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Abstract

The rate of new human immunodeficiency virus (HIV) infections has decreased since its

global peak in the mid-1990s. As the epidemic continues to recede, the efficacy of treatment

and prevention programmes will depend on how well they target the right people in the

right places. Few existing models of HIV burden offer spatio-temporally resolved estimates

of incidence.

I propose a novel epidemic model of HIV that bridges the gap between spatially resolved

models of prevalence and epidemiologically sound compartmental models of incidence. It

relies less heavily on fixed, exogenous data than previous models and fits directly to data

from household surveys, antenatal care facilities, and HIV treatment programmes. Here, I

present the details of the model, a broad set of specification tests, and descriptive results

from an application to Malawi, as well as a comparison of methods for smoothing and

interpolating sexual partner age data in preparation for adding age structure.

The model comparisons identified a set of specification decisions that consistently led to

better out-of-sample fit to district-level data from Malawi. I selected a single specification

that fit well to most data and reproduced the programme data nearly perfectly. It estimated

that increases in ART coverage resulted in decreases in HIV incidence in Malawi but that

spatial heterogeneity in incidence was high.

The proposed model offers several improvements on previous models of HIV incidence,

and cross-validated model specification experiments provide relative confidence that the

specification used here is appropriate for the epidemic in Malawi. The results from the

selected specification underscore the continued success of theMalawianHIV treatment pro-

gramme and highlight the possibility that, even in a high-prevalence setting, the epidemic

is becoming increasingly concentrated.
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Chapter 1

Introduction

With the advent of widely available, highly effective treatment, the health burden of the

global human immunodeficiency virus (HIV) epidemic has improved dramatically over the

past several decades. New HIV infections have decreased from a global peak of 3million

annually in 1997 to 1.5million annually in 2020, while annual deaths due to HIV infection

have decreased from a peak of 1.9 million in 2004 to 680,000 in 2020 (UNAIDS, 2021).

Although HIV elimination is thought to be a target for the far distant future, measuring

progress towards epidemic transition, in which low levels of acquired immunodeficiency

syndrome (AIDS) mortality are maintained and new infections are reduced to zero, is

critical for guiding policymaking at both the global and local levels (Ghys et al., 2018; Over,

2012).

The rate of new HIV infection in a population, or HIV incidence, is arguably the most

important metric for measuring the trajectory of the epidemic (Ghys et al., 2018; Hallett,

2011). Relative to other potential metrics, incidence provides a clearer picture of short- and

long-term treatment needs and the future trajectory of the epidemic. Observing increasing

incidence in a population with low treatment coverage suggests that there will soon be

a large treatment gap in that population. For example, observing high incidence in a

population with a low burden of current infection suggests that the population could soon

experience a treatment gap.

However, population-level HIV incidence is difficult to measure directly (Brookmeyer,

2010; Hallett, 2011). A person living with HIV could survive for ten years or more without

treatment and 30 years or longer with treatment (Collaborative Group on AIDS Incubation
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and HIV Survival, 2000; Todd et al., 2007), so cross-sectional measurements of the share

of people currently living with HIV (or prevalence) are bound to represent individuals who

could have been infected many years in the past. If population-representative HIV testing

data are widely available over space and time, we can leverage assumptions about survival

with and without treatment to backcalculate incidence from prevalence (Bacchetti, Segal,

& Jewell, 1993; Brookmeyer & Gail, 1988; Sakarovitch et al., 2007).

In this application, however, I focus on incidence estimation in high-burden settings

where data are typically sparse and insufficient for backcalculation of general population

incidence. The epidemic still disproportionately affects sub-Saharan Africa (SSA), with

approximately 67% of people living with HIV (PLHIV) globally living in an SSA country in

2020 (UNAIDS, 2021). In high-income countries detailed case surveillance data describing

characteristics for all new HIV diagnoses have been the standard for tracking incidence.

In lower-income countries and those with large HIV burdens, reliable data on key HIV

indicators are typically sparse. These challenges have led to the development of a variety of

modelling strategies for inferring temporal trends in HIV incidence in data-sparse settings,

which are detailed in Section 1.5.

The majority of models of HIV incidence have focused on estimation of national-level

changes over time, but a growing body of literature argues that, as declines in incidence

continue, new infections will become increasingly concentrated in particular areas and

populations (Anderson et al., 2014; Cuadros et al., 2022; McGillen et al., 2016; Meyer-

Rath et al., 2018). As a result, prevention strategies must be sensitive to the fundamental

spatial variation in the epidemic.These authors argue that the success of global efforts to

fight HIV will increasingly depend on whether treatment and prevention programmes are

implemented in the right locations at the right times.

Although being in a particular location will not directly cause an individual to be infected

with HIV, infection arises through complex socio-biological processes that depend on

individual- and societal-level factors, many ofwhich vary systematically over space (Boerma

&Weir, 2005; Lewis et al., 2007). Place-of-residence and place-of-work are often effective

proxies for risk factors that might be difficult or impossible to measure. More directly,

nearly all new HIV infections in sub-Saharan Africa (SSA) are caused by sexual contact

with people living with HIV (Kharsany & Karim, 2016).
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Multiple studies have demonstrated that HIV prevalence varies dramatically over space

both across and within countries (Cuadros et al., 2018; Dwyer-Lindgren et al., 2019), but

similar attention has not been paid to incidence. If prevalence varies over space, incidence

likely does as well, but the spatial distribution of incidence is not well measured.

Existing models of HIV burden vary in many ways, but they share features that make

them inappropriate for spatio-temporal inference of HIV incidence. Broadly speaking,

the models that infer temporal trends in incidence scale poorly to smaller areas (both in

terms of computation and validity of assumptions), while those that include explicit spatial

components fail to connect prevalence data to incidence.

1.1 Thesis aims

The goal of my thesis is to fill this gap by developing a spatially structured epidemic model

that infers HIV incidence over space and time simultaneously. The proposed method

connects epidemic modelling tools used to estimate national-level HIV incidence to small-

area estimation methods commonly incorporated into spatial models of HIV burden.

Without directly observed data on incidence, validating the accuracy of this model is

difficult; we cannot evaluate how well the model predicts true incidence if incidence is

not observed. Instead, I propose a cross-validation strategy that estimates how well the

model predicts recent data on prevalence and treatment provision. If each set of observable

indicators corresponds to a unique incidence series, then this strategy does provide cross-

validation of incidence. On other hand, if multiple incidence series lead to similarly

well-fitting predictions of prevalence and treatment, then the cross-validation strategy will

only be able to identify a set of incidence series that could have generated the data. Given

that incidence is just one of the unknown quantities that affects prevalence, the second

scenario seems more likely a priori.

Although other models of population-level HIV incidence share these problems, we can

validate them relative to each other. Any model of incidence with sufficiently granular

spatio-temporal resolution can be aggregated to alignwith corresponding national-level and

cross-sectional models. Concordance in estimated incidence across varying methodologies

suggests either that the methods are generally accurate or that they are inaccurate in similar
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ways. By measuring out-of-sample fit to data on observable indicators and comparing to

external estimates, I provide some amount empirical support for the model, despite the

difficulty in direct validation.

Because it is impossible to measure how accurately this model predicts true incidence, I

cannot define an acceptable margin of error in terms of prediction accuracy. Instead, I

define sufficient precision in terms of the posterior probabilities of certain percent changes

in incidence across districts. Specifically, I call the model sufficiently precise if, for every

study region, it estimates that the posterior probability of incidence having decreased by

50% or more between 2010 and 2021 was less than 20% or greater than 80%. In other words,

the model must be relatively certain that incidence was (or was not) halved over this period.

This strategy favours models that predict changes in incidence precisely, even if we are

unable to validate the levels of incidence. I test for a 50% decrease because it represents

substantial but achievable progress, although it is a considerably less ambitious reduction

than the 75% reduction proposed in the 2016 United Nations Political Declaration on

Ending AIDS (Political declaration on HIV and AIDS, 2016). I define probabilities of less

than 20% or greater than 80% as reasonable certainty essentially arbitrarily; 80% aligns

with conventional power calculations. Any of these thresholds could be defined differently

depending on the intended use of the model. For example, if the user is concerned with

elimination, then they should target high posterior probabilities of low levels of incidence.

In the remainder of this chapter, I will provide background on data streams measuring

HIV in sub-Saharan Africa, outline several relevant models of HIV incidence and other

key indicators, and describe how these data sources and models have influenced my own

work.

1.2 Epidemiological indicators

I have defined prevalence and incidence loosely above, but more precise definitions of

those and several other key epidemiological indicators will be useful. “Prevalence” is the

number of PLHIV in a given population divided by the size of that population at a single,

instantaneous point in time (more precisely called “point prevalence”). Similarly, “ART

coverage” is the number of PLHIV receiving antiretroviral therapy (ART) in a population
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divided by the number of PLHIV in that population at a given point in time. Note that

prevalence and ART coverage must be between zero and one. Finally, I define “incidence”

as the rate of new infections per susceptible person-year. Whereas prevalence and ART

coverage are defined in terms of people, incidence is defined in terms of person-time, which

accounts for the differential impact of each new infection as the pool of susceptibles is

depleted.1 Note that incidence rates can be greater than one, although such a high level of

new HIV infection is highly unlikely.

1.3 Data in sub-Saharan Africa

The modelling strategies used to estimate HIV burden in sub-Saharan Africa have been

developed to take advantage of the specific configurations of data available in that region,

so I will provide a brief outline of population-level data sources commonly available in SSA

before describing previous work. Section 2.5 describes in much greater detail how these

data can be incorporated into a Bayesian epidemic model.

Most sub-Saharan African countries lack reliable historical time series of the two indicators

most frequently used to estimate HIV in higher income settings: cause-specific death

counts and case surveillance. In higher income countries, new HIV diagnoses are reported

to central health authorities, which combine them with reported counts of age- and sex-

specific deaths due to acquired immune deficiency syndrome (AIDS) to estimate HIV

burden (and in particular, incidence) quite precisely (Centers for Disease Control and

Prevention, 2021; Mahiane et al., 2019). Many lower and middle-income countries lack the

reporting infrastructure necessary to provide these series, so we must leverage other data

sources.

1.3.1 Household surveys

The most important sources of population-level HIV burden data in SSA have been large,

nationally representative household surveys like the Demographic and Health Surveys

1If I defined incidence in terms of susceptible people at the start of a period, it would more appropriately
be called a “risk,” as opposed to a “rate.”That said, because new HIV infection is a rare event, incidence risks
and rates will be nearly identical in most populations.
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(DHS) and the Population-Based Health Impact Assessment (PHIA) surveys (ICAP at

Columbia University & PEPFAR, 2019; “The DHS program,” 2021). DHS surveys are

conducted approximately once every five years in much of sub-Saharan Africa, while PHIA

surveys are conducted in pre-planned waves in specific focus countries. Both survey series

test individuals for HIV, providing reliable estimates of prevalence, and the PHIA surveys

additionally test for ART adherence, recent infection, and viral load.

Although the specific sampling methodologies differ across series, they typically use two-

stage cluster-stratified sampling schemes that need to be considered when integrating the

data into a model. As an illustration, DHS surveys are sampled as follows:

1. The nation is stratified into some number of subnational administrative units.

2. The complete list of potential primary sampling units (PSUs) and their populations

is compiled, usually from the list of enumeration areas of the most recent census.

3. PSUs are randomly selected proportionate to their population sizes within each

subnational unit.

4. Depending on the resulting split between urban and rural PSUs, more urban PSUs

might be added to the sample to account for their relative importance compared to

the share of the population they represent.

5. Using maps of each PSU, some number of households are selected heuristically by a

central survey planning office. For example, if the desired number of households in

a given PSU is 10% of the total number, the survey planner might select every tenth

house according to their order on a path through the PSU.

6. Interviewers then visit each selected household and interview all adults aged 15-49

years.

The surveys use a reference population (typically, the most recent census) and the observed

sample to calculate each individual and household’s probability of having been sampled.

Taking the inverse of a respondent’s probability of selection gives the number of individuals

that respondent represents, a quantity referred to as survey weight. These weights are

constructed so that representative estimates can be produced at national and subnational

levels stratified by urban/rural status. For example, the sum of all individual-level survey

weights within a subnational unit will match the population of that subnational unit in the

reference population.
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The variance of estimated counts derived from these surveys are calculated in a way that

takes into account the complexity of their sampling schemes. To incorporate these design-

based variances into statistical models, we can find the effective sample size of the estimate.

Let Y be an estimated survey count, τ be the design-based variance associated with Y , and

p = Y/N be the estimated proportion associated with Y . We can define the “design effect”

of the survey as

Deff = Np(1 − p)
τ

. (1.1)

Here, Np(1− p) is the variance of Y had Y been sampled via simple random sampling.This

ratio measures the efficiency of the sampling scheme that generated τ relative to simple

random sampling. If we set Deff = 1.0 and fix p and τ to their observed values, we can solve

for the sample size under simple random sampling to estimate Y with the same efficiency

as the survey:

Neff = τ

p(1 − p) . (1.2)

I refer to Neff as the effective sample size of Y and pNeff as the effective count. This is a

convenient approximation that allows us incorporate survey estimates and their variances

into a natural framework for count data.

Household surveys offer cross-sectional estimates of HIV prevalence, treatment coverage,

and infection recency by age and sex. They are representative at the national and first

administrative unit levels, making them an invaluable resource for HIV burden estimation.

However, due to budgetary constraints and changing priorities, we cannot be sure that

the DHS will continue to conduct HIV testing or that there will be future rounds of the

PHIA surveys. Therefore, we must keep in mind that any modelling strategy that relies

too heavily on cross-sectional estimates from these surveys might run out of data that can

reasonably be called “recent” in the next few years.

Further, household surveys are conducted only infrequently and are therefore poorly suited

to estimating temporal trends. For example, including the most recent PHIA, household

surveys comprise a total of five data points forMalawi over the entire course of the epidemic.
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1.3.2 Antenatal facilities

The second most important data source for HIV incidence estimation in sub-Saharan

Africa is reported HIV test results from antenatal care (ANC) facilities.The vast majority of

pregnant women in SSA receive antenatal care, including HIV testing, at government-run

clinics, making reported ANC test results a relatively complete survey of pregnant women

at any given time. For example, Ataguba (2018) estimated that 98% of pregnant women in

Uganda attended at ANC services at least once per pregnancy.

ANC testing data have been used extensively by the Joint United Nations Programme on

HIV and AIDS (UNAIDS) to estimate HIV burden. Historically, the UNAIDS estimation

process has used data from sentinel surveillance systems, in which a small number of sites

tested anonymised blood samples left over from anaemia testing for HIV and reported the

results to UNAIDS (Joint United Nations Programme on HIV/AIDS et al., 2004). However,

in 2015, the World Health Organization and UNAIDS recommended that countries switch

to routine testing data for burden estimation (WorldHealthOrganization&UNAIDS, 2015).

The routine testing data still come from the original sentinel surveillance sites, which were

typically selected because they were thought to have been in particularly high-prevalence

areas, calling into question how well their attendees represent the broader population of

pregnant women.

We also cannot assume that pregnant women, who are necessarily sexually active, experi-

ence identical risk of HIV infection as the rest of the adult population. Further, as survival

continues to improve, the age distribution of current PLHIV in SSA will become older,

meaning pregnant women are likely to become an increasingly poor proxy for the general

population of PLHIV. In other words, the probability a given PLHIV is in the set of currently

pregnant women could be decreasing (Eaton et al., 2014).

1.3.3 ART programme data

Many medical facilities across SSA are now equipped with sophisticated electronic medical

record systems that can report treatment indicators to central health authorities with

minimal human intervention, giving us a relatively complete picture of treatment at high
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spatio-temporal resolution. We might, for example, have monthly reports of the number

of patients treated at every facility in a country.

When we consider a country as a whole, we can assume that the ART patient count for a

given period is extremely close to the true number of PLHIV living in that country who

received treatment during that period and is, therefore, the appropriate numerator for

calculating ART coverage (the number of PLHIV on treatment divided by the number

of PLHIV total). We only need to assume that a negligibly small share of people on ART

receive their treatment outside of reporting facilities and that a similarly small share of

patients at those facilities reside outside of the country.

However, as described by Eaton et al. (2021), the second assumption fails when we move

from the national level to the subnational level. Because the patient count series are facility-

based and subnational borders are porous, we cannot assume that all PLHIV receiving

treatment in a particular area also live in that area. We might, for example, expect urban

areas with more health facilities to attract PLHIV from nearby rural areas, or, in areas

where HIV is still stigmatised, PLHIV to seek treatment far from their homes. Any number

of possible dynamics could mean that the facility-based patient counts and residency-based

surveys are not directly comparable.

1.3.4 Direct measurement of HIV incidence

Notably absent from the population-level data sources listed above is direct measurement

of HIV incidence. Cohort studies and the control arms of clinical trials do offer reliable

incidence estimates, but their carefully designed sampling schemes do not necessarily

correspond well to the general population. The PHIA surveys and some routine testing

programmes include recency assays, which measure the avidity of an individual’s antibody

response toHIV antigens and classifies whether the individual was infected recently (usually,

in the previous six months or year). Kassanjee, McWalter, &Welte (2014) provide a method

to relate population-level recency to incidence, but the use of these assays to ascertain

population-level incidence is still imperfect. Household surveys do not conduct enough

recency assays to provide a meaningfully precise estimate of HIV incidence at subnational

levels, and the routine testing data are subject the re-testing bias described byMaheu-Giroux

et al. (2019).
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It is also worth addressing why we cannot simply treat the difference between prevalence

at consecutive points in time as incidence. First, the change in the true number of PLHIV

from one time point to the next is a function of not only incidence, but also mortality

(both AIDS-related and non AIDS-related) and migration. We do not observe mortality

directly in most SSA settings, so the change in prevalence over time depends on at least two

unobserved quantities. Second, it could take years for a new HIV infection to be detected

for the first time, if it is ever detected, meaning changes in prevalence today reflect changes

in long-past incidence.

Population cohort studies

General population cohort studies provide valuable, granular information about changes

in fertility, mortality, and health, among many other indicators in small, carefully selected

areas.They track and test individuals in fixed populations at regular intervals over time and

can identify new infections based on each individual’s testing history (Gareta et al., 2021;

Gregson et al., 2017; Reniers et al., 2016). Cohort studies have been crucial in estimating

the biological parameters that govern HIV disease progression. For example, because

they track individuals’ vital events over time, they can be used to estimate how survival

among PLHIV varies by treatment status (Reniers et al., 2014), CD4 count (Trickey et al.,

2017), and demographic characteristics (Risher et al., 2021). Further, regular HIV testing

allows for reliable estimation of incidence within the study population (Risher et al., 2021).

However, because these study populations are carefully selected sets of villages and cities,

estimates that depend on local context (such as incidence) might not generalise to regional

or national populations.

1.4 HIV data in Malawi

In this work, I have focused on applications to Malawi, a low-income country in Southern

Africa. Over the past 40 years, Malawi has, like much of sub-Saharan Africa, experienced a

severe HIV epidemic. Annual national-level incidence among adults aged 15-49 peaked

at 22 new infections per 1,000 people in 1993, and adult prevalence still ranks among the

highest in the world at 8% (UNAIDS, 2020). I have incorporated several datasets of the
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types described above into the model I propose in Chapter 2.

As of 2020, four household surveys had conducted HIV testing in Malawi: the 2004,

2010, and 2015-16 Demographic and Household Surveys (DHS), and the 2015-2016

Malawi Population-based HIV Impact Assessment (MPHIA) survey (Ministry of Health,

Malawi, 2018; National Statistical Office/Malawi & ICF, 2017; National Statistical Office -

NSO/Malawi & ICF Macro, 2011; National Statistical Office - NSO/Malawi & ORCMacro,

2005). A second MPHIA survey was being conducted contemporaneously with this

analysis, so I did not include those results here. From the three DHS surveys, I extracted

district- and sex-specific HIV assay results, and from MPHIA I extracted district- and

sex-specific HIV, ART, and recency assay results. For both survey series, I used data for all

28 districts of Malawi and restricted to individuals aged 15 to 49 years at the time of the

survey. Note that because these surveys sample households, the estimates we derived from

them implicitly referred to residents of each district.

To measure the number of people receiving ART by district and time, I used data provided

by the Malawi Department of HIV and AIDS (DHA) on the number of ART patients in

each district by quarter. Médecins Sans Frontières began operating treatment clinics in the

Chiradzulu District before the national ART scale-up, so I supplemented programmatic pa-

tient counts with manually extracted patient counts from a published case study (Médecins

Sans Frontières, Malawi &Ministry of Health and Population, Chiradzulu District, Malawi,

2004).

Finally, I supplemented the ANC sentinel surveillance data used in the UNAIDS estimation

process with data provided by the DHA.The UNAIDS process uses data from two facilities

per district, which are categorised as either sentinel surveillance or routine testing as

described in Section 1.3.2. For years earlier than 2011, I used the sentinel surveillance data

when it was available, omitting data from 2010 due to reported difficulties in laboratory

testing. From 2011 onwards, I found the identifier for every facility used by UNAIDS in the

DHA’s reporting system and produced quarterly aggregates to replace the routine testing

data used in the UNAIDS process. I verified that I was able to reproduce the annual counts

reported to UNAIDS. More than 700 facilities included in the reporting system are not

incorporated into the UNAIDS process, so I constructed a quarterly aggregate series for

each district, aggregating over the counts of tests and positive tests for every facility not
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Figure 1.1: HIV prevalence data among adults aged 15-49 years in the Kasungu
District ofMalawi. Ciricular points and ranges are household survey estimates,
and connected square points are ANC facility data.The colour of each series
of connected points indicates the facility from which the data originate.

already included in the process.

To provide a clearer image of the available data sources and how they relate to each other,

Figure 1.1 presents the prevalence data used in the Kasungu District, which is a medium-

sized district of approximately 800,000 people in the centre of the country.The household

survey and ANC facility all suggest that there was little change in prevalence in Kasungu

between 2005 and 2016. Although the two recent household surveys estimated higher

prevalence than the 2010 DHS among women, all three sets of routine ANC data indicate

that prevalence among pregnant women is decreasing slowly. I will discuss how these two

datasets can be related to each other in greater detail in Section 2.5.2, but this example

illustrates how ANC facility data can complement household survey data.

Figure 1.2 presents the number of PLHIV attending ART services in Kasungu.The number

of patients in Kasungu increased rapidly between the start of the programme in 2005

and 2020. As of the end of 2020, approximately 13,000 adults aged 15-49 were receiving

treatment in Kasungu, compared to only 4,000 at the beginning of 2010.

