKB   Protein kinase B 

PKC    Protein kinase C 

PLAD   Pre-ligand-binding assembly domain 

PRU   Pleckstrin like receptor for ubiquitin 

Q   Glutamine 

R   Arginine 

RBCK1   RBCC protein interacting with PKC 1 

RBR    RING-IBR-RING 

RHD   Rel homology domain 

RIG-I   Retinoic acid-inducible gene I 
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RING    Really Interesting New Gene 

RIP1    Receptor interacting protein 1 

RLR   RIG-like receptor 

ROS    Reactive oxygen species 

RSC   Receptor signalling complex 

RTA   replication and transcription activator 

S   Serine 

SAPK    Stress-activated protein kinases 

SCF    Skp1/cullin/F-box 

SEM    Standard error of the mean 

SF    Superfamily 

SF1   Steroidogenic factor 1 

SHANK   SH3 and multiple ankyrin repeat domains protein 

SHARPIN  SHANK associated RH domain protein 

SLE   Systemic lupus erythematosus 

SM    Smac mimetic 

STAT   Signal transducer and activator of transcription 

SV   Simian virus 

T   Threonine 

TAB    TAK1 binding protein 

TACE   TNF-converting enzyme 

TAD   Transactivation domain 

TAK1    TGF--activated kinase 1 

TIM    TRAF-interacting motif 

TLR    Toll-like receptor 

TNF    Tumour necrosis factor 
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TNF-RSC  TNF-R1 signalling complex 

TRADD   TNF-R1-associated death domain 

TRAF    TNF-receptor associated factor 

TrCP   Transducin repeat-containing protein 

Ub   Ubiquitin 

UBA    Ubiquitin-associated 

UBAN   Ubiquitin-binding domains found in ABINs and NEMO 

Ubc   Ubiquitin conjugating 

UBD    Ubiquitin-binding domains 

UBE   Ubiquitin-conjugating enzyme 

UBL    Ubiquitin-like 

UIM    Ubiquitin-interacting motif 

UIP28   UBCM4 interacting protein 28 

UTR    Untranslated region 

V   Valine 

VEGI   Vascular endothelial growth inhibitor 

W   Tryptophan 

wt    Wild-type 

XAP3   Hepatitis virus X-associated protein 

XIAP    X-linked inhibitor of apoptosis 

Y   Tyrosine 

ZIBRA   Zinc IBR finger UBA domain containing protein 

ZIN   Zinc finger protein 

ZnF    Zinc finger 

ZAP-70   Zeta-chain associated protein of 70 kDa
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