The descriptive results in Kasungu are broadly similar to descriptive results in other districts.

The average change in prevalence among women across the 27 districts that were sampled

in both the 2010 and 2015 DHS surveys, was only -1.8 percentage points. The increases

in patients were also consistent across district, with the number of people attending ART

services increasing by an average of 315% between 2010 and 2020 across all 28 districts.
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Figure 1.2: Adults aged 15-49 years attending ART services in the Kasungu
District of Malawi.

These data suggest that temporal trends in prevalence and treatment were similar across

the districts of Malawi but there was substantial spatial heterogeneity in absolute levels.

Estimated prevalence among women from the 2015-16MPHIA survey ranged from a high

of 23% in Nsanje to a low of 3% in Dowa, while ART coverage ranged from 92% in Balaka

to 59% in Dowa.There was strong systematic variation in prevalence, with HIV prevalence

decreasing from the north of the country to the south. Estimated prevalences in 2015-2016

in the Northern, Central, and Southern regions were 7%, 6%, and 16%, respectively.

1.5 Literature review

With this context in mind, we can examine the various inferential models that have been

used since the early 1990s to estimate HIV burden in data sparse settings. First, I provide an

overview of compartmental models of infectious disease.Then, I describe several previous

models of HIV incidence and a number recent spatial models of HIV burden. Finally, I

highlight more general work modelling infectious disease over space that could inform

approaches to HIV modelling.

I specify that we are interested in “inferential” models because this work focuses on models

that are fit to data via some systematic inferential procedure. Many widely used models for

HIV burden estimation are, for a variety of reason, only forward projections. Because I am
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focused on inferring HIV incidence, I have restricted this review to inferential models.

The Spectrum model is a notable exception because it is used in close coordination with

models described below (Stover et al., 2017). Spectrum is a complex compartmental model

of HIV and demographic dynamics that includes detailed disease progression, mother-

to-child transmission dynamics, and other important features. Spectrum tracks adults

by single-year age, sex, HIV positivity, treatment status, and duration on treatment and

can been used to project not only the HIV epidemic but also basic demographic trends.

Because of its complexity, it is not currently fit to data and is instead used in concert with

less complex inferential models.

1.5.1 Compartmental models of infectious disease

Many of the models used to relate observed prevalence to unobserved incidence are com-

partmental, meaning they track the varying sizes of sets of population groups over time.

The canonical compartmental model of infectious disease is the “Susceptible-Infectious-

Recovered” (SIR) model, which measures the varying sizes of the susceptible, infectious,

and recovered groups in a closed population over time (Kermack & McKendrick, 1927).

Compartmental epidemic models are well suited to inferring incidence because they use

the fundamental principles of infectious disease project internally consistent epidemic

trajectories. Specifically, in a compartmental epidemic model, the count or rate of new

infections at a given time depends on the current count or rate of infectious individuals.

The classical SIR model encodes this principle into the following system of ordinary differ-

ential equations (ODEs):

∂S

∂t
= −βS I

N
∂I

∂t
= βS I

N
− γI

∂R

∂t
= γI,

(1.3)

where N is the (constant) population size, β is the expected number of contacts between

susceptible and infectious individuals per unit of person-time multiplied by the probability

of infection given contact, and γ is the rate of recovery among infectious individuals
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(Kermack & McKendrick, 1927). Although γ is canonically referred to as the recovery rate,

we can interpret it more generally as the rate at which infectious individuals cease to be

infectious via any mechanism (e.g. recovery, death, or perfect treatment).

The formulation presented in Equation (1.3) is often referred to as a density-dependent

SIR model because the rate of new infections among susceptibles depends on the share of

people who are currently infected. For contrast, in a frequency-dependent SIR model, we

have

∂S

∂t
= −βSI, (1.4)

and similarly for the partial derivative of I(t). The practical distinction is that, in a

frequency-dependent model, the number of potentially infectious contacts scales with

the population, while in a density-dependent model, it does not. A frequency-dependent

model would be more appropriate for modelling a pathogen that spreads easily through

the air, and a density-dependent model might be more appropriate for a sexually transmit-

ted infection. Typically, models of HIV use the density-dependent formulation because

an individual’s number of sexual partnerships is unlikely to scale proportionately with

population.

In either case, the core mechanism of the SIR model is the product of S and I, which

represents all pairings of susceptible and infectious individuals. If we assume that all pairs

of individuals in the population are equally likely to form at any given time, an assumption

referred to as “homogeneous mixing,” then the SIR model results in the correct expected

incidence.

Compartmental epidemic models differ from each other along two important dimensions:

continuity and stochasticity.The model defined in Equation (1.3) varies continuously over

time, but discrete-time compartmental models are not uncommon. In a discrete-time SIR

model, we have:
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St+1 = St − βSt It
N

It+1 = It + βSt It
N
− γIt

Rt+1 = Rt + γIt .

(1.5)

We note that, depending on the units of person-time used to measure β and γ, the discrete-

time SIR model is identical to a continuous-time SIR model integrated with the forward

Euler method.

Finally, we can categorise compartmental epidemic models of infectious disease based on

whether they are stochastic or deterministic. In a deterministic discrete-time SIRmodel, the

number of new infections in period t is exactly βStIt/N , while in a stochastic discrete-time

SIR model, we assume that it is a random variable of the form Binom(St , βIt/N) or similar.

Demographic stochasticity is particularly important to consider when we do not know in

advance if a pathogen will reach extinction without producing a meaningful epidemic. For

the sake of consistency with previous work and to limit computational cost, I will focus

largely on deterministic models.

1.5.2 Models of HIV incidence

Accounting for the lack of direct measurement of HIV incidence described in Section

1.3.4 is the primary purpose of most models of HIV incidence. They necessarily answer

the question: how do we relate sparse observations of prevalence or new diagnoses to

incidence?

Back-calculation models

Early HIV incidence estimation methods were based on back-calculating new infections

from confirmed AIDS case notifications (Bacchetti, Segal, & Jewell, 1993; Brookmeyer &

Gail, 1988; Sakarovitch et al., 2007). By making certain assumptions about the distribution

of infections over past time periods, I(s), and about the distribution of progression from

infection to AIDS given time since infection, F(t), these methods were able to identify the

incidence series that were most likely to have generated observed cumulative case counts.
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Brookmeyer & Gail (1988) defined the probability an initially susceptible individual who

was infected before a given time, Tj, would be diagnosed in time period j as

pj = ∫
Tj

T0
I(s)(F(Tj − s) − F(Tj−1 − s))ds, (1.6)

where I(s) results from an independent and identically distributed Poisson process and

F(t) is estimated from analyses of HIV infections via blood transfusion (Brookmeyer &

Gail, 1988).They used this model to estimate the minimum size of the AIDS epidemic in

the United States up to 1988 (the year of publication).

Ades & Medley (1994) presented a similar model that allowed for variation across age and

probability of detection and was fit to seroprevalence data, not AIDS notifications. Using

their notation, the odds an individual in age a at time t was HIV-positive was

π(a, t) = ∫
a
0 {[exp(−∫ a−z

0 θ(u, t − a + u)du)]θ(a − z, t − z)ϕ(a, t, z)}dz
exp(−∫ a

0 θ(u, t − a + u)du) , (1.7)

where θ(a, t) is the incidence rate among people aged a at time t and ϕ(a, t, z) is the

probability an individual infected z years ago is detected at age a and time t (Ades &

Medley, 1994).They applied this method to seroprevalence data collected from newborns

in New York City between 1988 and 1992 to estimate HIV incidence among women of

childbearing age. Similarly, Sakarovitch et al. (2007) applied it to seroprevalence data from

pregnant women at ANC clinics in Côte d’Ivoire. More recently, Risher et al. (2021) built

a similar model into a Bayesian framework to estimate HIV incidence using cohort data

from across sub-Saharan Africa.

Back-calculationmodels are well suited to closed populations with plentiful testing data (i.e.

populations in which the change in the HIV testing positivity proportion correlates well

with true incidence), but we typically do not have such regular testing series in sub-Saharan

African settings. We might have suitable data among pregnant women (Sakarovitch et

al., 2007) or in a cohort study (Risher et al., 2021), but the relationship between these

populations and the general population is not obvious.
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The Estimation and Projection Package

The Estimation and Projection Package (EPP) model is a compartmental model used by

almost every country in SSA to estimate adult HIV incidence and to produce the incidence

and prevalence series necessary to run the more-detailed Spectrum model (Brown et al.,

2014; Eaton et al., 2019; Stover et al., 2017). EPP estimates adult HIV incidence from

prevalence data collected by large, nationally representative surveys and ANC sentinel

surveillance sites.

EPP adapts the basic structure of the SIR model to the particular epidemiological facts of

HIV by incorporating vital events, removing the recovered compartment, adding treatment

andmortality, and dividing each infected stage into substages that are predictive ofmortality.

EPP defines substages using ranges of counts of CD4 T cells per cubic millilitre of blood.

CD4 T cells are immune cells that help regulate the body’s response to infection and are

the cell that HIV most commonly infects. We can quantify how advanced an individual’s

infection has become by measuring the concentration of these cells in a sample of the

individual’s blood; a lower CD4 count indicates more advanced disease progression and

correlates closely with AIDS mortality (Yiannoutsos et al., 2012).

EPP infers a series of parameters that predict the time-varying HIV transmission rate,

typically called r(t) (equivalent to β from the traditional SIR model), that can take one

of several functional forms. Given a set of parameters and constant assumptions about

treatment, disease progression, and population change derived from other studies, EPP

finds r(t) and predicts HIV incidence and corresponding prevalence, ρ(t), from the early

1970s to the present day. Critically, EPP only models a single region at a time.

After projecting ρ(t), EPP synthesises nationally representative household survey data and

ANC data by assuming that the surveys offer unbiased measurement of true population-

level HIV prevalence and that prevalence at each ANC facility is a random deviation from

that of the general population:

Φ−1(ρs(t)) = Φ−1(ρ(t)) + δs + єs,t (1.8)

Here, Φ−1 is the inverse of the standard Gaussian density function (the probit transfor-
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mation), ρs(t) is prevalence among pregnant women at site s, δs is a site-specific random

effect, and єs,t is a Gaussian error term (Bao, 2012).

The EPP model has performed well in the past and has influenced HIV modelling and

policy-setting substantially, but it is not well-suited to subnational modelling. Households

surveys are typically powered to provide precise estimates of HIV prevalence at the national

level, not the subnational level. We could improve the precision of our subnational estimates

by sharing information across regions (as is typical in spatial statistics and hierarchical

modelling more generally), but that is not possible in EPP.

Beyond concerns about subnational data availability, EPP can only model a single pop-

ulation at time and must therefore assume that every new infection in that population

is endogenous. This assumption is not realistic at the subnational level and could bias

estimated incidence.

Further, EPP requires fixed assumptions about a number of model inputs that might,

themselves, be uncertain. In particular, EPP takes a time series of ART patient counts as

fixed input. To find the number of PLHIV initiating treatment at each timestep, it subtracts

the estimated number of patients in the previous timestep from the corresponding point in

the patient count time series; in other words, it finds the number of people it needs to move

onto treatment in order to match the ART time series exactly. In doing so, it treats the count

series as absolute truth and introduces a numerical problem. If, given the current parameter

set, EPP predicts fewer PLHIV total than the ART time series expects to see on treatment,

it cannot possibly allocate enough people to treatment to match the expected count. It

must either invent new PLHIV and put them on treatment immediately or add as many

PLHIV as it can and carry the difference into the future. Both of these approaches create

undesirable discrepancies between the current model state and the dataset it explicitly

assumes is true.

Thembisa

Thembisa is a highly detailed compartmental model of the South African HIV epidemic

designed specifically for program evaluation (Johnson & Dorrington, 2019). It stratifies

the South African population by demographic and sexual risk behaviour characteristics
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and by exposure to HIV prevention programmes, resulting in a data-intensive model that

can only infer a limited subset of parameters. After years of complementing model fitting

with careful manual tuning,Thembisa predicts the South African epidemic accurately, but

its generalisability to other countries is unknown, and, like EPP, it does not account for

spatial dynamics.

Optima

The Optima model was designed to help facilitate efficient resource allocation in HIV

programmeplanning (Kerr et al., 2015). LikeThembisa, it is a highly detailed compartmental

model, but unlikeThembisa, its compartments are defined by the user and can be based

on behavioural, demographic, or any other characteristics. Because of this level of detail,

a single evaluation with only 10 population groups can take up to two seconds, making

it ill-suited to statistical inference. It is calibrated to data via Markov Chain Monte Carlo

(MCMC), but the details of the calibration process are only vaguely described.

Local Burden of Disease incidence estimation

Sartorius et al. (2021) used the estimates from Dwyer-Lindgren et al. (2019), which will

be discussed shortly, to infer HIV incidence over space by fitting a modified version of

EPP to synthetic prevalence data generated from a geostatistical model fit. Fitting one

model to estimates from another requires the original model to fit well and introduces

the complex problem of uncertainty propagation. If the original model underestimates

posterior uncertainty, then fitting to its predicted posterior prevalence, as Sartorius et al.

(2021) seem to have done, could underestimate the level uncertainty in incidence that the

sparse, original data imply.The authors also fit EPP independently in each region, ignoring

the fundamental spatial structure of the epidemic.

Finally, Sartorius et al. (2021) only had access to national-level ART patient count data, a

gap that could lead them to understate spatial inequity in HIV incidence. To fill this gap,

they conducted a literature review that found estimates of subnational ART coverage in 29

of 44modelled countries. In countries with no subnational data, they assumed that ART

coverage was constant over space. In countries with subnational data from the literature
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review, they used a spatio-temporal statistical model to interpolate missing time points.

This approach is problematic because disparities in treatment availability are bound to

be a key driver of spatial variation in incidence. Assuming ART coverage is constant

over space will therefore almost certainly result in HIV incidence estimates that suppress

critical subnational disparities. Further, for the reasons detailed in Section 1.3.3, conflating

ART coverage among residents with ART patient counts can lead to biased estimates of

prevalence.

1.5.3 Spatial models of HIV burden

A separate vein of work in HIVmodelling has focused on the simpler problem of estimating

HIV prevalence over space and time. We can categorise spatial models of HIV by their

geographic units, denoted r. Recalling the two-stage sampling strategy described in Section

1.3.1, one class of models sets r to be individual survey clusters (point data methods) and

the other sets r to be the regions in which the clusters were collected (areal data methods).

Point data methods

Point data methods generally fall into two categories: smoothing and geostatistical models.

In both cases, each survey cluster is assumed to be an approximately five kilometre by

five kilometre “pixel” that is small enough to be treated as point data. Models are fit to

whichever pixels contain survey clusters, and predictions are made on the complete grid of

five-by-five pixels.

Larmarange et al. (2011) proposed using both kriging and kernel density estimationmethods

to interpolate HIV prevalence over space, estimating HIV prevalence at s as a weighted

average of prevalence at all observed points:

ρ̂r =
N

∑
i

wr(i)ρi , (1.9)

where wr(i) is the weight of i with respect to r (a function of distance) as determined by a

fitted semivariogram. More recent applications of kriging to HIV smooth covariates first

and use the surfaces of covariates to predict prevalence:
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logit ρr = β ⋅Xr , (1.10)

whereX is a set of “kriged” covariate surfaces (Cuadros et al., 2017).These models have had

success because of their speed and simplicity, but a 2016model comparison study found

that geostatistical methods consistently produced better out-of-sample fit (Subnational

Estimates Working Group of the HIV Modelling Consortium, 2016).

The geostatistical models used to model HIV prevalence follow the methodology developed

by the Malaria Atlas Project for malaria burden estimation (Gething et al., 2011). Bhatt et al.

(2019) (the HIVE model) and Dwyer-Lindgren et al. (2019) (the Local Burden of Disease

Model) are the two most prominent examples of this practice applied to HIV. In general,

they assume that

Yr,t ∼ Binom(Nr,t , ρr,t)
logit ρr,t = β ⋅Xr,t + Zr,t ,

Z ∼ N(0⃗, Σ),
(1.11)

where, Yr,t is the effective number of positive tests, Nr,t is the effective sample size, X is

a matrix of covariates that cover the entire grid we want to predict and Σ is a variance-

covariance matrix for a Gaussian process, Z.The estimation of this covariance matrix is

extremely intensive, particularly in cases in which space and time interact. To reduce the

computational burden, we can assume that the covariance in space and time are separable

and reformulate the model as

Z ∼ N(0⃗, Σs ⊗ Σt). (1.12)

This reformulation reduces the computational complexity of the model substantially while

still allowing differential variation over space and time (Flaxman et al., 2015). This type

of model can be fit using the integrated nested Laplace approximation via the R-INLA

package (Lindgren, Rue, & Lindström, 2011; Martins et al., 2013; Rue, Martino, & Chopin,

2009).

Geostatistical models produce extremely granular estimates of HIV prevalence over space
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with robustly quantified uncertainty, but, even after using the Kronecker product to estimate

two covariance matrices, they are exceptionally intensive. Dwyer-Lindgren et al. (2019)

were forced to model the African continent in four independent regions resulting in

implausible border effects in their estimates (Dwyer-Lindgren et al., 2019). Additionally,

the utility of such granular estimates has been called into question (Meyer-Rath et al., 2018).

Policy is made at the administrative unit-level, so estimates from geostatistical models must

be aggregated before they can be interpreted. In view of these concerns, the value of such

granular estimates relative to their computational cost is questionable.

Areal data methods

Areal data methods operate on larger, pre-defined administrative units (Fuglstad, Li, &

Wakefield, 2021). In these cases, r indexes a fixed region that is too large to treat as point

data. Like geostatistical models, areal methods assume that logit ρr,t is the weighted sum of

covariates and some spatio-temporal term, but the spatial component must be constructed

using different methods.

One of the simplest areal models uses shrinkage priors, assuming that each region is an

independent sample from a shared national distribution:

Yr ∼ Binom(Nr , ρr)
logit ρr = β ⋅Xr + νr ,

νr ∼ N(ν0, σν).
(1.13)

Here, νr is a region-specific random effect and ν0 is a cross-region mean. This model

assumes that each νr is an independent and identically distributed (i.i.d.) sample from

N(ν0, σν) and therefore makes no explicit assumptions about spatial structure.

The i.i.d. assumption in the shrinkage model is convenient but often unrealistic, so authors

have explored autoregressive models for HIV mapping (Gutreuter et al., 2019). In general,

autoregressivemodels add structure to the prior on region-specific random effects, but there

are numerous variations on the exact form. Gutreuter et al. (2019) use a simultaneously

autoregressive model
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ν ∼ N(0⃗, Σ), (1.14)

where Σ is a variance-covariance matrix:

Σ = σ 2
ν [(I − ρW)(I − ρW⊺)]−1 . (1.15)

Here, I is an identity matrix with the same dimensions as Σ, ρ is an estimated correlation

parameter, andW is an m ×m matrix such that for region j adjacent to r

Wr, j = 1

kr
, (1.16)

where kr is the number of regions directly adjacent to r (Gutreuter et al., 2019).This model

allows for a degree of correlation between νr and ν j for all j adjacent to r. Gutreuter et al.

(2019) found that the simultaneously autoregressive model improved fit well to prevalence

data from South Africa relative to a model with i.i.d. random effects.

Naomi Most recently, Eaton et al. (2021) proposed Naomi, a model for district-level

estimating HIV burden in SSA that uses small-area regression methods to synthesise

survey estimates of HIV prevalence, ART coverage, and recency with ANC data and ART

patient counts. Of particular note for this work, Naomi connects small-area models of ART

coverage and HIV prevalence and incidence to ART patient counts with a model of ART

attendance that allows individuals to seek treatment outside of their regions-of-residence.

For simplicity, I omit the age, sex, and time indices from Eaton et al. (2021) when describing

their model. Naomi predicts prevalence and ART coverage in region s using a reparametri-

sation of the Besag-York-Mollié model presented by Riebler et al. (2016), often referred to

as the BYM2model. Simplifying to space alone, we have

logit ρr = νr

ν ∼ BYM2(σρ , ϕρ),
(1.17)

where σ and ρ are hyperparameters for the BYM2model. They use a similar model for
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ART coverage.

Given prevalence, ART coverage, and the number of residences ρr, αr, and Nr, respectively,

Eaton et al. (2021) estimate the number of residents of r receiving treatment as

Âr = Nrρrαr . (1.18)

Because ρr and αr are both fit to household survey data, they specifically apply to residents

of r, while the facility-based programmatic data are in reference to people who receive

treatment in r.

To account for the possibility that PLHIV seek treatment outside of their home regions,

Eaton et al. (2021) proposed a model of ART attendance that maps estimated residents on

ART in any region r to adjacent regions. Let { j ∶ j ∼ r∧ j ≠ r} be the set of regions such that
j and r share a border, exclusive of r. I will use j ∼ r ∖ r as shorthand for this set. Naomi

finds the log-odds that an individual residing in r will seek treatment in j instead of r as

log γr, j = δ0 + δ j

δ0 = −4
δ j ∼ N(0, σδ),

(1.19)

where δ0 = −4 corresponds to a prior of 93% of individuals in a region with four neighbours

seeking treatment in their home region. As in multinomial regression, the authors fix

γr,r = 1.0 to maintain identifiability and use the softmax function to find the the share of

ART patients residing in r who seek treatment in all k ∈ j ∼ r ∖ r:

πr, j = γr, j
1 +∑k∈ j∼r∖r γr, j

. (1.20)

They then allocate all ART patients to a region-of-treatment according to their region-of-

residence, assuming that πr, j = π j,r = 0 if r and j are not adjacent:

P̂r =
N

∑
j=1
π j,r Â j. (1.21)

They then use P̂r as the mean for their observation model of facility-based ART patient
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count reports.

This ART attendance model serves an important role in reconciling the differing sampling

frames of the household survey data and the facility-based patient counts. If a region’s

facilities attract a disproportionate number of patients, then, given a certain level of survey-

estimated prevalence, implied ART coverage might be artificially inflated.

Anecdotally, we can see the effects of this in Malawi. Médecins Sans Frontières (MSF)

began operating treatment clinics in the high-prevalence Chiradzulu district several years

before Malawi’s broader national treatment programme was scaled up, leading PLHIV

in nearby regions (including the large city of Blantyre) to seek treatment in Chiradzulu

(Médecins Sans Frontières, Malawi & Ministry of Health and Population, Chiradzulu

District, Malawi, 2004). If we were to calculate ART coverage in Chiradzulu and nearby

districts by comparing PLHIV estimates from a household survey to ART patient count

data, we would see high ART coverage in Chiradzulu and low coverage in nearby areas.

The primary difficulty in the Naomi ART attendance model is that we do not directly

observe the flows between districts. For a given region r, we only observe∑N
j=1 π j,r Â j, as

opposed to every pairwise π j,r Â j.The combination of the informative prior on δ j and the

household survey estimates of ART coverage from PHIA identifies the model in many

cases, but it will always be impossible to validate.2

In this way, Naomi improves substantially on other models. It is, however, fundamentally

cross-sectional. To produce estimates over time, it takes a maximum of two, h-year steps

with a compartmental model, essentially linearising the epidemic. For example, if we

have data in 2016 and want estimates in 2019 and 2022, Naomi produces estimates in 2016,

calculates the derivative of a compartmental model model at 2016, and takes three-year

steps with a simple single-step projection method. If we are interested in estimating trends

in HIV incidence, then this method is likely to be too coarse and prone to integration error.

2Identifiability is difficult to assess formally here, but we can use intuition to understand how it might
work. Because the PHIA surveys estimate household-based ART coverage, they imply a certain number of
residents on treatment. If this number of residents on treatment conflicts with facility-based ART patient
counts, then, very loosely speaking, the model will either send patients to or pull patients from adjacent
regions. The prior on δ j should build into the model a “reluctance” to move individuals from their home
regions.
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Other spatial models of infectious disease

The epidemiological and demographic peculiarities of HIV have limited the spatial scope of

inferential models of incidence, but we can look to work in other areas of infectious disease

modelling for wisdom. In particular, the Epidemic/Endemic and TSIR models presented

by Held, Höhle, & Hofmann (2005) and Wakefield, Dong, & Minin (2017), respectively,

offer attractive frameworks for spatial modelling of infectious disease. The two models

were developed separately, but they arrive at nearly identical formulations.

Let Yr,t be the number of disease cases observed in region r at time t via some relatively

complete surveillance system. Following Section 1.5.1 of Wakefield, the TSIR model is

Yr,t ∼ NegBinom(µr,t , ϕ)
µr,t = [eλARt yr,t−1 + eλNE

N τ1
r ∑n

j=1wr, j y
τ2
j,t−1]

α + Nreλ
EN+bENr ,

(1.22)

where µi ,t can be broken down into infections originating from within r, infections orig-

inating from outside of i, and infections originating from outside of the system entirely

(Wakefield, Dong, & Minin, 2017). Structurally, the Epidemic/Endemic model is nearly

identical.

We are particularly interested in the “epidemic” term in which the spatial weight wr, j is

defined as

wr, j =
d−θ1/(1−θ1)r, j

∑k≠r d
−θ1/(1−θ1)
r,k

. (1.23)

The TSIR model defines dr, j to be the distance between r and j, while Held, Höhle, &

Hofmann (2005) define it to be the adjacency-based graph distance between r and j. Both

the TSIR model and the Epidemic/Endemic model rely on assumptions that make them

poorly suited to HIV (for example, that we can define a time interval after which an initially

infectious individual will almost certainly no longer be infectious), but we can use their

model of spatial risk as an example.



30 Chapter 1. Introduction

1.5.4 Discussion

This chapter has provided a brief overview of the data sources available for inferring HIV

incidence, outlined the basics of compartmental epidemic modelling, and highlighted a

number of previous models of HIV incidence and other key indicators. Based on this

review, I have made several observations about the data and modelling strategies used in

HIV burden inference.

First, there is an untapped wealth of data that could help inform spatially resolved estimates

of key HIV indicators in most sub-Saharan African countries. Contrary to some common

wisdom, population-level HIV epidemiology is rapidly becoming a data-rich field. The

Malawi Department of HIV & AIDS, for example, has collected monthly reports on HIV

testing and treatment provision from nearly 800 ANC sites since the beginning of 2011. For

comparison, the UNAIDS estimation process in Malawi incorporates annual data from 55

facilities, which themselves were originally selected because are situated in high-prevalence

areas.

Similarly, the methods used to incorporate general population ART patient count data,

which are available at a similar resolution to theANCdata, could be improved.The solutions

presented by models like EPP induce complex numerical challenges and necessarily treat

the patient counts as fixed, not as noisy data.There are particular challenges involved in

relating reported patient counts to general-population estimates and household survey

data, but the Naomi model provides a blueprint for how to proceed.

Setting concerns about data aside, the set of existing inferential models of population-

level HIV indicators fall broadly into two distinct categories: epidemic models that infer

incidence in closed populations and statistical models that interpolate prevalence over

space and time. Over the past decade, EPP has repeatedly proved to be a reliable tool for

inferring HIV incidence from national-level prevalence data, but its assumptions are only

realistic in large, closed populations. On the other hand, Dwyer-Lindgren et al. (2019),

Gutreuter et al. (2019), and Eaton et al. (2021) all present methods that produce accurate

maps of important indicators over space and, in some cases, time.The only models that

actually bridge the gap between these two worlds are Sartorius et al. (2021) and Eaton et

al. (2021). Both models take advantage of the fundamental principles of infectious disease
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epidemiology described in Section 1.5.1 to relate prevalence to incidence, but both could be

improved in a variety of ways.

In my PhD, I bridge the gap between epidemic models and spatially structured statistical

models in a way that offers epidemiologically plausible estimates of HIV incidence over

space and time. Taking ideas from Naomi and EPP specifically, I use small-area methods to

estimate the initial state of a compartmental epidemic model of HIV, which then produces

internally consistent trajectories of incidence, prevalence, and ART coverage that I use to

fit to a number of different datasets.

This model presents several methodological innovations. First, using a small-area statistical

methods to infer the initial state of the epidemic model allows computation to begin

the year data become available. Second, I propose stochastic time series models for two

important underlying dynamics of the epidemic model: regions-specific HIV transmission

rates and ART initiation probabilities. Further, by directly modelling ART initiation and

incorporating the ART attendance model from Eaton et al. (2021), I am able to avoid

treating ART patient count data as noiseless and fixed. Finally, I build this model into a

relatively fast, approximate inference framework that allows the model to fit in a reasonable

amount of time.

1.6 Document outline

The remainder of this thesis provides an account of the model of HIV incidence I have

developed and demonstrates its use in Malawi. Chapter 2 provides a detailed description

of the spatio-temporal model of HIV incidence. Chapter 3 reports methods and results

for an extensive set of specification tests conducted on the incidence model. In Chapter

4, I estimate the computational and epidemiological impact of explicitly modelling trans-

mission across small areas. Chapter 5, provides estimates of key HIV epidemic indicators

for the 28 districts of Malawi. Chapter 6 examines the effect of increasing forecasting

horizons on current and future estimates of incidence. Chapter 7 reproduces a previously

published article developing a modelling strategy for self-reported partner age distributions

(Wolock et al., 2021). Finally, Chapter 8 provides a unifying discussion and proposes several

directions for future work.



32 Chapter 1. Introduction

1.7 Software

Where applicable in the text, I cite the specific statistical software used to produce estimates.

All analyses were conducted using R (R Core Team, 2013). All plots were produced using

the ggplot2 R library (Wickham, 2016). I constructed hexagonal tile maps of Malawi using

the geogrid R library (Bailey, 2018).This document was prepared using the reedthesis

template from the thesisdown R library (Ismay & Solomon, 2021).
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Chapter 2

A Bayesian Spatio-Temporal

Epidemic Model of HIV

As described in Section 1.5, existing models of HIV burden are not well-suited to infer

incidence over space and time simultaneously. Spatially resolved models have focused

on estimating prevalence, while models of incidence usually operate on whole countries.

However, these models provide foundations for further development. Using concepts from

the EPP and Naomi, I have developed a spatio-temporal epidemic model of HIV that

synthesises data from household surveys, ANC facilities, and treatment programmes to

infer sex-specific adult HIV incidence over relatively small geographic areas.

In this chapter, I identify the data sources my model uses, provide a detailed description of

the epidemic model used to simulate epidemic indicators from predictions of underlying

dynamics, describe the observation model used to relate predicted epidemic indicators to

data, and, finally, outline the computational strategy used to perform inference.

2.1 Inference goal

The goal of this work is to infer quarterly sex-specific HIV incidence among adults aged

15-49 years for some set of subnational administrative units beginning before ART scale-up

(approximately 2005 in most SSA countries) and ending at the present day. I restrict to

adults aged 15-49 because that is the age range of both the DHS and EPP. Ministries of
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health allocate their budgets to administrative units (often districts, which comprise the

second administrative or “admin 2” level), so that is my unit of analysis. Let λr,g(t) denote
HIV incidence among people of sex g in region r at time t.

For the reasons detailed in Section 1.3.4, HIV incidence is difficult to observe directly, so

this work uses a compartmental epidemic model to infer epidemic dynamics using data on

observable indicators. I will refer to the model used to simulate prevalence, ART coverage,

and incidence from parameters as the process model and to the parameters for this model,

denoted θP, as the process parameters. Process parameters are used to simulate epidemic

indicators, which are related to data via an observation model. Like the process model,

the observation model requires a set of parameters, θO , such as the parameters that relate

general population prevalence to ANC facility prevalence.

I have built this model using a Bayesian framework.The ability to set priors allows for the

incorporation of estimates and knowledge from decades of research on HIV and can help

identify parameters that might otherwise be non-identifiable.The Bayesian framework is

also an intuitively appealing paradigm for the datasets used in this work. We can assume

that our data are samples from true, underlying distributions, which are our inference

targets.

Given a set of data, D, collated over space, time, data source, and sex, the goal is standard

Bayesian inference, that is, to obtain the posterior distribution of the two parameter sets:

P(θP , θO ∣ D). (2.1)

Bayes’ theorem gives us that

P(θP , θO ∣ D) = P(D ∣ θP , θO)P(θP , θO)
P(D) . (2.2)

Because P(D)does not depend onparameters, we know that, with respect to both parameter

sets,

P(θP , θO ∣ D)∝ P(D ∣ θP , θO)P(θP , θO). (2.3)
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Indicator Data Source Numerator Denominator

Prevalence Household surveys # of positive HIV
tests

# of HIV tests

ANC prevalence Sentinel ANC
clinics

# of positive HIV
tests

# of HIV tests

ART coverage Household surveys # of positive ART
tests

# of ART tests

ART patients Programmatic data # of ART patients -
Recency status Household surveys # of positive

recency assays
# of recency assays

Table 2.1: Taxonomy of population-level HIV data sources included in my
model

I further assume that θP and θO are independent, giving us

P(θP , θO ∣ D)∝ P(D ∣ θP , θO)P(θP)P(θO). (2.4)

I define priors on the process parameters in Section 2.4, and define the likelihood,

P(D ∣ θP , θO), and priors on parameters for the observation model, P(θO), in Section 2.5.

2.2 Data sources

The collated set of data, D, considered by this model consists of a subset of the candidate

sources described in Section 1.3: household surveys, ANC facility HIV test results, and

ART programme patient counts. Here, I describe the various indicators and resolutions of

these sources. For clarity, I defer the definition of the likelihood until after the mechanics

of the process model have been described (Section 2.5). Table 2.1 outlines the data sources

and the indicators they measure.

2.2.1 Household surveys

From household surveys, we obtain estimates of HIV prevalence, ART coverage, and the

proportion of recent infection. Let r ∈ {1, ..., R} denote a region, g ∈ {0, 1} denote sex,
with 0 representing men and 1 women, and s denote a specific data source. In the case of

household surveys, s represents a survey (e.g. the 2015-2016MPHIA survey in Malawi).
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Let ps,ar,t,g be the estimated proportion from survey s of individuals of sex g exhibiting

characteristic a among people in region r at time t. For household surveys, a can be HIV

prevalence, antiretroviral treatment status, or recent infection, denoted {HIV,ART, Rec},
respectively. Each survey is assigned to the midpoint of its collection period, so each

scorresponds to exactly one t, making t redundant.

As discussed in Section 1.3.1, each ps,ar,t,g comes with a design-based variance, τs,ar,t,g , calculated

according the survey’s design.The design effect of the proportion is

Deff = p s,a
r,t,g(1 − p s,a

r,t,g)/Ts,a
r,t,g

τs,ar,t,g
. (2.5)

We can solve for the effective sample size, Ts,a
r,t,g , of p

s,a
r,t,g as

Ts,a
r,t,g = ps,ar,t,g(1 − ps,ar,t,g)

τs,ar,t,g
, (2.6)

and find the corresponding effective number of positive tests: Ps,a
r,t,g = ps,ar,t,gTs,a

r,t,g .

From each DHS that conducted HIV testing, we can extract region-/sex-specific pairs

of effective positive tests and effective number of tests: (Ts,HIV
r,t,g , Ps,HIV

r,t,g ). From each PHIA

survey, we have data on HIV positivity, (Ts,HIV
r,t,g , Ps,HIV

r,t,g ), treatment status, (Ts,ART
r,t,g , Ps,ART

r,t,g ),
and recent infection (Ts,Rec

r,t,g , P
s,Rec
r,t,g ).

2.2.2 ANC facilities

In the case of HIV testing data from ANC facilities, we have counts of tests and positive

tests. Let Ts,HIV
r,t,1 be the number of HIV tests conducted at ANC facility or group of facilities

s during time period t and Ps,HIV
r,t,1 be the number of those tests that were positive. Each

facility or group of facilities s is located in exactly one region r, so r is redundant.

2.2.3 ART programme data

The final source of data used here is the routinely reported ART patient counts described

in Section 1.3.3. For facility s, we have the number of ART patients treated at that facility
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in time period t, denoted Cs
r,t . If these series cannot be restricted to ages 15-49, they must

be adjusted for the share of adults receiving treatment that are 50 years old and older. I

have done so by applying the time-varying estimated proportion of PLHIV on treatment in

Malawi that are between 15 and 50 years old from Spectrum to the observed patient count

series. Further, these data are typically not available disaggregated by sex. My model does

not include any detail about treatment seeking behaviour within region, so I aggregate

these series to the region level, giving us Cs
r,t .

2.3 Model overview

The model predicts the dynamics necessary to simulate an epidemic model as non-linear

functions of time, space, and sex (Hastie & Tibshirani, 1986), aggregates the epidemic

model’s projections to produce estimates, and uses the observation model to relate those

estimates to data. For a single draw from the posterior density:

1. A set of process parameters, θP , are used to model region-/sex-/time-specific series

of HIV transmission rates, ART initiation rates, and initial prevalence.

2. The epidemic model is initialised at the state determined by the estimated initial

prevalence from (1) and integrated using the estimated transmission rates, ART

initiation rates, and a set of exogenous, fixed parameters.

3. Predictions from the epidemic model are aggregated to produce estimates of HIV

prevalence, ART coverage, and ART patients at the same spatio-temporal resolution

as each dataset.

4. Predicted HIV prevalence, incidence, and ART coverage are used with an additional

set of parameters, θO , to evaluate the observation model given a collated dataset D.

Figure 2.1 presents a simplified representation of the model.The first step from the above

list is represented by every node to the left of M, the second step is M, and the third step is

to the right of M.
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Figure 2.1: A simplified graphical representation of my model of HIV inci-
dence. Diamonds are parameters, white circles are (deterministic) calcula-
tions, and blue squares are external data. Red parameters influence the process
model, and green/yellow parameters influence the observation model.

2.4 Process model

I use a compartmental epidemic model with inputs predicted by generalised additive

models to simulate internally consistent series of HIV incidence, prevalence, and ART

coverage among men and women aged 15-49 given a set of process parameters, θP.This

section provides a detailed description of how θP is used to produce those series.

2.4.1 Compartmental model of HIV

I use a deterministic compartmental model of HIV to simulate HIV prevalence and in-

cidence, ART coverage, and the number of PLHIV receiving treatment (ρr,g(t),λr,g(t),
αr,g(t), and Ar,g(t), respectively). I model the number of people of sex g in region r at

time t by disease status with the following set of ordinary differential equations:
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Figure 2.2: Diagram of compartmental model of HIV used in this analysis

∂Sr,g(t)
∂t

=Sr,g(t) ⋅ (−λr,g(t) − µS
t,g) + ES

r,t,g

∂Ir,g ,c(t)
∂t

=Ir,g ,c(t) ⋅ (−(µS
t,g + µI

t,g ,c) − α∗r,t,g ,c − ιg ,c,t) + λr,g ,c(t)Sr,g(t)+
ηAr,g ,c(t) + ιg ,c−1Ir,g ,c−1(t) + EI

r,t,g ,c

∂Ar,g ,c(t)
∂t

=Ar,g ,c(t) ⋅ (−µS
t,g − µA

t,g ,c − η) + α∗r,t,g ,cI(t) + EA
r,t,g ,c .

(2.7)

I denote the number of susceptibles Sr,g(t), the number infected in disease stage c without

treatment Ir,g ,c(t), and the number infected with treatment who began treatment at disease

stage c Ar,g ,c(t). I define c to be one of four CD4 compartments, consistent with those

defined by theThembisa model. Figure 2.2 outlines the structure of disease progression

in the model. A susceptible individual can either die at rate µS
t,g or become infected by

the opposite sex at rate λr,g(t). An infected individual without treatment can die at rate

µS
t,g + µI

t,g ,c, begin treatment with probability α∗r,t,g ,c, or progress to the next disease stage

at rate ιg ,c,t. Finally, an individual on treatment can die at rate µS
t,g + µA

t,g ,c or interrupt

treatment with annual probability η. Loss to follow up is difficult to measure, so I have

fixed η to be 6% annually, adjusting a published figure to account for improvements in the

treatment programme (Yu et al., 2007).

I subdivide PLHIV with and without treatment into four CD4 categories to accurately

model the survival distribution from HIV infection to AIDS-related death and to be able

to capture changing eligibility for ART in which treatment was restricted to those with the



40 Chapter 2. A Bayesian Spatio-Temporal Epidemic Model of HIV

lowest CD4 counts. A less complex compartmental model that omits these subdivisions

could perform as well, particularly in the presence of reliable cause-specific mortality data.

However, reliable mortality data are not available in most SSA countries. By subdividing

by CD4 category, we can inform predicted mortality and ART initiation with estimated

mortality parameters from other studies that are, in theory, biologically constant.

I calculate the CD4 stage progression rates, ιg ,c,t , using assumptions described by Johnson

& Dorrington (2019). Taking the average time spent in each CD4 category from Table 3.1,

I apply Equation 3.1 to the Spectrum-estimated year-/sex-specific average age of PLHIV

between 15-49:

ιg ,c,t = ιc0.96g(1 + k)(x−30)/10, (2.8)

where ιc is the average annual rate of progression from category c to c + 1, 0.96 is the

progression rate of women relative to men, and k = 0.18 is the proportionate increase in
progression associated with a ten-year increase age. Following Table 3.1, I fix ι = (3.16, 2.13,
3.20) to be the expected number of years spent in CD4 category without treatment for

the three highest CD4 categories.The final category is terminal, so its expected duration

is not defined. The age distribution of PLHIV from Spectrum is itself an estimate and

therefore might be inaccurate or contain uncertainty, which is not considered here; the

approach described above is a simple solution to account for the fact that the model does

not currently include age structure.

To account for the shifting age distribution of PLHIV and gradual improvement of HIV

patient outcomes without treatment in SSA, I calculate age-adjusted mortality rates based

on the assumptions and results from EPP-ASM (Eaton et al., 2019). I use input mortality

rates and predicted counts of PLHIV by age in each CD4 bin to find year-/age-/sex-/CD4-

specific expected death counts. I aggregate the death and population counts to align them

with the year-/sex-/CD4 groups used here and recalculate the mortality rates.

Each E term in Equation (2.7) is the net number of people ageing in or out of the 15-49 year

old population. HIV prevalence varies systematically with age in sub-Saharan Africa, so

we must consider the possibility that the distributions of people ageing in and out across

compartment vary from those of the general population. For example, if the population of
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PLHIV is ageing, we would expect prevalence among people ageing out to increase over

time.

I use population data and national age-/sex-specific estimates of the share of people in each

disease compartment from Spectrum to obtain regional estimates of the number of people

turning 15 and 50 years old by sex, E15
r,t,g and E

50
r,t,g , respectively.The national-level estimates

from Spectrum inherently weigh each region proportionately to its population, so if the

regional distribution of individuals across compartment is correlated with population, the

national-level disease status distributions will represent smaller regions poorly. I therefore

apply region-specific adjustments to the estimated Spectrum distributions at each time

point. Specifically, I adjust the odds from Spectrum of being in substage c of compartment

C relative to being susceptible with the model’s current regional prediction. Taking people

ageing in as an example, the adjusted odds of an individual being in CD4 bin c relative to

not being infected with HIV are:

∆15,C
t,g ,c = Cr,g ,c(t)

Sr,g(t)
C15,Spec

g ,c,t

S15,Specg ,t

, (2.9)

noting that the denominators have cancelled. Then, fixing o15,St,g = 1.0, I solve for the

proportion of people in each compartment:

ν15,Ct,g ,c = ∆15,C
t,g ,c

1 +∑J∈I,A∑4
i=1 ∆

15,J
t,g ,i

(2.10)

Finally, I calculate the net numbers of people ageing in and out for a given compartment,

C as

EC
r,t,g ,c = ν15,Ct,g ,cE

15
r,t,g − ν50,Ct,g ,cE

50
r,t,g . (2.11)

This method accounts for the possibility that the distributions of people ageing into or out

of the population across compartment vary from that of the general population.

Several inputs to this model are fixed at values defined by exogenous datasets or other

models. Specifically, the progression rates through CD4 categories, mortality rates, region-

/sex-specific population size, distribution of entrants and exits across disease stage, and the
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rate of loss-to-follow-up among persons on ART are all fixed assumptions derived from

other data sources. Because the objective is to infer incidence, which depends explicitly on

transmission rates, prevalence, and ART coverage, I focus on inferring the parameters that

determine those quantities.

The parameters that govern progression across CD4 categories and AIDS-related mortality

are derived from cohort studies and are assumed to be biological constants. The model

predicts AIDS mortality conditional on CD4 category, treatment status, sex, and average

age of PLHIV, a level of stratification at which the assumption of spatial homogeneity

might be reasonable. Treating input mortality and progression parameters as priors and

inferring spatially varying rates would be preferable, but population-level measurements

of AIDS-related mortality and CD4 counts are scarce in SSA.

I also consider region-level population as fixed, although population estimation is its own

uncertain process (United Nations, Department of Economic and Social Affairs, Popula-

tion Division, 2019). Unlike the mortality and progression parameters, input population

estimates are regionally resolved. Without age structure, the population levels projected by

the model could differ substantially from other estimates, so I match input population at

every time step. An age-structured model could infer fertility and mortality by fitting to

census data, allowing the user to estimate population levels directly (Wheldon et al., 2013).

I integrate the epidemic model using the forward Euler method with a step size of 0.25 years.

Although forward Euler is a crude numerical integrator, I use it to minimise computational

cost. Because HIV changes slowly over the course of years, Euler might be an appropriate

choice. I also note that there is a direct correspondence between an epidemic model

integrated with forward Euler and widely used discrete-time epidemic models; this model

could be viewed as a quarterly discrete-time model governed by annual rates that are being

scaled at projection-time.

Aside from numerical error, one deficiency of using the Euler method with relatively large

steps is that this model can never actually reach 100% ART coverage. Let h be the size

of the time step in years.Then a fixed proportion of people on ART are removed at each

time step, so the maximum ART coverage the model can estimate is 1 − hη, where η is the
annual proportion of people lost to follow-up. As the step size decreases, this quantity will

get closer to 1.0. In cases where ART coverage could be approaching 100%, smaller step
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sizes should be considered.

I define prevalence as

ρr,g(t) = ∑4
c=1[Ir,g ,c(t) + Ar,g ,c(t)]

Sr,g(t) +∑4
c=1[Ir,g ,c(t) + Ar,g ,c(t)]

(2.12)

and ART coverage as

αr,g(t) = ∑4
c=1 Ar,g ,c(t)

∑4
c=1[Ir,g ,c(t) + Ar,g ,c(t)]

. (2.13)

With the compartmental model defined, I will define the models for incidence, ART initia-

tion, and the initial state of themodel, denoted λr,g(t), α∗r,t,g ,c , and (Sr,g(0), Ir,g(0),Ar,g(0)),
respectively, for all r ∈ {1, ..., R} and g ∈ {0, 1}.

2.4.2 Underlying linear models

The epidemic model detailed in Equation (2.7) relies on a number of quantities that we

either cannot or do not observe directly. I have assumed that a subset of them (mortality,

disease progression, etc.) are fixed and drawn from other data sources andmodels, but three

key components (incidence, ART initiation rate, and the initial state) are inferred from

data. Each of these quantities is represented by an underlying generalised additive model

(Hastie & Tibshirani, 1986).The epidemic model uses the predictions of each underlying

linear model to simulate predicted values that can be compared to observations. In this

way, despite not directly observing quantities like region-specific HIV transmission rates,

the model is able to infer incidence from measurement of other indicators.

Model of HIV incidence

I model incidence, λr,g(t), as a log-linear function of time-varying transmission rates,

opposite-sex prevalence, andART coverage. Log-linearmodelsfit naturally into the classical

ODE-based epidemicmodelling framework. Recalling the simple SIRmodel fromEquation

(1.3), we defined new infections as βSI/N , resulting in incidence being λ = βI/N . Because

incidence is only constrained to be greater than zero, we can find
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log λ = log β + log I

N
. (2.14)

In this case, N is fixed and I is determined by the system of ODEs, so log β can be viewed

as the intercept in a log-linear model of incidence.

Casting the classical SIR model as naturally incorporating linear submodels is a useful

change in perspective because we can augment this model with any of the familiar hi-

erarchical modelling tools described in Section 1.5.3. If, for example, we are estimating

region-specific epidemics, we can use a hierarchical model to borrow statistical strength

across regions:

log λr = log βr + log Ir
Nr

log βr ∼ N(log β0, σ 2) (2.15)

Here, we assume that each region’s log-transmission rate, log βr, is normally distributed

around a shared mean, log β0.

Because we do not observe λr directly, it will be more precisely identified in regions with

more observations or in regions with observations that are more easily described by the

epidemic model. In other words, this model allows regions with less identifiable series of

incidence to share statistical strength from regions with more easily identified incidence

series.

Returning to HIV, I model the incidence rate among members of sex g as a log-linear

function of prevalence and ART coverage among the opposite sex. Omitting spatial trans-

mission dynamics briefly, the log-incidence rate amongmembers of sex g residing in region

r attributable to members of the opposite sex, g∗ in CD4 bin c is:

log λr,g ,c(t) = log ξc + g ⋅ (ψ + υt) + log κr,t+
log [(Ir,g∗ ,c(t) + (1 − ω)Ar,g∗ ,c(t))/Nr,g∗] , (2.16)

where ξc is the relative infectiousness of stage c, ψ + υt is an inferred time-varying, sex-

specific infectiousness log-ratio for women, κr,t is a region- and time-specific transmission

rate, and ω = 0.2 is the relative infectiousness of individuals on treatment.The first three
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terms of this equation, log ξc + g ⋅ (ψ + υt) + log κr,t , are equivalent to log β from Equation

(2.14), except that they allow for variation in transmission rates across sex, CD4 bin, time,

and space. The final term, log [(Ir,g∗ ,c(t) + (1 − ω)Ar,g∗ ,c(t))/Nr,g∗], is log-transformed

prevalence, which is equivalent to log I/N from Equation (2.14), adjusted for the strong pre-

ventative effect on transmission of ART (Eisinger, Dieffenbach, & Fauci, 2019). Excluding

the inferred sex ratio of transmission, this formulation is identical to EPP.

Themodel can be extended to account for spatialmixing allocating the number of potentially

infectious contacts from each region to itself and its neighbours. Specifically, we have:

log λr,g ,c(t) = log ξc + g ⋅ (ψ + υt) + log κr,t+
log∑ j∈{k∼r}wr, j,g(Ir,g∗ ,c(t) + (1 − ω)Ar,g∗ ,c(t))), (2.17)

andwr, j,g is the share of contacts among individuals of sex g in r that are with individuals of

sex g∗ in j. I use the relative infectiousness ratios listed in Table 3.1 in Johnson&Dorrington

(2019) to fix the values of ξc and set the following priors on the sex ratio of transmission

parameters:

ψ, υ ∼ N(0, 5). (2.18)

The spatial dynamics of transmission in Equation (2.17) are determined by weights, wr, j,g ,

which are defined as

wr, j,g =
*++,w(r, j)w( j, r)

Ng ,rNg∗ , j
. (2.19)

These weights balance contacts between people of sex g from region r with people of sex

g∗ from region j using the geometric mean of the two contact rates.

I definew(r, j) such that the share,w0, of contacts coming from r is fixed and the remaining

share is divided among its neighbours:

w(r, j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w0 r = j

1 −w0∥{ j ∼ r} ∖ r∥ r ≠ j.
(2.20)
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Figure 2.3: Share of mixing between Zomba district and all adjacent districts
under five different assumptions about w0.

where { j ∼ r} ∖ r is the set of regions adjacent to r exclusive of r. Figure 2.3 illustrates

values of
√
w(r, j)w( j, r) in the Zomba district of Malawi with varying assumptions about

w0. Although Held, Höhle, & Hofmann (2005) and Wakefield, Dong, & Minin (2017)

infer the parameters for their spatial epidemic models, I do not attempt to do so here.The

Epidemic/Endemic and TSIR models are typically fit to granular surveillance data from

pathogens that spread rapidly over space and time.There are no such data on HIV cases in

lower-income settings, so I assume that we cannot infer w0 directly from data.

Mathematically, the incidence rate, λr,g(t), is only constrained to be greater than zero, but

numerical simulation of the system of ODEs in Equation (2.7) is not well constrained and

negative predictions can disrupt the inference procedure.Therefore, I calculate the HIV

infection probability during a single time step of duration h attributable to all disease stages

combined by aggregating the stage-specific rates and finding the probability of infection:

λr,g(t) = 1 − exp [−h 4∑
c=1
λr,g ,c(t)] . (2.21)

I use this transformation solely for the sake of avoiding numerical problems during the

inference procedure; all reported region-level incidence here are per person-year.
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Spatio-temporalHIV transmission rates Themodel allows the transmission rate ofHIV

to vary by time, region, sex, and transmitting CD4 category. The relative infectiousness

by transmitting CD4 category is based on fixed assumptions, and the other dynamics are

inferred. I model the log-transformed region-/time-specific HIV transmission rate, log κr,t ,

with a hierarchical linear model:

log κr,t = κ0 + κr + (γκ0 + γκr ) ⋅ t +∑Kκ+1
i=1 βκi ,rϕ

κ
i (t)

κ0 ∼ N(0, 5)
κr ∼ N(0, σκ)
γκ0 ∼ N(0, 5)
γκr ∼ N(0, σγκ)
βκi ,r ∼ ARIMAσβκ ,θβκ (1, d , 0)

σκ , σγκ , σβκ ∼ N+(0, 1)
logit θβκ ∼ N(0,√1/0.15)

βκ1,r = 0.

(2.22)

where κ0 is a shared intercept, κr is a regional intercept and γκ0 and γκr are mean and

region-specific slopes with respect to time.The remainder of the model for κr,t defines a

spline model with coefficients distributed according to an autoregressive integrated moving

average (ARIMA) model (Hyndman & Athanasopoulos, 2018). In this model, Kκ is the

number of knots, βκi ,r is a region-specific coefficient for basis function i and ϕκi is the i’th

basis function.

We say y⃗ follows an ARIMA(p, d , q) model, if the d-order sequential differences in y

follow

y′t = ∑p
i=1 ϕi y′t−i +∑q

j=1 θ jєt− j + єt

єt ∼ N(0, σ), (2.23)

where y′t is the t’th entry in the sequence of d-order differences in y, ϕi is an autoregressive

coefficient, θ j is a moving average coefficient, and єt is the “innovation” from t − 1 to t

(Hyndman & Athanasopoulos, 2018). We use y′t as shorthand for the d-order differences.

If d = 0, then y′t = yt , if d = 1, then y′t = yt − yt−1, and so on. Note that if d = 1 and p = q = 0,
then this model is a first-order random walk:
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Param Size Description Prior

ψ 1 Log-incidence rate sex ratio N(0, 5)
υ 1 Log-incidence rate sex ratio slope N(0, 5)
κ0 1 Log-transmission rate mean intercept N(0, 5)
κr R Log-transmission rate region intercept N(0, σκ)
σκ 1 Log-transmission rate region intercept

SD
N+(0, 1)

γκ0 1 Log-transmission rate mean slope N(0, 5)
γκr R Log-transmission rate mean regional

slope
N(0, σβκ)

σγκ 1 Log-transmission rate region slope SD N+(0, 1)
βκi ,r R ×

Kκ + 1 Log-transmission rate regional spline
coefficient

ARIMAσβκ ,θβκ (1, d , 0)
σβκ 1 Log-transmission rate region ARIMA

SD
N+(0, 1)

logit θβκ 1 Log-transmission rate region ARIMA
autocorrelation SD

N+(0,√1/0.15)
Table 2.2: Parameters used in the model of HIV transmission rates. Indexed
parameters are estimated for all possible values of that index.

yt − yt−1 = єt , (2.24)

where єt is Gaussian noise.

Returning to Equation (2.22), I specify that only one autoregressive term and no moving

average terms may be included but do not specify the order of difference. All else equal,

higher order differencing should result in a smoother curve. I assess the choice of d in the

model comparison study presented in Chapter 3.

The model of incidence contributes the following parameters to θP: a transmission rate

sex log-ratio, ψ, a transmission rate intercept, κ0, a set of regional intercepts, κr, a mean

transmission rate slope with respect to time, βκ0 , a set of regional slopes, βκr , and two

standard deviations, σκr and σβκ , which are outlined in Table 2.2.

Model of ART initiation

I use a similar log-linear regression approach to model region-/time-/sex-/substage-specific

ART initiation rates (an outcome we similarly are not observing directly):
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log α⋆r,t,g ,c = ζc,g + g ⋅ χ + α⋆0 + α⋆r + (γα⋆0 + γα⋆r ) ⋅ t +∑Kα+1
i=1 βα

⋆

i ,rϕ
α⋆
i (t)

α⋆0 ∼ N(0, 5)
α⋆r ∼ N(0, σα⋆)
γα
⋆

0 ∼ N(0, 5)
γα
⋆

r ∼ N(0, σγα)
βα
⋆

i ,r ∼ ARIMAσβα ,θβα (1, 2, 0)
σα⋆ , σγα , σβα ∼ N+(0, 1)

logit θβα ∼ N(0,√1/0.15)
βα
⋆

1,r = 0.

(2.25)

This model has region-specific log-linear models with respect to time with additional

region-specific ARIMA error term. Here, ζc,g is a sex-/stage-specific rate of ART initiation,

χ is an inferred intercept among women, α⋆0 is a mean intercept, α⋆r is a regional intercept,

Kα is a number of knots, βα
⋆

i ,r is a regional spline coefficient, ϕi is a spline basis function,

and σα⋆ , σγα⋆ , and σβαr are standard deviations. To prevent the autoregressive model from

being rank deficient, I fix the first coefficient in the regional splines to be zero. In the

results I present here, I set ϕ to be an order-two spline with annual knots, effectively linearly

interpolating between inferred annual values.

Unlike in themodel ofHIV transmission rates, I have fixed the order of ARIMAdifferencing

to be two in this model.This choice should produce relatively smooth estimates of ART

initiation over time, with the capacity to make larger jumps if the data suggest they is

necessary. Anecdotally, I have found that, because the ART patient count series are included,

this model is more precisely determined by data than the transmission rate model.

For all t before ART was scaled up in any given region, I fix ϕi(t) to be zero.The baseline

ART initiation rate ζc,g is defined as µI
c,g/µI

1,1, the ratio of mortality in CD4 stage c relative

to women in stage 1.This encodes an assumption that PLHIV at stage c initiate treatment

in proportion to the expected mortality in c. This model of ART initiation contributes

the following parameters to θP: an intercept, α⋆0 , a set of region random effects, α⋆r , set of

spline coefficient means, mean and region-specific slopes, γα
⋆

0 and γα⋆r , a set of regional

spline coefficients, βα
∗

i ,r , three standard deviations, σα∗ , σγα , and σβα , and an autoregressive
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Param Size Description Prior

χ 1 Log-ART initiation rate sex effect N(0, 5)
α⋆0 1 Log-ART initiation rate mean

intercept
N(0, 5)

α⋆r R Log-ART initiation rate regional
intercept

N(0, σα⋆)
σα⋆ 1 Log-ART initiation rate regional

intercept SD
N+(0, 1)

γα
⋆

0 1 Log-ART initation rate mean slope N(0, 5)
γα
⋆

r R Log-ART initation rate regional slope N(0, σγα)
σγα 1 Log-transmission rate region slope SD N+(0, 1)
βα
⋆

I,r R ×
Kα + 1 Log-ART initiation rate regional

spline coefficient
ARIMAσβα ,θβα (1, 2, 0)

σβα 1 Log-ART initiation rate region
ARIMA SD

N+(0, 1)
logit θβα 1 Log-ART initation rate region

ARIMA autocorrelation SD
N+(0,√1/0.15)

δ0 1 Mean ANC bias N(0, 5)
Table 2.3: Parameters used in the model of ART initation. Indexed parameters
are estimated for all possible values of that index.

parameter θβα , which are outlined in Table 2.3.

Model of initial state

Region-/sex-specific initial prevalence is modelled with a logit-linear model:

logit ρr,g(0) = ρr + g ⋅ є
ρr ∼ N(ρ0, σρ)
ρ0 ∼ N(0, 5)
σρ ∼ N+(0, 1)

(2.26)

where ρ0 is cross-region logit-transformed mean prevalence at time 0, ρr is a regional

deviation from ρ0, є is an intercept for prevalence among women (recalling that g = 1

among women), and σρ is a standard deviation for the random effects. I calculate є from

Spectrum estimates as the log-ratio of female prevalence to male prevalence.

To maintain consistency with other, national-level estimates of prevalence, I put a prior on

initial prevalence among men:
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Param Size Description Prior

ρ0 1 Initial mean prevalence N(0, 5)
ρr R Initial regional prevalence N(0, σρ)
σρ 1 Initial prevalence SD N+(0, 1)

Table 2.4: Parameters used in themodel of the initial state. Indexed parameters
are estimated for all possible values of that index.

ρ̂Nat ∼ N(ρNat, 0.005)
ρ̂Nat = 1

PNat,0(0) ∑R
r=1

Pr ,0(0)
1+exp(−ρr) ,

(2.27)

where Pr,0(0)/(1 + exp(−ρr)) is estimated male PLHIV in region r.This prior encourages

the model to match external estimates of initial prevalence, without sacrificing subnational

variation. The inverse logit-transformed mean of the random effects, 1/(1 + exp(−ρ0)),
cannot be compared directly to exogenous initial prevalence ρNat, because ρNat is implicitly

population-weighted.

I assume that t = 0 is before ART scale-up, so Ar,g ,c(0) = 0 in all cases. Making fixed

assumptions about the distribution of PLHIV across disease substage without treatment, I

calculate Ir,g ,c(0) and solve for Sr,g ,c(0):

Ir,g ,c(0) = bg ,c ⋅ ρr,g(0) ⋅ Pr,g(0)
Sr,g(0) = Pr,g(0) −∑4

c=1(Ir,g ,c(0))
Ar,g ,c(0) = 0.

(2.28)

where bg ,c is the Spectrum-derived share of PLHIV of sex g in CD4 stage c at time zero.

Pr,g(0) is exogenously defined population at time zero.

This model adds the following parameters to θP: a national mean, ρ0, regional deviations

from the means, ρr, and one standard deviation, σρ, which are outlined in Table 2.4.

2.5 Observation model

With each of the components described above, simulating the model for a given set of

process parameters yields predicted values for HIV incidence, prevalence, ART coverage,
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and ART patient counts for both sexes, and all times and regions. In this section, I describe

how those predictions are related to data via a set of observation models.

2.5.1 Household surveys

I assume that large household surveys are representative within each region, so if s is

a household survey, P s,HIV
r,t,g /T s,HIV

r,t,g , provides an unbiased estimate of true prevalence in

demographic segment {r, t, g} where P and T are the effective count and effective sample

size, respectively. P and T are calculated according to (1.2), so we can assume that P s,HIV
r,t,g is

a sample from a binomial distribution with T s,HIV
r,t,g trials each with a probability of ρr,g(t):

Ps,HIV
r,t,g ∼ Binom(T s,HIV

r,t,g , ρr,g(t)). (2.29)

Defining a binomial distribution using the effective count and effective sample size is a

computationally efficient way to approximate the effect of the complex multi-stage survey

design (Chen, Wakefield, & Lumley, 2014) and is increasingly common in recent HIV

mapping exercises (Dwyer-Lindgren et al., 2019; Eaton et al., 2021).

I make a similar assumption about survey-estimated ART coverage:

Ps,ART
r,t,g ∼ Binom(T s,ART

r,t,g , αr,g(t)). (2.30)

Recency assays indicate whether an individual was infected in the recent past, so estimated

incidence and prevalence must be combined to estimate the proportions that are recent.

We can use the estimator from Kassanjee, McWalter, & Welte (2014) as modified by Eaton

et al. (2021) to find this proportion:

νr,g(t) = λr,g(t) ⋅ (1 − ρr,g(t)) ⋅ (ΩR − γR) + γRρr,g(t)
ρr,g(t) , (2.31)

whereΩR is themean duration of recent infection (fixed at 130/365), and γR is the proportion

of positive recency assays that are false positives (fixed at 0). As before, I assume that each

P s,Rec
r,t,g is a sample from a binomial distribution:
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Ps,Rec
r,t,g ∼ Binom(T s,Rec

r,t,g , νr,g(t)). (2.32)

Because the mean duration of recent infection and recency assay false positive rate are fixed,

the observation models for survey data do not contribute any parameters to the model.

2.5.2 ANC facility data

ANC attendees might not represent the general population well, so we cannot estimate

ρr,1(t) with Ps,HIV
r,t,1 /Ts,HIV

r,t,1 . Instead, following Bao (2012), I estimate site-specific ANC

prevalence as a function of general population prevalence and facility effects

logit ρsr,1(t) = logit ρr,1(t) + δ0 + δs + (є0 + єs) ⋅ t
δ0, є0 ∼ N(0, 5)

δs ∼ N(0, σδ)
єs ∼ N(0, σє)

σδ , σє ∼ N(0, 1),

(2.33)

where δs is a facility-specific random effect, δ0 is a mean ANC offset, є0 is a mean slope

with respect to time, єs is a site-specific slope, and σδ and σє are standard deviations for the

site-specific parameters. Bao (2012) do not include slopes with respect time in their ANC

observation. Eaton et al. (2014) indicated that we cannot assume that the representativeness

of ANC facilities is not changing.

Eaton & Bao (2017) report that Gaussian approximations to standard binomial models

do not offer adequate posterior predictive coverage when fit to HIV prevalence data from

ANC facilities, so this work includes the option to use one of two possible likelihoods. The

first is a standard binomial model

Ps,HIV
r,t,1 ∼ Binom(Ts,HIV

r,t,1 , ρsr,1(t)), (2.34)

and the second is a beta-binomial model
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Param Size Description Prior

δs S Site-specific ANC bias N(0, σδ)
σδ 1 ANC bias SD N+(0, 1)
є0 1 Mean ANC slope N(0, 5)
єs S Site-specific ANC bias slope N(0, σє)
ϕtype[s] 2 Type-specific ANC beta-binomial

overdispersion
N(−1, 1)

σє 1 ANC bias slope SD N+(0, 1)
Table 2.5: Parameters used in themodel of the initial state. Indexed parameters
are estimated for all possible values of that index.

Ps,HIV
r,t,1 ∼ BetaBinom(Ts,HIV

r,t,1 , ρsr,1(t), ϕtype[s])
logitϕtype[s] ∼ N(−1, 1) (2.35)

where ϕtype[s] ∈ (0, 1) is a parameter measuring the autocorrelation between each Bernoulli

trial. In the beta-binomial case I estimate two separate values of ϕ: one when s is an

individual facility and one when s is an aggregate over multiple facilities. I evaluate the

effect of the choice of ANC observation in Chapter 3.This model contributes the following

parameters to the model: coefficients for the observation model, δ0, δs, є0, and єs, and

hyperparameters, σδ, σє, and ϕtype[s], which are outlined in Table 2.5.

2.5.3 ART programme data

The final data source used by the model is programmatic ART patient count time series,

which I denote Cr,t .The compartmental model produces estimates of the number of PLHIV

living in r that are on treatment, Ar(t), but these estimates are not directly comparable

to the corresponding Cr,t. While large surveys measure individuals in their regions of

residence, ART programme data measure individuals where they seek treatment. Because

I fit directly to survey data and am using population estimates defined by residency, I am

implicitly modelling individuals in their regions-of-residence, and therefore need to adjust

Ar(t) before it can be compared directly to Cr,t .

Following Eaton et al. (2021), I model the number of PLHIV seeking treatment in region r

at time t as
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A∗r (t) = ∑
{ j∼r}

π j→r,tA j(t), (2.36)

where { j ∼ r} is set of regions that are adjacent to r inclusive of r, π j→r,t is the time-varying

probability an individual residing in j will seek treatment in r, and Aj(t) is the number of

PLHIV on ART who live in j. Note that Aj(t) = ∑g∈{0,1} Aj,g(t).
I model the odds of moving from j to r relative to staying in r as

log
πr→ j ,t

πr→r ,t
= log µr→ j,t = mj +m0 + βπ t

mj ∼ N(0, σ 2
m)

m0 ∼ N(−3, 1)
βπ ∼ N(0, 5)
σm ∼ N+(0, 2),

(2.37)

where mj is a region-specific “mass” term, m0 is a mean mass with a prior that ensures that

most people will stay in their home regions, and βπ is a time-specific slope. Following the

Naomi model, I place an informative prior on m0 that assumes a priori that the majority

of people seek treatment in their region of residence. If mj and βπ are both fixed to be

zero and region r has one neighbour, then m0 = −3.0 implies that approximately 95% of

individuals residing in r will seek treatment in r.

I allow each π to vary with respect to time to account for national-level changes in ART

programmes; across-the-board improvements in treatment provision could result in fewer

patients needing to travel to receive adequate care and therefore, a negative value of βπ.

Naomi was designed to estimate recent trends, so it covers a much shorter time period and

does not need to account for long-term changes in ART programmes.

I use the softmax function to solve for πr→ j,t with µr→ j,t = 1.0:

πr→ j,t = µr→ j,t

1 +∑{k∼r}∖r µr→k,t
. (2.38)

Then I find πr→r,t = 1 −∑{k∼r}∖r πr→k,t .

These data do not have a natural denominator, so we cannot treat them as independent
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binomial samples. Instead, I have implemented a negative binomial model with variance

that can scale both linearly and quadratically with its mean (Lindén & Mäntyniemi, 2011).

Let

µ = A∗r (t)
σ2 = µ + θ1µ + θ2µ2, (2.39)

where θ1, θ2 > 0. We can use µ and σ2 to find the typical negative binomial parameters:

r = µ2/(σ2 − µ) and p = µ/σ2.Then we have

Cr,t ∼ NegBinom(r, p). (2.40)

For a fixed value of θ2, as θ1 goes to zero, this distribution converges to a negative binomial

with overdispersion θ2. Conversely, for a fixed value of θ1, as θ2 goes to zero, it goes to a

quasi-Poisson distribution. As both θ1 and θ2 go to zero, it returns to Poisson.

Allowing the variance of Cr,t to scale both linearly and quadratically with µ allows this

model to scale appropriately across regions of varying sizes. A one-unit change in θ2

will result in a much larger change in variance in a high-population region than in a low-

population region, even though we do not necessarily expect the measurement of ART

patients to be quadratically higher variance in the high-population region.

I set the following priors on θ1 and θ2:

log θ1, log θ2 ∼ N(0, 2) (2.41)

The observation model for ART patient counts contributes the following parameters to the

full set of parameters: θ1 and θ2 from the quasi-negative binomial distribution, one mass,

mr, per region, a mean mass, m0, a time coefficient, βt, and one variance σ 2
m, which are

outlined in Table 2.6.
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Param Size Description Prior

m0 1 Mean ART attraction mass N(0, 5)
mr R Regional ART attraction mass N(0, σm)
σm 1 Regional ART attraction mass SD N+(0, 1)
βπ 1 ART attraction slope N(0, 5)
ω 1 Linear overdispersion term N+(0, 2)
θ 1 Quadratic overdispersion term N+(0, 2)

Table 2.6: Parameters used in the ART patint count observation model In-
dexed parameters are estimated for all possible values of that index.

2.5.4 Posterior density

I assume each data point is an independent sample from the distributions listed above.

Let DHIV, DART, and DRec be the subsets of D corresponding prevalence, treatment, and

recency data, respectively.Then we have

P(D ∣ θO , θP) = P(DHIV ∣ θO , θP) × P(DART ∣ θO , θP) × P(DRec ∣ θO , θP). (2.42)

We can decompose further by data source to illustrate the varying degrees of dependence

on parameters:

P(D ∣ θO , θP) = P(DHIV
Surv ∣ θP)×

P(DART
Surv ∣ θP)×

P(DRec
Surv ∣ θP)×

P(DHIV
ANC ∣ θO , θP)×

P(DART
Prog ∣ θO , θP).

(2.43)

None of the likelihoods of the survey data depend on inferred parameters, so DHIV
Surv, D

ART
Surv ,

and DRec
Surv are independent of θO.

We can refine this further by identifying the compartmental model outputs that each

indicator depends on:
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P(D ∣ θO , θP) = P(DHIV
Surv ∣ ρ)×

P(DART
Surv ∣ α)×

P(DRec
Surv ∣ λ, ρ)×

P(DHIV
ANC ∣ θO , ρ)×

P(DART
Prog ∣ θO ,A).

(2.44)

Finally, we have the full posterior density (omitting the normalizing constant):

P(θO , θP ∣ D)∝ P(DHIV
Surv ∣ ρ)×

P(DART
Surv ∣ α)×

P(DRec
Surv ∣ λ, ρ)×

P(DHIV
ANC ∣ θO , ρ)×

P(DART
Prog ∣ θO ,A)×

P(θO) × P(θP).

(2.45)

2.6 Inference strategy

The model described above is a complex one that involves substantial computation for a

single posterior density evaluation. The posterior log-density is analytically intractable, so

I must use an approximate method or a sampling algorithm like MCMC to sample from

P(θO , θP ∣ D) and produce posterior estimates of λ.

The No U-Turn Sampler (NUTS) (Hoffman & Gelman, 2011) has proved too intensive

for testing, so I have focused on an approximate inference strategy based on the Laplace

method as implemented in the TMB R package Kristensen et al. (2016). The inference

strategy proposed by Skaug & Fournier (2006) uses automatic differentiation to find the

joint posterior mode of the model, places a multivariate normal around that mode, and

produces samples by taking samples from the multivariate normal.

A key feature of this strategy is the ability to quickly approximate the marginal posterior

density with respect to a set of “random” parameters, θR ⊂ θO ∪ θP , via the Laplace method.

In this case, θR is every parameter listed above that is not a hyperparameter. If f (θF , θR)
is the negative posterior log-density of our model with “fixed” parameters θF ∈ Rm and
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random parameters θR ∈ Rn, then the Laplace method approximates the marginal posterior

density of the model with respect to θR; that is, it approximates the following integral:

L(θF) = ∫
Rn

exp( f (θF , θR))dθR . (2.46)

If we can find θ̂R that minimizes f (θF , θR) for a given set of fixed parameters θF via an

inner optimisation step, then we can use the Laplace approximation to approximate the

marginal density of θF with a multivariate normal distribution:

L⋆(θF) = 2πn/2det(H(θF))−1/2 exp(− f (θF , θ̂R)), (2.47)

where H(θF) is the Hessian of f (θF , θR) evaluated at θ̂R. TMB uses automatic differen-

tiation to find H(θF). Because we are minimising the negative log-likelihood, our outer

optimisation step is minimising

− log L⋆(θF) = −m√2π + 1

2
logdet(H(θF)) + f (θF , θ̂R). (2.48)

To produce posterior samples from P(θO , θP ∣ D), I use TMB to find maximum a posteriori

estimates of both the random and non-random parameters, θO and θP , which we will call

θMAP. I find the precision matrix of the model with respect to all non-hyperparameters

at θMAP and invert it to find ΣMAP, the covariance matrix of the model with respect to

the non-hyperparameters. I then take samples from the multivariate normal distribution

centred at θMAP with covariance ΣMAP to approximate sampling from P(θO , θP ∣ D), where
ΣMAP includes zero variance and covariance for all hyperparameters. Assuming that the

hyperparameters have zero variance is not accurate, but I have found that applying the

Laplace approximation to hyperparameters often results in implausible predictions.

2.7 Remaining chapters

In subsequent chapters, I describe how I have validated and applied the model proposed

here. In Chapter 3, I describe a cross-validation strategy and experiment designed to
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help us identify which (if any) of the possible specific configurations of this model is

best. In Chapter 4, I test the effects of varying assumptions about spatial transmission on

computation time and inferred incidence. In Chapter 5, I select one, suitably good model

specification and use it generate descriptive results for the 28 districts of Malawi. Finally, in

Chapter 6, I examine how well the model predicts incidence at increasingly long forecasting

horizons to assess the benefits of sequentially including administrative data as it becomes

available.
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Chapter 3

Model Specification Testing

Specifying the model presented in Chapter 2 requires the user to make a number of design

decisions that could meaningfully affect inferred HIV incidence. To help make these

decisions in an empirically justified way, I have designed a cross-validation scheme that

allows the user to compare how well different model specifications predict out-of-sample

data. In this chapter, I present a series of model specification experiments applying the

cross-validation scheme to data from Malawi and discuss the effects various specifications

decisions could have on inferred incidence.

3.1 Introduction

Throughout Chapter 2, I neglected to specify a number of key design decisions that could

impact inferred incidence. For example, I did not fix the number of knots in the transmis-

sion rate model.This is complex model, so between all combinations of all possible choices

there are hundreds or thousands of models that we might consider fitting.

Because we do not fit directly to incidence data, wemust carefully assess the extent to which

our inferred incidence series are determined by design decisions. Previously proposed

models of HIV incidence have typically offered narrow sets of sensitivity analyses, but only a

small number of authors have reported comprehensive, cross-validated model specification

tests (Dwyer-Lindgren et al., 2019).

To those ends, I designed a model specification experiment to identify which model or set
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of models fit best to prevalence and treatment data and to assess how inferred incidence was

impacted by model specification choices. I fit every combination of a set of possible choices

(146models in total) to real data fromMalawi and compared the posterior predictions using

cross-validation over six forecasting horizons. I also identified determinants of convergence

failure in the approximate inference strategy from Section 2.6 to try to inform future model

fitting and compared posterior distributions from that strategy to those of the No U-Turn

Sampler (NUTS).

3.2 Methods

I fit a grid of 146 model configurations to data from Malawi from 1995 through 2020

with six hold-out horizons (1 January 2015, 2016, 2017, 2018, 2019, and 2020).The model

configurations varied in terms of the ANC observation model and the transmission rate

specification, outlined in Table 3.2. I cross-validated the results by comparing out-of-sample

predictions across each of the six horizons and identified the model configurations that

most often resulted in the best out-of-sample fit.

3.2.1 Data

I fit every model configuration to data from Malawi collected between 1995 and 2020,

described in Section 1.4 and outlined in Table 3.1. Specifically, I fit to seroprevalence data

from four household surveys: three DHS and one PHIA survey. From the 2004, 2010,

and 2015-16 Demographic and Health Surveys, I used HIV test results, and fromMPHIA

2015-2016, I used HIV, ART, and recency test results (Ministry of Health, Malawi, 2018;

National Statistical Office/Malawi & ICF, 2017; National Statistical Office - NSO/Malawi &

ICF Macro, 2011; National Statistical Office - NSO/Malawi & ORCMacro, 2005). I used

ART patient count data provided by the the Malawi DHA and supplemented with data

from a published report (Médecins Sans Frontières, Malawi & Ministry of Health and

Population, Chiradzulu District, Malawi, 2004). Finally, I included the combined dataset of

ANC facility testing data from EPP and from the DHA. Each of the data sources described

in Section 2.2 is represented and supplemented with a set of fixed, exogenous assumptions.

I used district-level population estimates from the Malawi Census Bureau, disaggregating
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Name Type Years Prevalence Treatment Recency

2004 DHS HH Survey 2004 ✓
2010 DHS HH Survey 2010 ✓
2015-2016
DHS

HH Survey 2015-2016 ✓
MPHIA
2015-2016

HH Survey 2015-2016 ✓ ✓ ✓
UNAIDS
ANC Data

Sentinel
surveillance

1995-2010 ✓
DHAMIS Facility

reports
2011-
present

✓
DHAMIS Facility

reports
2005-
present

✓
Table 3.1: Population-level data sources fromMalawi used in this analysis.

five-year age groups as necessary using Beers interpolation and linearly interpolating

between annual estimates to get quarterly estimates (Shryock, Siegel, & Stockwell, 1976).

The other exogenous data (mortality rates, progression parameters, etc.) were calculated as

described in Chapter 2.

3.2.2 Cross-validation

Because incidence is not measured directly, the correct cross-validation strategy for these

data is not obvious. Cross-validation simulates how well a model generalises to new data,

so I have designed a strategy that is focused on forecasting the data sources we expect

to continue to acquire (Vollmer et al., 2021). To that end, the cross-validation strategy

predicts on routinely reported indicators, represented in my model by ART programme

data and facility-based ANC prevalence. I constructed cross-validation datasets by holding

out all data after one of six forecasting horizons: the first of January in 2015, 2016, 2017,

2018, 2019, and 2020. I compared each model using out-of-sample root mean squared

error (RMSE) with respect to observed point estimates and 50%, 80%, and 95% posterior

predictive coverage separately for the two datasets (ANC facility data and ART programme

data).

This work focuses on estimating HIV incidence over space, so it is worth distinguishing

the current cross-validation problem from those often found in spatial statistics. Whereas

interpolation over unobserved spatial units is a central goal of amodel like the one described
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by Dwyer-Lindgren et al. (2019), this model operates on fixed regions. If we were to re-run

the various data collection mechanisms, we would obtain new observations of the same

geographic units given unobserved progression of the epidemic over time. We would not

discover a new district of Malawi. Therefore, I have not used a spatial cross-validation

scheme.

3.2.3 Model configurations

I tested every combination of choices for seven different design decisions, outlined in

Table 3.2. First, I allowed the likelihood for the ANC facility data to be either binomial or

beta-binomial. As described in Section 2.5.2, individual facility series shared one autocor-

relation parameter and aggregate series shared another under the beta-binomial model.

Second, I tested the value of including a non-linear district-level temporal component in

the transmission rate model by fitting Equation (2.22) with intercepts only, intercepts and

linear slopes with respect to time, and intercepts, slopes, and latent components. Among

the models with latent components for the HIV transmission rate, I tested the effects of

excluding the linear slope with respect to time, the order of the spline basis functions (one,

two, or three), the distance between knots in the spline design matrices (one year or five

years), the order of ARIMA differencing, and, finally, whether to include an autoregressive

term. All valid combinations of these choices resulted in 146 different models, which led to

876models to fit when combined with the six forecasting horizons.

3.2.4 Experiments

I used the 146 models to examine four questions relevant to future applications of this

model and other models of this type:

1. What determines whether or not the optimiser will converge for a particular model

configuration?

2. Which of the two ANC observation models described in Section 2.5.2 fits better?

3. Is there an optimal transmission rate model configuration or a set of choices that

consistently lead to better fit?

4. Is fitting with the No U-Turn Sampler feasible or necessary?
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Variable Value Description

Binomial Binomial ANC observation model
ANC observation model

Beta-binomial Beta-binomial ANC observation model

1 One degree of ARIMA differencing
2 Two degrees of ARIMA differencingARIMA order
3 Three degrees of ARIMA differencing

Yes Exclude slope w.r.t. time
Include slope

No Include slope w.r.t. time

1 Knots at one-year intervals
Spline interval

5 Knots at five-year intervals

1 Piecewise constant design matrix
2 Piecewise linear design matrixSpline order
3 Order-three design matrix

Constant Constant w.r.t. time
Linear Linear w.r.t. timeTransm. rate model
Latent Include ARIMA component

Yes Include autoregressive term
Use AR

No Exclude autoregressive term

Table 3.2: Model configuration variables tested in this chapter with descrip-
tions of each value. Unless otherwise specified, every component refers to the
transmission rate model.
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This exercise required fitting and comparing several hundred models. To facilitate interpre-

tation of the results, I conducted the four analyses sequentially: I addressed each question

using the successful or best models from the previous question. For example, I only used

the best ANC observation model to compare transmission rate parametrisations.

Identifying computational problems

The approximate inference strategy described in Section 2.6 utilises two optimisation

steps: an inner step that finds the optimal random effect values θ̂R given the current fixed

effect values, θF , and an outer step that optimises θF given θ̂R. Anecdotally, the Newton

optimiser used for inner optimisation in TMB can struggle with extremely complex or

weakly identified models because the gradients with respect to certain parameters in θR

diverge to positive infinity, causing the optimiser to fail. Having observed this behaviour in

some model configurations, I first examined whether there were consistent determinants

of convergence failure. I plotted failure rates by each value of each configuration variable

and looked for outliers.

ANC observation model

Taking only the models that converged from the previous analysis, I compared out-of-

sample RMSE and 50%, 80%, and 95% posterior predictive coverages between the binomial

and beta-binomial ANC observation models. To identify the best observation model, I pro-

duced box plots of out-of-sample RMSE and posterior predictive coverage by observation

model and forecasting horizon. Because I fit every valid configuration described in Section

3.2.3, every binomial model had a beta-binomial equivalent to which I could compare it

directly. I performed this comparison by making scatter plots of out-of-sample RMSE and

posterior predictive coverage of all pairs for which both models converged.

Transmission rate parametrisation

Observing that one ANC observation model was superior to the other, I restricted the

models once again to just those with that observation model. Within this subset of 73

models, I compared out-of-sample RMSE and posterior predictive coverage across each of
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the transmission rate parametrisation variables. I also found the best model for each time

horizon-dataset combination, and found how often each configuration variable appeared

in each best model.

Considering certain intuitive theoretical requirements (for example, that HIV transmission

will not decrease monotonically to zero), I visually inspected results generated using

configuration variables that appeared frequently in best models to characterise the effects

of different design decisions. After identifying these characteristics, I verified that the

observation model from Section 3.2.4 was still best in the set of selected models. By

comparing the models identified as good candidates to previous estimates of national level

incidence in Malawi, I identified a single model to take as the fixed model for the rest of

the document.

Inference strategy

Finally, I used the tmbstan R library (Monnahan & Kristensen, 2018) to fit the final model

from Section 3.2.4 using both the approximate strategy described in Section 2.6 and NUTS

(Hoffman & Gelman, 2011). I compared the two sets of fits by plotting the posterior means

and standard deviations of each parameter. Given the focus on inferring incidence, I also

compared point estimates and 95% credible intervals for incidence by sex, region, and time.

3.3 Results

Of the 876model configuration-horizon combinations, 736 (84%) successfully converged.

The largest single determinant of failure was using only a log-linear model for the HIV

transmission rate, while the largest determinant of success was using a beta-binomial

distribution in the ANC observation model. Figure 3.1 presents failure rates among the 438

model configuration-horizon combinations that used a beta-binomial likelihood. Of the

34 failures in that subset, the largest determinant of failure was forcing the transmission

rate model to be log-linear with respect to time.
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Figure 3.1: Share of configuration-horizon combinations that failed to con-
verge by configuration variable.

3.3.1 ANC observation model comparison

Restricting to the 736 successful models, I examined the impact of the ANC observation

model on out-of-sample prediction of ANC prevalence and ART patient counts. Figure 3.2

presents box plots of log-transformed out-of-sample RMSE by ANC observation model

and metric, aggregating over model configuration and forecasting horizon. These box

plots provide an indication of how these two observation models compare to each other

regardless of exact model specification.The beta-binomial observation model fit better to

both ANC prevalence and ART patient count data than the binomial model.

Figure 3.3 stratifies each box plot by forecasting horizon. Note that the x-axis of this figure

is the date forecasting began, so “01/01/2015” holds out the most data and “01/01/2020”

holds out the least. Across both datasets, the beta-binomial observation model resulted in

better out-of-sample RMSE in almost every case.

Finally, Figure 3.4 compares out-of-sample RMSEs for every pair models with otherwise

identical specifications. A point being below the line of equality indicates that the binomial

observation model had higher RMSE compared to the equivalent beta-binomial model.
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Figure 3.2: Box plots of log-transformed out-of-sample RMSE by ANC obser-
vation model and data set.
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Figure 3.3: Box plots of log-transformed out-of-sample RMSE by holdout start
date, ANC observation model, and dataset.
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Figure 3.4: Scatter plots of log-transformed out-of-sample RMSE for model
configuration pairs that differ only in ANC observation model by dataset.
The black line is equality. Points below the line of equality indicate that the
beta-binomial observation model was lower and vice versa.

This comparison shows that the beta-binomial observationmodel generally offered superior

out-of-sample posterior predictive fit.

The results were less decisive when using out-of-sample posterior predictive coverage.

Figure 3.5 presents box plots of 50%, 80%, and 95% posterior predictive coverage by ANC

observation model, metric, and coverage level. Median 50%, 80%, and 95% posterior

predictive coverages of ANC data were 65.8%, 89.1%, and 97.1%, respectively, in models

using a beta-binomial observation model, suggesting that it overestimated uncertainty.

Conversely, the same coverage values were 41.4%, 65.6%, and 81.8% when using a binomial

observation model, suggesting that it underestimated uncertainty.

Defining posterior predictive coverage error as the absolute difference between the target

coverage level and observed posterior predictive coverage provides a means to compare

high and low coverage values to each other. Table 3.3 presents the share of equivalent pairs

in which the beta-binomial model had a better value than the binomial model for four error

metrics. In general, the better of each pair of models is the one that uses the beta-binomial

observation model.
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Figure 3.5: Out-of-sample 50%, 80%, and 95% posterior predictive coverages
by ANC observation model and dataset. Dashed lines are target coverages.

50% post.
coverage error

80% post.
coverage error

95% post.
coverage error

RMSE

ANC
prevalence

16.9% 99.4% 100.0% 98.7%

ART patient
counts

43.2% 51.9% 71.4% 74.4%

Table 3.3:The proportion of configuration pairs in which the beta-binomial
ANC observation model was superior to the binomial model by dataset and
error metric.
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Figure 3.6: Box plots of log-transformed out-of-sample RMSE by configura-
tion variable for ANC prevalence data.

3.3.2 Transmission rate specification

Given the results of the ANC observation model comparison, I restricted all other com-

parisons to configurations with a beta-binomial ANC observation model, reducing the

number of unique configuration-horizon pairs from 876 to 438. Figures 3.6 and 3.7 present

log-transformed out-of-sample RMSE values by dataset and configuration variable. Unlike

in the ANC observation model comparison, none of these options provided a decisive

advantage over the alternatives. Placing knots once every five years resulted in better

log-RMSE than placing knots once per year, but these plots offer little insight otherwise.

To identify whether any single configuration was superior to the others, separately by

dataset, I found the number of forecasting horizons for which each configurations was in

among k best configurations. For example, this analysis would identify any configuration

that was among the five best for all six forecasting horizons. No configuration had the

best RMSE for more than one horizon-dataset combination, so I found the number of

times each model configuration appeared in the best five and ten configurations across all

horizons by dataset. Table 3.4 provides the number of configurations that appeared zero
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Figure 3.7: Box plots of log-transformed out-of-sample RMSE by configura-
tion variable for ART patient counts.

through six times in the five-best and ten-best by dataset. Column “6” being zero across

all rows shows that no single configuration appeared in the top ten for all six horizons.

Three configurations were in both the top five and top ten configurations for three of six

horizons for ANC prevalence.The top configurations for ART patients were more variable;

few model configurations appear in the top ten more than once.

To understand which individual features of each configuration led to better fit, I found

the number of times each configuration variable appeared in the single best fit for all 12

horizon-dataset pairs, plotted in Figure 3.8. Five top configurations included a slope in

the transmission rate model while seven did not. Every top-ranked model included a non-

linear temporal component and most used five-year intervals for spline knots, included

autoregressive terms, and used order-three splines.

Informed by the results from Figure 3.8, I subjectively compared the predictions from a

handful of models to identify the effects of each decision on predictions. Specifically, I

restricted to configurations that included non-linear temporal components and fixed the

order of differencing to one, the spline interval to five, and the spline order to two. This

left four configurations: with and without a linear temporal term and with and without an
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0 1 2 3 4 5 6

ANC Prevalence
1 68 6 0 0 0 0 0
5 52 17 2 3 0 0 0
10 37 21 11 3 2 0 0

ART Count
1 71 3 0 0 0 0 0
5 60 12 2 0 0 0 0
10 44 22 8 0 0 0 0

Table 3.4: The number of configurations that appear n times in the top k
models for each forecasting horizon.The 0 column indicates thatmostmodels
never appeared in the top 1, 5, or 10models, while the 6 column indicates that
no model was in the top 1, 5, or 10models for all six horizons.
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ARIMA order Include slope Spline interval
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Figure 3.8: Bar plots of the number of times each configuration variable value
appears in the best model for each horizon-dataset pair (12maximum).
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Figure 3.9: Comparison of UNAIDS estimated annual new infections to four
models from this analysis. Lines correspond models without autoregressive
terms, and open circles correspond tomodels with autoregressive terms. Black
points are UNAIDS estimates.

autoregressive term.

Figure 3.9 compares inferred national new infections incidence in those four models with

the shortest forecasting horizon in the analysis (1 January 2020). Including an autoregressive

term made only a small difference, but including a linear slope with respect to time led to

higher initial incidence and more rapidly declining incidence trend.

At the district level, the inclusion of a linear term in the transmission rate model had a

larger effect on incidence than the inclusion of an autoregressive term. I measured the

effects of these decisions on spatial variability by finding the coefficient of variation in

incidence across regions by time and sex. Figure 3.10 presents estimated coefficients of

variation for these four models.The two models with linear terms inferred more spatial

variation in earlier years and less spatial variation later, while models with and without

autoregressive terms were similar. Among men in 2020, the mean ratio of incidence in

models than included linear terms to those that did not was 0.94, indicating that models

with linear terms estimated less spatial variability among men in 2020. The same ratio

comparing models that did and did not include autoregressive terms was 1.01, indicating

that including an autoregressive had only a small effect on spatial variability.

Finally, I compared the four selected models to existing national-level estimates. Figure 3.9

compares national-level new infections as predicted by the four models to corresponding
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Figure 3.10: Spatial coefficients of variation in incidence rates by sex for four
models from this analysis. Lines correspond models without autoregressive
terms, and open circles correspond to models with autoregressive terms.

UNAIDS estimates. My model predicted a later, lower peak than the UNAIDS estimates,

but the two sets generally converged in recent years. Between 2010 and 2021, the average

difference in annual new infections (rounded the nearest hundred) between the UNAIDS

estimates and the model without autoregressive and linear terms was 2,310.

There is also evidence that the share of new infections that are amongwomen is increasing in

sub-Saharan Africa (Risher et al., 2021). Figure 3.11 plots the sex ratio of incidence over time

from each of the four models. While the models without linear terms inferred increasing

sex incidence rate ratios (IRRs), matching UNAIDS well in recent years, the models with

linear terms inferred decreasing sex IRRs, conflicting with most other data sources.The

sex IRR in this work is inferred using a model that allows women’s transmissibility relative

to men to change linearly over time, while in UNAIDS’ model the increasing sex incidence

rate ratio in recent years is a fixed assumption.

Figure 3.8 showed that the transmission rate models that were constant or log-linear with

respect to time were never identified as best using RMSE, but understanding the extent to

which the inferred incidence trends are determined by the transmission rate model, the

epidemic model, or the data is important. Figure 3.12 plots inferred incidence in Lilongwe

among women andmen assuming that the HIV transmission rate was constant with respect

to time within each district alongside the model that was selected for the remainder of the

analysis. Figure 3.13 plots the inferred transmission rates among men for these two models.

Although the transmission rate in the “Constant” model was constant with respect to time,
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Figure 3.11: The ratio of incidence among women to that among men from
four models compared to UNAIDS. Lines correspond models without autore-
gressive terms, and open circles correspond to models with autoregressive
terms. Black points are UNAIDS assumptions.

the two models inferred similar series of incidence, demonstrating that the incidence is

either truly constant well-identified by data or determined by the dynamics of the epidemic

model.

Given these results, I selected a model with the following configuration to be the default

model for all further analysis: no linear termwith respect to time, one degree of differencing,

an order-two spline with five-year intervals between knots, and no autoregressive term.

Figure 3.14 plots illustrative predictions from this model for the Lilongwe district of Malawi,

while Chapter 5 provides a more detailed exploration of the results.This model had among

the best fit, was consistent with existing national-level estimates from Spectrum/EPP, and

estimated regional sex IRRs that were consistent with other epidemiological evidence.

Although I was unable to identify a single best model, this configuration balanced the

characteristics identified by the empirical model comparison study with desiderata from

the subjective comparison. Of particular note is the omission of the linear term in the

transmission rate model; the linear trend dominated inferred transmission rates in a way

that resulted in implausibly low and steady incidence forecasts.
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Figure 3.12: Estimated HIV incidence among men and women in Lilongwe
for two models with varying transmission rate parametrisations.
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Figure 3.13: Estimated HIV incidence among men in Lilongwe for two models
with varying transmission rate parametrisations.
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Figure 3.14: Illustrative predictions of HIV prevalence, ART coverage, and
HIV incidence in Lilongwe by sex from the final model used in this analysis.
Yellow lines correspond to posterior medians, and yellow regions correspond
to 95% posterior credible intervals.The red region represents the time point
after which all data were held out.
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Figure 3.15: Comparison of posterior parameter means and standard devia-
tions between Stan and TMB (the approximate strategy described in Chapter
2.

3.3.3 Inference strategy

Taking the final configuration from Section 3.3.2, I re-fit the model to each of the six

forecasting horizons and an additional dataset with no data held out using NUTS. Across

the seven horizons, the approximate strategy fit in an average of about 2.5 hours, while

NUTS produced samples in an average of about 28.0 hours. Comparing each pair of

corresponding fits, Stan took approximately 13 times longer than TMB on average. When

fitting with NUTS without holding any data out, the average number of effective samples

across all parameters was 2,157, and the median was 2,094. Of the 1,389 parameters, 1,384

(99.6%) had R̂ values between 0.9 and 1.1, suggesting that the model had converged.

Figure 3.15 plots posterior means and standard deviations of all model parameters excluding

hyperparameters with variance fixed to be zero in the approximate inference strategy.The

posterior means correlated closely across the seven horizons, but TMB slightly underesti-

mated parameter variance.The Pearson correlation coefficients between the means and

standard deviations were 0.98 and 0.96, respectively. Excluding fixed hyperparameters, the

correlation between the posterior standard deviations was 0.98.

Finally, Figure 3.16 compares posterior median incidence and 95% credible interval size

across all regions and both sexes from 2010 onward. Again, we can see that the posterior

means were similar, while the uncertainty estimates varied. There did not seem to be as



3.4. Discussion 81

0.0

5.0

10.0

15.0

20.0

25.0

0.0 5.0 10.0 15.0 20.0 25.0
Stan mean

TM
B 

m
ea

n

0.0

5.0

10.0

15.0

0.0 5.0 10.0 15.0
Stan 95% interval

TM
B 

95
%

 in
te

rv
al

Figure 3.16: Comparison of posterior incidencemeans and standard deviations
between Stan and TMB (the approximate strategy described in Chapter 2.

much systematic variation across the two inference strategies as in the parameter uncer-

tainty. Overall, the correlations between the posterior means and 95% credible intervals of

incidence were 1.00 and 0.96, respectively. Stan estimated substantially wider confidence

intervals among women in Salima when using the longest forecasting horizon, which

manifested as a distinctive line below the line of equality in the right panel of Figure 3.16.

The average ratio of the Stan 95% CI intervals of incidence to those from TMB was 1.04,

indicating again that Stan estimated slightly wider uncertainty.

3.4 Discussion

I sought to identify an optimal specification for the model described in Chapter 2 by fitting

146 unique model configurations to data from Malawi. Certain decisions were clearly

identified by data, while others will need to be made subjectively by future users. I also

identified determinants of convergence failure and compared fitting with an approximate

inference strategy to fitting with NUTS.

I found that, consistent with Eaton & Bao (2017), an observation model for ANC testing

data that incorporated overdispersion relative to a traditional binomial model offered better

out-of-sample fit than the binomial model. Whereas Eaton & Bao (2017) added variance

to the Gaussian approximation to the binomial distribution, the beta-binomial model
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naturally incorporates count data.That said, the beta-binomial model produced posterior

coverages that were higher than target values in both ANC facility and ART programme

reporting. I have not taken into account autocorrelation across time in either dataset, which

could have led the model to overestimate uncertainty.

I also found that region-specific non-linear temporal components improved fit relative to

baseline intercept-only and linear transmission rate models. Although we do not expect

the transmission rate of HIV to be constant or log-linear with respect to time, these simple

models provide informative baseline estimates. Figure 3.12 shows that even inaccurate

models can produce credible-looking estimates of incidence. This result indicates that

much of the variation in prevalence data in Malawi can be explained by basic epidemic

dynamics, as opposed to spatio-temporal variation in transmission rates, and suggests that

we must be cautious interpreting inferred incidence.

Beyond the use of a beta-binomial ANC observation model and the inclusion of non-linear

temporal components in the transmission rate model, the comparison study did not clearly

identify any particular design decisions as superior to others. In one view, this indicates

that the model’s out-of-sample fit does not depend too closely on the specific modelling

decisions. On the other hand, if two, equally good decisions imply meaningfully different

incidence series, how does the user decide which to use? Further work quantifying the

identifiability of models like these ones would be valuable

The qualitative insights offered by the cross-validation strategy I have described here

can help with such subjective decisions. As Figure 3.9 shows, including a slope in the

transmission rate model had a substantial effect on predicted incidence. Although current

data in Malawi are well-described by rapidly decreasing transmission rates, building into

the model a preference for decreasing transmission could reduce its sensitivity to changes

in the future. The forecasts also show that, subjectively speaking, the slope-inclusive

model understates uncertainty simply because of the dominance of the linear term. I also

observed that, even when forecasting for five years, autoregressive terms were not necessary

for controlling variance in predicted transmission rates.

I also used this analysis to address two important computational questions. First, I checked

whether certain model configuration variables resulted in convergence failure more consis-

tently than others. No single variable seemed to predict convergence failure, but the models
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with the simplest transmission rate specifications were less likely to succeed than those with

more complex specifications. This could be due to the inability of simpler specifications to

accurately describe the data. This analysis did not provide many clear insights, but it could

be used to help guide future use of the model.

Finally, I evaluated the validity and necessity of the approximate inference strategy from

Section 2.6 relative to NUTS. As expected, fitting with NUTS took substantially longer than

fitting with the approximate strategy.The results from the two strategies were, in general,

similar, but I observed two notable trends. First, when the two strategies differed, TMB

seemed to underestimate parameter uncertainty. This could result in overconfidence in

estimated incidence. Second, the hyperparameters that had zero variance in the approx-

imate strategy exhibited substantial variance when fit with NUTS. Ignored correlations

between these parameters and others could have wide-reaching effects on point estimates

and estimates of uncertainty.

With those caveats in mind, TMB was, on average, 12.8 times faster than NUTS and

produced reliable results that were consistent with, if not identical to, those produced by

Stan. Assuming that Stan is the gold standard, the results produced by TMB might be

sufficiently accurate in some settings. In others, we might consider a strategy where testing

is done in TMB and the final fit is produced with Stan.

This model comparison study had several weaknesses that might limit its ability to guide

future modelling.1 First, the experiment detailed here was conducted on data from Malawi,

and wider generalisability is uncertain. Similar exercises could be conducted in any setting

to which the user might want to apply the model.

I was also able to test only a subset of the many possible configurations supported by the

model from Chapter 2.The transmission rate of HIV is the unknown quantity most closely

related to HIV incidence, so that was the focus of this analysis. I did not, for example,

interrogate the structure of the ART initiation model. Future work in this area could

use the cross-validation strategy I outline here to perform even more exhaustive model

comparisons.

Second, drawing any single conclusion from this analysis is difficult due to the large number

of models fit and the general ambiguity of the results. Beyond a few broad structural

1I defer the more general discussion of weaknesses of the model and my thesis to Section 8.3.
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decisions, the analysis did not indicate that any given specification choice was categorically

better than another. Future users might still need to fit several models and compare the

results subjectively to identify the model that best suits their needs.That said, the relatively

thorough set of experiments conducted here can offer users some guidance on how these

decisions should be made, in addition to relative confidence that the decisions are not being

made arbitrarily.

It is also possible that the inference strategy comparison was not strictly fair. I have used

the tmbstan library to fit the existing TMB model with NUTS. Anecdotally, I have found

that, given statistically equivalent models written in TMB and Stan, tmbstan will fit the

TMB model noticeably slower than rstan will fit the Stan model (both using NUTS). We

might be able to fit with NUTS more efficiently with a native Stan version of the model.

Additionally, these models were fit using an approximate inference strategy, although

I found that the estimates from the approximate strategy correlated closely with those

produced by NUTS. Given the additional computational burden incurred by NUTS, fitting

876 times without the approximate strategy was not practical. However, as shown in Figure

3.16, I found that a subset of TMB fits were closely correlated with the corresponding NUTS

fits, suggesting that the comparison was fair.

Despite these weaknesses, this model comparison study can help guide the use of the

model, as well as the design of future models of HIV burden. I tailored the cross-validation

strategy to the specific data streams that we expect to continue to be available, providing

an empirically justified basis for otherwise-arbitrary design decisions.

As I have demonstrated here, the small decisions necessary to parametrise models like this

one can have dramatic effects on inferences, so I suggest that thorough model comparison

exercises should not be viewed as post-hoc sensitivity analyses and relegated to supplemen-

tary material.They should, instead, be seen as an essential step in the model development

process.
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Chapter 4

Effect of Spatial Transmission on

Inferred HIV Incidence

Chapter 3 addressed a number of empirically testable model design questions, but it no-

tably did not examine the effects of spatial mixing. For computational efficiency, every

configuration in that chapter assumed that incidence in a region was a function of preva-

lence in that region alone. In this chapter, I examine the effects of incorporating various

assumptions about the spatial dynamics of HIV transmission and discuss the advantages

and disadvantages of including these dynamics in the model.

4.1 Introduction

HIV transmission is a fundamentally spatial process: a susceptible individual cannot be

infected with HIV without coming into contact with the virus. At the population level, the

spatial dynamics of HIV are apparent on both the continental scale as the virus moved

from central Africa to southern Africa over the course of decades (Faria et al., 2014) and

the local scale as clusters of infections might emerge among people who inject drugs over

the course of weeks (Conrad et al., 2015).

These dynamics are not considered by any of the spatially structured models described in

Section 1.5.3 at least in part because population-level data attributing new HIV infections

to specific areas are virtually non-existent. Other work has estimated the influence of
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mobility on HIV in SSA, but these studies used methods and data that limited their ability

to produce predictions for the general population (Kate Grabowski et al., 2020; Okano et

al., 2020; Ratmann et al., 2020; Valdano et al., 2021). Recently, viral genetic sequences have

been used to identify transmission pairs in prevention trials (Hall et al., 2021; Novitsky et al.,

2020). However, genetic data are not widely available, and the methods for incorporating

them into large-scale, population-level epidemic models are not obvious. Population-level

prevalence data necessarily reflect underlying spatial dynamics, but because an observed

HIV infection in a particular location could be attributable to any number of regions, these

data do not facilitate inference of spatial dynamics.

Even if reliable data on transmission between regions were available, inferring transmission

rates in a spatially structured epidemic model would still present a substantial computa-

tional problem. Allowing the epidemic to spread over regions makes incidence in each

region a function of past incidence in all other regions, inducing complex covariance

between the parameters used to infer transmission rates when we condition on data.This

is a particular concern for the approximate inference strategy described in Section 2.6

because the efficiency of that method depends on the density of the model’s Hessian, H

from Equation (2.48). If incidence in each region depends on past incidence in all other

regions the Hessian with respect to the transmission rate parameters will be dense and

inference will be slowed.

Beyond computational concerns, the effects of including spatial mixing dynamics in this

model are unknown. None of the models described in Section 1.5 explicitly incorporated

transmission over spatial units, so it is impossible to say in advance what the effects of

including or excluding spatial dynamics will be. Depending on the specific data the model

is fit to, spatial mixing could result in more or less uniform distributions of incidence.

I conducted a final model comparison study examining the effects of incorporating spatial

transmission dynamics into the model described in Chapter 2. I fit the final model from

Chapter 3 to the same datasets with a series of assumptions about the degree of spatial

mixing across districts. I used these results to measure the effects of spatial mixing on both

national and subnational incidence, in addition to measuring the impact on computation

time. Using the cross-validation strategy described in Chapter 3, I examined whether one

assumption about the extent ofmixingwas better supported by data than the others. For that
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particular question, I hypothesised that, because the available data reflect the underlying

spatial dynamics of HIV only indirectly, the optimal spatial transmission assumption would

not be identifiable from the available data.

4.2 Methods

I fit the final model from Section 3.3.2 with five assumptions about the spatial dynamics

of HIV to data with the same six forecasting horizons. Using the same cross-validation

strategy described in Section 3.2.2, I identified whether any assumption offered superior

out-of-sample fit and compared estimates of HIV incidence over time for alternative spatial

transmission assumptions

4.2.1 Data

The data used in this analysis are described in Section 1.4. I refer the reader to Table 3.1

for an overview of the data sources incorporated into the observation model. As in that

chapter, I constructed a cross-validation dataset by identifying all data collected after six

annual forecasting horizons (1 January 2015 through 1 January 2020) as out-of-sample.

4.2.2 Model configuration

I fit the final model configuration described in Section 3.3.2with TMB.This model used the

beta-binomial ANC observation model and specifies the transmission rate model with no

linear term with respect to time, one degree of differencing, an order-two spline with five-

year intervals between knots, and no autoregressive term. To re-emphasise the conclusion

of Chapter 3, this is not necessarily the best model, but it offered competitive out-of-sample

fit and resulting estimates were consistent with other national-level estimates.

4.2.3 Assumptions about spatial dynamics

I fit this model with five assumptions about the proportion of contacts people residing in

region r have with people residing in region j. Recalling the log-linear model of incidence
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from Equation (2.17), the proportion of contacts among women in region r that are with

men in CD4 bin c is

∑
j∼r

*++,w(r, j)w( j, r)
Nj,0Nr,1

(I j,0,c + (1 − ω)Aj,0,c), (4.1)

where j ∼ r denotes the set of regions that are adjacent to r inclusive of r. For adjacent

regions r and j, w(r, j) is defined as

w(r, j) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w0 r = j

(1 −w0)∥{ j ∼ r} ∖ r∥ r ≠ j
, (4.2)

where w0 is the share of contacts that are made with individuals from the home region.

The remaining share is divided equally among the neighbours of the home region. I used

four values for w0 (100%, 75%, 50%, and 25%) and a special case in which contact with each

neighbour is as likely as contact with the home region, which can be expressed as

w(r, j) = 1∥{ j ∼ r} ∖ r∥ . (4.3)

4.2.4 Model comparisons

I estimated the effects of spatial transmission on computation time, inferred incidence, and

out-of-sample fit to data. I measured the number of hours required to fit each model and

sample from the approximate posterior distributions and compared the resulting times. To

assess the effects on inferred incidence, I examined the absolute and relative differences

in both national- and district-level incidence. Finally, I used the cross-validation strategy

described in Section 3.2.2 to measure the effects of spatial transmission on out-of-sample

fit to ANC faciltiy data and ART programme data.
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Figure 4.1: Fitting time for five assumptions about spatial transmission by
forecasting horizon relative to a model with no spatial mixing.

4.3 Results

Figure 4.1 plots the times to fit and sample from each model. The models with spatial

dynamics took approximately six times longer than the model with no spatial transmission.

Excluding the two outlying times, the relative execution times seemed to increase relative

to the baseline model as the homogeneity of spatial mixing increased, from a mean of 6.9

times longer than baseline to a mean of 5.7 times longer than baseline.

Figure 4.2 presents posterior median quarterly incidence risk per 1,000 people at the

national-level. Differences in the absolute level of incidence were larger in earlier years

and smaller in later years when data were more plentiful.The estimated posterior median

incidence among women ranged from 3.7 to 4.3 in 1999 and from 0.5 to 0.6 in 2021.

Framed in relative terms, these differences increased. Figure 4.3 plots the percent change

in quarterly incidence risk between each spatial mixing assumption and the model with

no spatial mixing (all when including data up to the beginning of 2020). Although the

absolute differences were lowest in recent years, the relative differences were at least as

large. The model that fixed only 25% of contacts to be from the home region estimated
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Figure 4.2: Posterior median incidence risk by sex and time for five assump-
tions about spatial transmission from models that included data up to the
beginning of 2020.

26.2% higher incidence among men at the end of 2020 and 14.2% lower incidence at the

beginning of the projection. Trends were similar but reversed among women.The impact

of spatial mixing on district-level incidence was similar but spatially heterogeneous. Figure

4.4 illustrates this heterogeneity by comparing estimated incidence in Nkhata Bay and

Ntcheu, the districts in which the 25% mixing assumption had the largest and smallest

effects on incidence in men in 2020, respectively. Incidence among men in Nkhata Bay at

the end of 2020 ranged from 0.8 per 1,000 person-years without spatial mixing to 1.4 with

homogeneousmixing across districts. In contrast, the same range in Ntcheu was from 0.7 to

0.7.These effects were consistent across all 28 districts. Figure 4.5 plots the percent change

in inferred incidence relative to no spatial mixing by region, sex, and date in the model

with the latest forecasting horizon. Values greater than 0.0 indicate that the spatial mixing

assumption resulted in higher incidence than the baseline assumption of no spatial mixing.

There was considerable heterogeneity in the effects of incorporating spatial transmission

across time, sex, and space. Among men, the standard deviation of percent changes in

2021 ranged from 0.22 when weight was allocated equally across regions to 0.11 when w0

was 75%. Consistent with the national-level result in Figure 4.3, Figure 4.5 clarifies that

the smaller absolute differences still resulted in greater relative differences.The consistent

spike in 2005 was Chiradzulu; in models with spatial transmission, the preventative effects

of rapid increases in treatment coverage in that district have been muted by relatively slow
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Figure 4.3: Incidence ratios by sex and time for five assumptions about spatial
transmission from models that included data up to the beginning of 2020
relative to a model with no spatial mixing.
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Figure 4.4: Posterior median incidence in two districts of Malawi by sex
and time for five assumptions about spatial transmission from models that
included data up to the beginning of 2020.
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increases in adjacent regions.

To visualise the patterns in the effects of mixing more clearly, Figure 4.6 presents hexagonal

tile maps of the incidence ratios from the model that included data up to the beginning

of 2020 by sex at the latest projected time (Q4 2021) relative to the model with no spatial

mixing. Including spatial transmission dynamics decreased inferred incidence among

women and increased it among men. When w0 was 75%, the mean percent change in

incidence across districts among men was 10.4%, while among women it was -12.1%.

The observed sex disparity could be attributable to any number of dynamics, but one

hypothesis is that mixing has effectively served as a smoother. By allowing the epidemic

in one district to be influenced by its neighbours, the model required less sex disparity

in incidence to fit to the same prevalence data.This theory is corroborated by Figure 4.7,

which plots the sex IRRs inferred by the five models that used data up to the beginning of

2020.The model with no spatial mixing estimated that the sex IRR of HIV was higher and

increased more quickly over the projection period.This observation supports but does not

confirm the hypothesis that spatial mixing smoothed the estimates in this study.

The cross-validation scheme did not lend much support to one spatial mixing assumption

or another. Figure 4.8 presents out-of-sample RMSE by holdout start date and degree of

spatial mixing. The mean ratio of RMSE across the four spatial models and six horizons to

the model with no mixing was 1.0 with respect to the ANC data and 1.2 with respect to the

ART patient counts.The model without spatial transmission fit best to out-of-sample ART

patient counts, but there was very little difference in fit to ANC prevalence.

4.4 Discussion

In this chapter, I evaluated the impact of incorporating spatial transmission dynamics into

the final model identified in Chapter 3. I found that spatial mixing increased computation

time by a factor of about six and hadmoderate, heterogeneous effects on incidence estimates.

I was not able to definitively identify whether any of the models tested here provided better

out-of-sample fit than the others.

Incorporating spatial mixing dynamics substantially increased the time needed to fit the
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model and sample from the posterior. This was expected because allowing incidence in

one region to depend on past incidence in other regions creates dependence between the

parameters used to estimate transmission rates across space, resulting in an approximately

six-fold slowdown.

The incorporation of spatial mixing had heterogeneous effects on inferred incidence across

region, time and sex. Models with spatial transmission inferred increased incidence among

men and decreased incidence among women in recent years. Changes were consistently

larger in certain regions of Malawi; in Chiradzulu, the effects of early, rapid ART scale-up

were dampened by relatively slower scale-up in nearby districts. In general, the net effect

of spatial mixing was to smooth incidence across space and sex.

There were notable differences in inferred sex IRRs over time; models that included spatial

transmission estimated more gradual changes in the sex IRRs, resulting in lower IRRs

at the end of the projection. Given the consistency between the inferred IRRs from the

previous and UNAIDS estimates, a more gradual change does not seem desirable. In total,

the average district-level percent change in incidence when moving from a model with

spatial transmission to one with 75% of contacts staying within the home region was about

10% for men and -12% for women.

To help make decisions about spatial mixing in an empirically justified way, I measured the

impact of varying assumptions about spatial dynamics on out-of-sample fit. All models fit

comparably well to out-of-sample ANC data, while the model without spatial transmission

fit better than the others to ART patient counts. In total, the cross-validation exercise

seemed to indicate weakly that the best-fitting model excluded spatial dynamics. The

ambiguity of the cross-validation exercise was not surprising. Prevalence and patient count

data do reflect the true, underlying spatial dynamics of the epidemic but can only do so

obliquely.

These results do not lend themselves cleanly to one final recommendation. HIV transmis-

sion is fundamentally spatial, but the model that the cross-validation exercise identified

as best had no spatial transmission.This assumption is reasonably consistent with recent

analyses of genetic data from prevention trials, which suggest that HIV transmission is

highly local in sub-Saharan Africa (Hall et al., 2021). I also observed in Chapter 3 that

inferred sex IRRs from the model without spatial mixing dynamics aligned closely with
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external national level estimates and that spatial mixing smoothed those IRRs dramatically.

For these reasons, in the rest of the document, I will defer to the cross-validation results and

use the model that omits spatial dynamics. Future users will need to weigh the substantial

additional computational cost with the theoretical benefits to decide for themselves whether

to model spatial transmission directly.

This analysis is subject to several important weaknesses. First, I tested only one, relatively

simple formulation for the spatial weights.This parametrisation could be replaced with

that of Wakefield, Dong, & Minin (2017) or Held, Höhle, & Hofmann (2005) or with any

of the models described by Meredith et al. (2021). All of those parametrisations allow

for transmission between any pair of regions, not just neighbours. It is difficult to say

in advance what the effect of this change would be, but given the smoothing observed

here, it is possible that those results would be smoothed further. Given the ambiguity

of the cross-validation exercise, I suspect that the parameters for these models would be

poorly identified, but alternative parametrisations are still worth considering. We could

also incorporate external information (genetic data, mobile phone records, etc.) that might

lead to a more empirically justified set of weights.

Second, without direct measurement of incidence, the results of the comparison conducted

here are difficult to interpret. It is impossible to know which of the incidence curves

produced here are closest to the truth. We can only say that these assumptions have had an

impact, not that any assumption was more accurate than another.

Despite these weaknesses, the comparisons I have presented in this chapter offer valuable

insight into the effects of incorporating spatial transmission dynamics into large-scale

models of population-level HIV. Future work investigating how to inform our assumptions

about spatial mixing with real-world data and how to identify the parameters governing

spatial dynamics is necessary.
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Chapter 5

Estimates of Key HIV Indicators in

Malawi, 1995-2021

Using the results from the specification tests in Chapters 3 and 4, I produced descriptive

results in Malawi from 1995-2021. In this chapter, I describe trends in HIV prevalence,

incidence, and treatment coverage over time, sex, and space and provide comparisons

to national and subnational estimates published by UNAIDS. By estimating district-level

trends in HIV epidemic indicators, this model facilitates identification of spatial gaps in

treatment programmes. The previous chapters constitute a thorough discussion of the

motivation and methodology for this model, so I have included no Introduction section

and only a minimal Methods section.

5.1 Methods

I fit the model described in Chapter 2 to data fromMalawi collected between 1995 and 2020

with forecasted inputs for 2021. The data were those described in Section 3.2.1, and the

model configuration was the one used in Chapter 4 without any spatial transmission. No

data were held out because doing so would have unnecessarily restricted the model’s ability

to forecast. I sampled from the full joint posterior using NUTS. I compared the national-

level estimates of incidence, prevalence, and ART coverage to those generated by UNAIDS

and the subnational estimates of incidence to those generated by Naomi (UNAIDS, 2020).

Whenever applicable, I present posterior median estimates with 95% credible intervals in
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the following format: median (95% CI). I measured trends in epidemic indicators using

percent change.

5.2 Results

5.2.1 Fit to data

The model fit well to most available data. Figure 5.1 presents estimated prevalence, ART

coverage, ANC prevalence, and ART patients counts alongside the data used to fit to each

metric for Lilongwe District. Outside of the 2004 DHS, the model matched the prevalence

data closely and fit similarly well to each ANC site.1 It smoothed across sex in ART coverage,

resulting in slightly lower coverage among women and slightly high coverage among men.

However, it fit essentially perfectly to the ART patient count series. I observed qualitatively

similar fits across the 28 districts. Figures A.1 to A.28 present this plot for all 28 districts.

5.2.2 National-level estimates

The model estimated that, at the end of 2021, 7.4% (7.2% to 7.7%) of adults aged 15-49 in

Malawi were living with HIV, of whom 91.9% (88.9% to 94.1%) were on ART.There were

an estimated 14,200 (11,600 to 17,200) new infections in this population in 2021. Between

the beginning of 2010 and the end of 2021, adult prevalence decreased by 33.7% (30.7% to

36.5%), from 11.1% (10.9% to 11.4%) to 7.4% (7.2% to 7.7%). Over that period, ART coverage

increased by 271.5% (256.2% to 286.2%), from 24.7% (24.0% to 25.4%) in 2010 to 91.9%

(88.9% to 94.1%) in 2021. Finally, population-level incidence risk (defined as new infections

in a year divided by susceptible population at the start of the year) decreased by 76.0%

(71.8% to 80.1%) between 2010 and 2021, from 6.6 (6.3 to 6.9) per 1,000 people to 1.6 (1.3 to

1.9) 1,000 people.

The model inferred that the ratio of female to male incidence increased substantially over

the projection period, with an increasingly large share of new infections occurring in

1There is a known issue in the 2004 DHS in Lilongwe.The response rate for HIV testing there was only
39% (National Statistical Office - NSO/Malawi & ORCMacro, 2005), suggesting that the survey estimates
could be substantially biased.
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Figure 5.1: Estimated prevalence, ART coverage, ANC prevalence, and ART
patient counts in the Lilongwe district of Malawi with household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.
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women. Figure 5.2 presents the national-level share of new infections in ages 15-49 that

were among women from 1995 through 2021. The model estimated that women accounted

for 60.2% (57.2% to 62.4%) of new infections in 2005 (the year after the first household

survey), compared to 70.8% (55.3% to 78.0%) in 2021.The model estimated that men LHIV

in 2021 were as likely as women LHIV to be on treatment. The ratio of female to male

coverage was 1.0 (1.0 to 1.1) in 2020, lower than UNAIDS’ estimate of 1.1 Figure 5.3 presents

this ratio from 2010 to 2021.This result is consistent with the smoothing in ART coverage

observed in Figure 5.1.

Comparison to UNAIDS estimates

Figure 5.4 compares national-level prevalence, ART coverage, and annual new infections

from my model to UNAIDS. Although all three metrics aligned closely in recent years,

there were significant differences earlier in the epidemic. In 1996, the first full year of

projection, my model predicted that there were 52,200 (48,300 to 56,600) new infections

among adults aged 15-49, while UNAIDS predicted 80,000. UNAIDS predicted 17,400 new

infections in 2020, and my model predicted 15,200 (12,600 to 18,300) new infections.
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Figure 5.3: Estimated ratio of ART coverage among women to men in Malawi.
Points are UNAIDS esimated ART coverage ratios.

5.2.3 District-level estimates

Figure 5.5 presents plots of the posterior distributions of prevalence, ART coverage, and

incidence at the end 2021 for both sexes combined by district. Across the 28 districts,

median prevalence was 6.8%, ranging from 14.9% (13.7% to 16.3%) in Mulanje to 2.2% (1.8%

to 2.8%) in Ntchisi. Median ART coverage was 93.9% and proportionately more uniform,

ranging from 96.6% (90.3% to 97.8%) in Mulanje to 84.2% (69.5% to 94.5%) in Zomba.

Median incidence risk was 1.4. Incidence was highest in Mulanje at 3.5 (2.5 to 5.2) new

infections per 1,000 people and lowest in Ntchisi at 0.4 (0.2 to 0.8).

Tables 5.1 through 5.6 present estimated prevalence, ART coverage, and incidence among

adults aged 15-49 by sex and district of residence for the 28 districts of Malawi in 2010 and

2021, as well as the percentage change between the two time points. Figure 5.6 provides

hexagonal tile maps of these values.2 I provide a table of ISO-3166-2 codes for each district

in Table A.1. Figures A.1 through A.28 provide estimates of incidence over time by sex for

all 28 districts.

Figure 5.7 presents hexagonal tile maps of percent change in prevalence, ART coverage,

and incidence between 2010 and 2021.There were substantial decreases in prevalence and

incidence in all districts between 2010 and 2021, although these decreases were spatially

2Without any quantification these maps might be misleading; I provide them only to give the reader a
loose sense of systematic spatial variation.
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Prevalence 2021 Prevalence % change

National 9.5% (8.9% to 10.0%) -28.1% (-33.3% to -24.4%)

Northern
Chitipa 4.2% (2.8% to 5.6%) -21.6% (-37.0% to -1.9%)
Karonga 8.8% (7.6% to 10.7%) -24.4% (-33.4% to -13.3%)
Likoma 9.2% (8.0% to 11.5%) -13.0% (-27.7% to 3.7%)
Mzimba 6.7% (5.9% to 7.4%) -24.4% (-31.8% to -17.2%)
Nkhata Bay 7.7% (6.7% to 9.0%) -32.8% (-41.7% to -24.3%)
Rumphi 8.0% (6.4% to 10.0%) -32.3% (-43.6% to -20.6%)

Central
Dedza 4.4% (3.4% to 5.4%) -36.1% (-47.6% to -25.8%)
Dowa 3.3% (2.6% to 4.2%) -36.2% (-47.4% to -24.2%)
Kasungu 4.6% (3.7% to 5.6%) -28.9% (-38.5% to -18.1%)
Lilongwe 7.8% (7.0% to 8.8%) -32.0% (-39.7% to -24.4%)
Mchinji 5.8% (5.0% to 6.9%) -34.5% (-45.4% to -26.4%)
Nkhotakota 6.0% (4.9% to 7.1%) -40.4% (-49.5% to -32.9%)
Ntcheu 8.1% (6.8% to 9.7%) -32.5% (-44.9% to -21.9%)
Ntchisi 2.8% (2.3% to 3.6%) -38.5% (-49.2% to -27.2%)
Salima 6.5% (5.3% to 7.7%) -28.1% (-38.1% to -17.8%)

Southern
Balaka 9.6% (8.2% to 11.0%) -31.4% (-40.9% to -23.8%)
Blantyre 16.7% (15.1% to 18.7%) -26.8% (-34.7% to -18.1%)
Chikwawa 10.2% (8.3% to 11.7%) -25.4% (-35.3% to -17.2%)
Chiradzulu 12.9% (10.6% to 15.3%) -28.6% (-39.6% to -18.7%)
Machinga 8.4% (7.1% to 10.6%) -32.9% (-41.7% to -22.2%)
Mangochi 9.3% (8.2% to 10.9%) -32.7% (-40.5% to -24.9%)
Mulanje 18.3% (16.6% to 20.3%) -20.5% (-27.4% to -14.0%)
Mwanza 8.6% (7.0% to 10.6%) -25.0% (-35.4% to -12.5%)
Neno 10.6% (8.2% to 12.8%) -39.6% (-49.3% to -31.0%)
Nsanje 14.6% (12.6% to 17.0%) -19.4% (-28.4% to -7.6%)
Phalombe 15.6% (13.7% to 17.8%) -23.7% (-31.2% to -15.6%)
Thyolo 13.6% (11.8% to 15.4%) -30.7% (-38.9% to -23.1%)
Zomba 14.9% (12.8% to 17.1%) -29.1% (-38.1% to -20.1%)

Table 5.1: Estimated prevalence among women in Malawi in 2021 and percent
change between 2010 and 2021 with 95% credible intervals.
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Prevalence 2021 Prevalence % change

National 5.1% (4.8% to 5.6%) -42.5% (-46.6% to -37.1%)

Northern
Chitipa 2.2% (1.3% to 3.1%) -42.0% (-57.9% to -17.8%)
Karonga 4.8% (4.1% to 5.8%) -41.9% (-48.6% to -30.8%)
Likoma 5.0% (4.3% to 6.2%) -33.2% (-44.9% to -14.1%)
Mzimba 3.6% (3.1% to 4.3%) -40.1% (-46.9% to -28.4%)
Nkhata Bay 4.2% (3.6% to 5.1%) -48.3% (-55.7% to -36.2%)
Rumphi 4.4% (3.6% to 5.5%) -47.6% (-54.1% to -34.2%)

Central
Dedza 2.4% (1.9% to 2.9%) -51.3% (-59.0% to -43.2%)
Dowa 1.8% (1.5% to 2.2%) -49.7% (-57.1% to -41.5%)
Kasungu 2.5% (2.0% to 3.1%) -41.6% (-49.1% to -30.3%)
Lilongwe 4.1% (3.5% to 4.7%) -45.2% (-51.0% to -37.5%)
Mchinji 3.2% (2.7% to 3.9%) -46.6% (-54.2% to -37.8%)
Nkhotakota 3.3% (2.7% to 3.9%) -51.9% (-58.3% to -44.9%)
Ntcheu 4.3% (3.5% to 5.2%) -49.4% (-59.0% to -40.9%)
Ntchisi 1.5% (1.2% to 1.9%) -51.7% (-60.1% to -41.8%)
Salima 3.5% (2.7% to 4.3%) -44.1% (-53.4% to -30.7%)

Southern
Balaka 5.2% (4.4% to 6.1%) -47.3% (-54.3% to -38.0%)
Blantyre 8.9% (7.9% to 10.2%) -40.2% (-46.7% to -32.4%)
Chikwawa 5.5% (4.5% to 6.5%) -39.8% (-47.9% to -29.4%)
Chiradzulu 6.9% (5.7% to 8.3%) -46.9% (-54.3% to -37.6%)
Machinga 4.6% (3.9% to 5.8%) -48.7% (-55.2% to -39.4%)
Mangochi 5.1% (4.4% to 6.2%) -48.8% (-55.8% to -39.1%)
Mulanje 10.5% (9.2% to 12.2%) -38.1% (-44.4% to -27.9%)
Mwanza 4.6% (3.6% to 5.7%) -42.3% (-50.3% to -28.6%)
Neno 6.1% (4.8% to 7.3%) -52.1% (-58.1% to -45.7%)
Nsanje 7.9% (6.5% to 9.9%) -36.8% (-47.2% to -21.6%)
Phalombe 9.0% (7.6% to 10.8%) -39.5% (-46.4% to -29.0%)
Thyolo 7.7% (6.6% to 9.0%) -44.6% (-50.5% to -37.0%)
Zomba 8.1% (7.0% to 9.5%) -44.7% (-51.1% to -36.0%)

Table 5.2: Estimated prevalence among men in Malawi in 2021 and percent
change between 2010 and 2021 with 95% credible intervals.
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ART coverage 2021 ART coverage % change

National 92.5% (89.3% to 94.8%) 266.3% (249.0% to 284.8%)

Northern
Chitipa 94.8% (77.6% to 97.6%) 599.3% (276.2% to 1345.6%)
Karonga 93.7% (79.3% to 97.7%) 263.4% (215.4% to 333.0%)
Likoma 96.4% (84.7% to 97.8%) 209.5% (170.6% to 268.8%)
Mzimba 96.9% (90.8% to 97.8%) 242.6% (198.3% to 341.4%)
Nkhata Bay 95.6% (86.2% to 97.8%) 386.7% (250.5% to 582.6%)
Rumphi 86.9% (66.1% to 97.5%) 147.1% (95.1% to 188.6%)

Central
Dedza 93.8% (73.1% to 98.1%) 268.7% (203.8% to 366.7%)
Dowa 87.0% (65.3% to 97.5%) 140.9% (92.2% to 176.0%)
Kasungu 94.8% (81.3% to 97.8%) 313.6% (230.3% to 434.1%)
Lilongwe 93.9% (84.8% to 97.8%) 223.4% (190.6% to 261.8%)
Mchinji 96.8% (88.2% to 98.0%) 321.8% (217.1% to 485.3%)
Nkhotakota 96.3% (86.4% to 98.1%) 217.8% (173.3% to 280.1%)
Ntcheu 94.4% (80.7% to 97.9%) 458.4% (273.6% to 999.8%)
Ntchisi 91.0% (72.2% to 97.8%) 310.3% (225.9% to 466.2%)
Salima 95.9% (85.2% to 97.8%) 465.6% (343.8% to 667.5%)

Southern
Balaka 97.1% (89.3% to 98.0%) 246.4% (197.7% to 345.2%)
Blantyre 93.9% (85.3% to 97.7%) 243.4% (209.5% to 280.1%)
Chikwawa 96.7% (89.6% to 97.9%) 298.6% (237.6% to 393.6%)
Chiradzulu 90.1% (72.8% to 97.4%) 131.1% (80.9% to 185.2%)
Machinga 91.9% (73.7% to 97.9%) 437.5% (336.9% to 563.5%)
Mangochi 96.3% (84.5% to 98.0%) 663.3% (465.8% to 1016.7%)
Mulanje 96.9% (91.0% to 97.9%) 467.0% (397.5% to 574.5%)
Mwanza 94.8% (78.6% to 97.9%) 217.5% (160.4% to 318.0%)
Neno 96.4% (83.1% to 98.2%) 235.6% (188.6% to 291.9%)
Nsanje 95.2% (83.5% to 97.7%) 313.4% (238.3% to 521.6%)
Phalombe 96.2% (88.2% to 97.7%) 960.8% (758.2% to 1479.5%)
Thyolo 95.6% (85.5% to 97.9%) 324.7% (253.8% to 446.4%)
Zomba 86.2% (71.2% to 96.1%) 318.4% (247.3% to 384.3%)

Table 5.3: Estimated ART coverage among women in Malawi in 2021 and
percent change between 2010 and 2021 with 95% credible intervals.
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ART coverage 2021 ART coverage % change

National 90.8% (87.8% to 93.3%) 277.6% (246.9% to 323.8%)

Northern
Chitipa 93.1% (74.3% to 97.6%) 725.3% (292.4% to 1980.3%)
Karonga 92.6% (76.8% to 97.7%) 253.7% (196.7% to 336.6%)
Likoma 95.8% (82.2% to 97.9%) 200.2% (161.4% to 312.3%)
Mzimba 96.3% (88.1% to 97.9%) 257.6% (191.9% to 391.5%)
Nkhata Bay 94.9% (84.8% to 97.8%) 440.3% (251.5% to 765.0%)
Rumphi 87.3% (64.7% to 97.2%) 139.0% (88.9% to 185.2%)

Central
Dedza 93.0% (73.1% to 98.0%) 278.1% (195.4% to 425.7%)
Dowa 86.7% (65.3% to 97.0%) 130.8% (81.2% to 183.1%)
Kasungu 93.8% (79.1% to 97.9%) 334.5% (224.8% to 527.2%)
Lilongwe 91.0% (81.2% to 97.0%) 261.7% (206.0% to 354.1%)
Mchinji 96.6% (87.1% to 98.0%) 326.5% (196.0% to 552.8%)
Nkhotakota 95.7% (85.9% to 98.0%) 221.5% (165.1% to 311.4%)
Ntcheu 93.0% (78.7% to 97.8%) 535.2% (263.7% to 1445.9%)
Ntchisi 90.2% (70.4% to 97.6%) 350.4% (228.0% to 611.5%)
Salima 94.7% (82.3% to 97.8%) 494.2% (329.7% to 804.6%)

Southern
Balaka 96.0% (85.7% to 97.9%) 262.5% (191.0% to 434.1%)
Blantyre 90.8% (81.9% to 96.8%) 282.8% (221.8% to 367.5%)
Chikwawa 96.1% (87.4% to 97.9%) 286.9% (215.8% to 427.5%)
Chiradzulu 87.6% (69.0% to 96.8%) 125.8% (70.7% to 199.5%)
Machinga 90.3% (70.5% to 97.8%) 509.6% (360.8% to 762.0%)
Mangochi 95.3% (81.7% to 97.9%) 787.5% (493.1% to 1391.3%)
Mulanje 96.6% (89.6% to 97.9%) 498.4% (377.5% to 659.3%)
Mwanza 93.1% (74.4% to 97.9%) 231.3% (156.9% to 396.8%)
Neno 96.2% (83.6% to 98.2%) 231.9% (178.4% to 308.3%)
Nsanje 93.6% (78.1% to 97.7%) 326.8% (228.1% to 648.9%)
Phalombe 96.0% (87.3% to 97.9%) 1000.7% (646.8% to 1492.8%)
Thyolo 94.8% (84.8% to 97.8%) 320.4% (226.6% to 467.6%)
Zomba 84.5% (68.5% to 94.7%) 356.0% (267.6% to 480.9%)

Table 5.4: Estimated ART coverage among men in Malawi in 2021 and percent
change between 2010 and 2021 with 95% credible intervals.
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Incidence rate 2021 Incidence rate % change

National 2.1 (1.5 to 2.7) -74.0% (-79.9% to -68.9%)

Northern
Chitipa 1.2 (0.5 to 2.5) -75.4% (-85.8% to -52.2%)
Karonga 2.5 (1.2 to 4.5) -72.3% (-84.5% to -55.3%)
Likoma 3.0 (1.6 to 5.5) -59.8% (-79.2% to -24.2%)
Mzimba 1.9 (1.2 to 2.6) -72.1% (-81.6% to -59.3%)
Nkhata Bay 1.8 (1.0 to 2.9) -78.0% (-87.8% to -63.8%)
Rumphi 2.0 (0.7 to 4.6) -65.6% (-84.6% to -31.8%)

Central
Dedza 0.7 (0.2 to 1.7) -80.6% (-93.4% to -64.1%)
Dowa 0.6 (0.2 to 1.6) -72.7% (-91.0% to -47.8%)
Kasungu 1.2 (0.6 to 2.1) -73.9% (-86.3% to -58.6%)
Lilongwe 1.6 (0.8 to 2.7) -76.5% (-87.8% to -64.0%)
Mchinji 1.2 (0.5 to 2.0) -79.9% (-90.7% to -69.4%)
Nkhotakota 1.0 (0.3 to 1.8) -79.7% (-91.6% to -68.3%)
Ntcheu 1.4 (0.5 to 2.8) -83.8% (-94.0% to -70.9%)
Ntchisi 0.5 (0.2 to 1.2) -79.9% (-92.0% to -65.3%)
Salima 1.6 (0.8 to 2.6) -78.5% (-88.4% to -63.8%)

Southern
Balaka 2.1 (0.9 to 3.3) -78.2% (-89.3% to -66.9%)
Blantyre 3.8 (1.9 to 6.5) -76.4% (-87.6% to -62.8%)
Chikwawa 2.8 (1.3 to 4.1) -73.0% (-86.5% to -61.3%)
Chiradzulu 3.1 (1.2 to 5.5) -73.0% (-87.9% to -55.1%)
Machinga 1.9 (0.8 to 4.2) -80.5% (-91.1% to -65.8%)
Mangochi 2.0 (1.1 to 3.4) -83.1% (-90.4% to -73.9%)
Mulanje 5.5 (3.3 to 8.0) -76.7% (-85.5% to -67.3%)
Mwanza 2.2 (1.1 to 4.3) -71.1% (-83.8% to -47.4%)
Neno 2.0 (0.4 to 3.9) -78.4% (-92.7% to -65.0%)
Nsanje 5.1 (3.1 to 8.7) -70.9% (-81.7% to -51.5%)
Phalombe 5.0 (2.9 to 7.4) -79.3% (-87.3% to -69.9%)
Thyolo 3.1 (1.4 to 5.0) -80.9% (-90.6% to -71.8%)
Zomba 4.1 (1.8 to 7.2) -76.0% (-88.4% to -62.3%)

Table 5.5: Estimated incidence rate among women in Malawi in 2021 and
percent change between 2010 and 2021 with 95% credible intervals. Note
national level incidence is measured per person, not per person-year.
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Incidence rate 2021 Incidence rate % change

National 1.0 (0.7 to 1.4) -80.2% (-84.3% to -74.0%)

Northern
Chitipa 0.5 (0.2 to 1.4) -81.9% (-89.8% to -56.9%)
Karonga 1.0 (0.6 to 2.2) -80.8% (-87.8% to -63.0%)
Likoma 1.0 (0.5 to 2.5) -77.0% (-86.1% to -47.4%)
Mzimba 0.7 (0.5 to 1.5) -80.7% (-87.0% to -63.4%)
Nkhata Bay 0.7 (0.4 to 1.7) -84.2% (-90.5% to -67.2%)
Rumphi 0.8 (0.3 to 2.2) -77.5% (-88.3% to -42.2%)

Central
Dedza 0.3 (0.1 to 0.7) -85.7% (-93.3% to -73.5%)
Dowa 0.3 (0.1 to 0.6) -81.1% (-91.6% to -64.4%)
Kasungu 0.5 (0.3 to 1.0) -82.1% (-88.8% to -66.3%)
Lilongwe 0.6 (0.4 to 1.2) -82.2% (-89.1% to -70.2%)
Mchinji 0.5 (0.3 to 1.0) -85.9% (-92.0% to -74.0%)
Nkhotakota 0.4 (0.2 to 0.8) -85.2% (-92.0% to -75.6%)
Ntcheu 0.6 (0.3 to 1.1) -88.1% (-94.2% to -80.0%)
Ntchisi 0.2 (0.1 to 0.5) -85.4% (-92.7% to -71.8%)
Salima 0.8 (0.4 to 1.6) -82.2% (-89.1% to -64.1%)

Southern
Balaka 1.0 (0.5 to 1.9) -82.8% (-89.9% to -70.0%)
Blantyre 1.5 (0.9 to 2.6) -82.1% (-88.7% to -71.3%)
Chikwawa 1.1 (0.7 to 2.1) -80.9% (-88.3% to -68.3%)
Chiradzulu 1.4 (0.7 to 2.6) -80.8% (-89.2% to -66.5%)
Machinga 0.9 (0.5 to 2.1) -85.0% (-91.5% to -71.1%)
Mangochi 1.0 (0.6 to 2.0) -86.5% (-91.4% to -75.2%)
Mulanje 2.5 (1.6 to 4.5) -83.1% (-88.4% to -71.0%)
Mwanza 0.9 (0.5 to 2.2) -79.5% (-87.4% to -55.9%)
Neno 0.7 (0.2 to 1.6) -86.2% (-93.6% to -75.4%)
Nsanje 2.4 (1.3 to 4.9) -77.8% (-86.0% to -58.2%)
Phalombe 2.1 (1.3 to 4.0) -86.1% (-90.4% to -76.0%)
Thyolo 1.5 (0.9 to 2.6) -84.2% (-90.4% to -75.3%)
Zomba 1.8 (0.9 to 3.4) -82.1% (-89.6% to -69.0%)

Table 5.6: Estimated incidence rate among men in Malawi in 2021 and percent
change between 2010 and 2021 with 95% credible intervals. Note national
level incidence is measured per person, not per person-year.
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Figure 5.6: Posterior median HIV prevalence, ART coverage, and HIV inci-
dence by sex in Malawi at the end of 2021.
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heterogeneous. Across the 28 districts, the median decrease in prevalence was 33.6%, and

the median decrease in incidence was 76.0%.The smallest decrease in estimated prevalence

was in Likoma with a 21.4% (6.3% to 33.3%) decrease, while the largest was Neno with a

42.9% (36.4% to 50.8%) decrease. Estimated incidence decreased most slowly in Likoma by

65.5% (35.2% to 79.3%) between 2010 and 2021 and most rapidly in Ntcheu by 83.3% (72.0%

to 92.8%).

These changes in incidence were matched by dramatic improvements in treatment coverage

in every district. Between 2010 and 2021, across both men and women, every district of

Malawi at least doubled ART coverage.The median increase in ART coverage was 261.9%.

The smallest estimated change in ART coverage was an increase of 116.5% (66.9% to 169.7%)

in Chiradzulu, and the largest was a 756.5% (635.6% to 893.7%) increase in Phalombe. Figure

5.8 presents a ladder plot of the distributions of percent changes in all 28 districts.

Chiradzulu and Phalombe are notable because they had the highest and lowest ART

coverages, respectively, in 2010 for both men and women, suggesting that the largest

improvements in that period were in the districts that were lowest to begin with. Figure

5.9 formalises this intuition by comparing ART coverage in 2010 to the percent change

between 2010 and 2021. Low ART coverage in 2010 was strongly associated with large

increases between 2010 and 2021. There is a natural reciprocal relationship in this plot

because districts with higher 2010 coverage have lower maximum possible percent changes.

The line on the figure represents the theoretical maximum increase in ART coverage we

could possibly observe given the 2010 posterior median (1/x − 1).
Changes in prevalence and incidence were spatially heterogeneous, while changes in ART

coverage were consistently high. Figure 5.10 plots the percent change in prevalence, ART

coverage, and incidence by region between 2010 and 2021. Prevalence and incidence

both decreased most dramatically in the Central region. The median percent change in

prevalence across districts within the Central Region was -37.6%, compared to -29.6%

and -33.1% in the Northern and Southern Regions, respectively. Similarly the median

percent changes in incidence were -78.3%, -72.5%, and -76.2% in the Central, Northern,

and Southern Regions, respectively. ART coverage changed more uniformly across region,

at 257.7%, 226.3%, and 283.4% in the Central, Northern, and Southern Regions.

In Section 1.1, I stated that the model be sufficiently precise if, in every study region, it
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Figure 5.7: Posteriormedian percent change inHIV prevalence, ART coverage,
and HIV incidence by sex in Malawi between the beginning of 2010 and the
end of 2021.
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Figure 5.11: Comparison of district-level prevalence inferred by the proposed
model to Naomi among adults aged 15-49 in 2020 by sex. Horizontal and
vertical line ranges correspond to 95% CIs for Naomi and the proposed model,
respectively.

estimated that the posterior probability of incidence having decreased by 50% or more

between 2010 and 2021 was less than 20% or greater than 80%.The model met that goal

in this analysis. The posterior probability of a 50% or greater decrease in incidence was

greater than 80% in every district of Malawi. In fact, this posterior probability was only

less than 95% in two districts: Rumphi and Likoma.

Comparison to Naomi estimates

Figures 5.11, 5.12, and 5.13 compare estimated district-level prevalence, ART coverage, and

incidence, respectively, from Naomi and the proposed model. The two sets of estimates

correspond well across district and sex for prevalence and incidence, particularly when

considering uncertainty, and vary more for ART coverage. Figure 5.12 highlights that my

model estimated higher ART coverage in both men and women, with a clearer difference

amongmen. It also estimatedmore slightly more extreme incidence than Naomi with lower

estimates in lower districts and higher estimates in higher districts. Pooling both sexes

together, the correlation coefficients between the point estimates were 0.99 for prevalence,

0.38 for ART coverage, and 0.93 for incidence.
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Figure 5.12: Comparison of district-level ART coverage inferred by the pro-
posed model to Naomi among adults aged 15-49 in 2020 by sex. Horizontal
and vertical line ranges correspond to 95% CIs for Naomi and the proposed
model, respectively.
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Figure 5.13: Comparison of district-level incidence inferred by the proposed
model to Naomi among adults aged 15-49 in 2020 by sex. Horizontal and
vertical line ranges correspond to 95% CIs for Naomi and the proposed model,
respectively.
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5.3 Discussion

In this analysis, I fit themodel described inChapter 2 to data fromMalawi collected between

1995 and 2020, described trends across space, time, and sex in HIV prevalence, incidence,

and ART coverage, and compared the estimates to existing national-level estimates.The

model fit well to the available data, but there were substantial differences between the

model’s estimates and UNAIDS’ estimates at the peak of the epidemic. The two sources

agreed in recent years, when data were plentiful.The model estimated with a high degree

of certainty that, over the past decade, the rapid scale-up of treatment programmes in

Malawi has resulted in marked increases in ART coverage and commensurate decreases in

incidence that were generally uniform across space.

These estimates highlight the continued success of Malawi’s HIV treatment programme.

Estimated national ART coverage increased by 271% percent between 2010 and 2021, and

changes were greatest in the most under-served areas. Figure 5.9 shows that districts

with the largest increases between 2010 and 2021 were those with the lowest coverage

in 2010. In fact, this analysis suggests that the increases in every district between 2010

and 2021 were only slightly below the rates needed to reach 100% coverage by 2021. Far

from identifying spatial gaps in changes in treatment, the model estimated that initial gaps

have been accounted for over the past ten years. Note that I have used all PLHIV as the

denominator when calculating ART coverage. Some of the lower treatment coverage in

earlier periods reflect restricted treatment eligibility, but measuring ART coverage in terms

of all PLHIV is more consistent with current recommendations.

Despite beginning projections much later than EPP, my model succeeded in synthesising

HIV seroprevalence data from household surveys and ANC facilities in a similar way to

EPP. It effectively applied the temporal trends from the ANC data to the absolute levels

from the surveys. In my model, however, these prevalence data sources are complemented

by data measuring ART coverage, ART patients counts, and recency testing.

Notably, my model was able to replicate district-level ART patient count series almost

perfectly. Although EPP does reproduce input ART patient counts exactly, it does so by

forcing the compartmental model to match the counts at every point in time. This strategy

creates stubborn numerical problems and requires the user to have in their possession
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a complete and perfectly correct time series of ART patient counts. The strategy I have

proposed here does not require complete time series, allows for the possibility of noise,

and avoids inducing the numerical problems.This strategy also allows the user to handle

outlying or otherwise erroneous data points by simply omitting them.

The near-perfect fit to ART patient count data was not accompanied by similar fit to ART

testing data.The model seemed to smooth ART coverage across sex, underestimating in

women and overestimating in men despite inferring that women were approximately twice

as likely to initiate treatment given CD4 stage. Without sex-specific patient counts, it is

difficult to identify the source of this problem, but it could be partially ameliorated with a

more flexible model for the sex ratio of ART initiation.

Comparing this model’s national-level estimates to existing estimates, I observed discrep-

ancies earlier in the epidemic when data were sparse. My model estimated a later and lower

peak in incidence than UNAIDS, although the two sets of results converged in recent years.

It is possible that this is the result of the model taking a “minimum intervention” approach

to modelling the transmission rate of HIV. Because data from the 1990s and early 2000s

are so sparse, the model has limited evidence supporting deviation from the relatively low

transmission rates needed to fit to recent data. In other words, the model can fit well to the

earliest data with relatively modern transmission rates, which are more precisely identified.

The interpretation of these results is limited by a number of important weaknesses.There

were large differences between my model and external estimates in earlier years. These

differences could be attributable to several factors.The two sets of estimates converge as

more data become available, suggesting that these differences are might be attributable to

differing start dates and transmission rate parametrisations. By beginning projections in

the 1970s, UNAIDS is able to incorporate the earliest available ANC data, which encourages

their models to exhibit exponential growth in the 1970s and 1980s and gradual declines in

prevalence from the 1990s and onwards.

Second, this model does not use every possible data source. I have aggregated data from

hundreds of ANC facilities into just a handful of district-level series and, in doing so, might

have smoothed over important variation. Fitting to each facility separately has an intuitive

appeal, but it would increase the complexity of evaluating of the ANC likelihood by a factor

of several hundred. The beta-binomial ANC likelihood should partially alleviate these
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problems. ANC facilities also provide ART testing data (Eaton et al., 2021), which I have

not incorporated here.

Third, the model smoothed ART coverage across sex, estimating that men were as likely

as women to be on treatment.These estimates conflicted with UNAIDS, which estimated

that women were 7%more likely to be receiving ART than men.This discrepancy could

be due to the relative rigidity the sex ratio of treatment initiation in the ART initiation

model, which is log-linear with respect to time, or to sex differences in the assumptions

about mortality without treatment, which contribute substantially to treatment initiation.

In either case, allowing more flexibility in the model of ART initiation could resolve these

issues.

Finally, I have simplified the spatial dynamics of HIV in two ways that could affect the

results. First, as discussed in Chapter 4, I have assumed that there is no cross-district

transmission, which is unlikely to be true. However, recent one recent study in sub-Saharan

Africa found that only about 13% of new infections with a set of communities originated

from outside of each community (Hall et al., 2021). Additionally, the cross-validation

exercise in Chapter 4 indicated that omitting spatial transmission was a better choice than

including it.

The second simplification is that I have defined theART attendancemodel using first-degree

adjacency; PLHIV can only seek treatment in the districts that are adjacent to their home

regions.This approach fails to capture the complex reality of ART attendance and might

lend too much importance to the frequently arbitrary administrative boundaries. Instead,

we could define any number of alternative distance metrics or use a gravity model that

allows people to seek treatment in any region (Meredith et al., 2021).

Despite these limitations, the results presented in this chapter offer two key insights. First,

by modelling ART initiation and building a generative model for ART patient counts, we

can incorporate programmatic treatment data into the model in a natural way without

sacrificing fit. Finally, consistent with the national-level estimates from UNAIDS, I found

that ART coverage has increased dramatically in every district of Malawi, resulting in

proportionate decreases in incidence.

The spatial heterogeneity in these estimates emphasises the need for spatially resolved
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models of incidence. Even in a generalised epidemic, I observed a 13-fold difference in

general-population incidence between the highest and lowest districts.The view of HIV in

Malawi as a single, homogeneous epidemic papers over spatial variation that is becoming

increasingly important to policy-makers. I observed substantial variation in incidence over

space that would has been masked by national-level models. Effective HIV policy-making

depends increasingly on measurement to local trends, and the models used to estimate

HIV burden must respond to those needs.
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Chapter 6

Nowcasting HIV Incidence with

Incremental Data

In this chapter, I consider model fitting processes that are specifically designed to incor-

porate routinely reported data at greater temporal granularity. I estimate the effects of

incrementally including quarterly ANC and ART facility data and measure the ability of

the model to forecast the epidemic in Malawi.

6.1 Introduction

Although nationally representative household surveys have been integral to historical

estimates of HIV incidence, routine reporting systems offer broader reach and far denser

temporal resolution. A small subset of routinely reported data are incorporated into current

HIV estimation processes, but the vast majority of are ignored.

Programmatic measurements of HIV indicators are increasingly incorporated into

queryable databases, some automatically via electronic medical record systems and some

via manual input. I have taken advantage of these systems in a minor way by fitting to

district-level aggregates of routine testing data from all ANC facilities in Malawi, but

inferential models of HIV could be integrated into digital data warehouses far more

deeply. In the simplest case, a model of HIV incidence would run once every quarter,

automatically pulling the latest programmatic data from an authoritative source.
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There are certain practical questions to answer before implementing such a system. First,

we would necessarily produce a new set of historical estimates every time we re-fit the

model. Ideally, our estimate of HIV incidence for a fixed time point would converge to a

single, well-identified value as more data were added, but this has not been tested. Large

changes in estimates for a fixed date from one quarter to the next would be difficult to

justify and explain.

Second, because this work includes a generative model for ART patient counts, it lends itself

naturally to forecasting.The only input that must be complete over the projection period

is population counts. However, as the length of the forecast increases, the precision in

estimated incidence will decrease. To aid future users in the design of estimation strategies,

we must identify how far in advance (if at all) this model can reliably forecast incidence.

The unifying question across the two points is: how much data after a fixed time point do

we need before we can view our estimates of incidence as trustworthy?

In this analysis, I used data from Malawi to estimate the effects of incrementally including

quarterly data from ANC and ART facilities on inferred incidence. By simulating data

from a pre-fit model and fitting to the simulations, I was able ask a number of questions

about how each additional data point affected estimated HIV incidence. First, I measured

how including new data affected uncertainty in past estimates of HIV incidence, hypothe-

sising that additional data would noticeably impact estimates even at the beginning of the

projection period. Second, I estimated how many years of data were required after a fixed

date to recover true incidence on that date at a given level of precision. Finally, I assessed

how accurately the model was able to forecast incidence under the correct specification. I

did not have specific hypotheses for the second and third questions.

6.2 Methods

I simulated quarterly data from 2021 through the end of 2024 using the model fit in Chapter

5 to produce a dataset of ART patient counts and ANC prevalence with known incidence.

Chapter 2 details the methodology for that model. I combined the existing data in Malawi

from 1995 through 2020 with the simulated data from 2021 through 2024 to construct a

partially synthetic dataset. I re-fit the model to the combined dataset, holding out data in
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quarterly increments from the beginning of 2021 to the end of 2024. I compared estimated

incidence to true incidence to assess how well each forecasting horizon recovered true

incidence. To illustrate how future data impacted current estimates, I compared inferred

incidence at fixed time points across the 16 forecasting horizons.

I measured the precision of estimated incidence as the absolute width of the 95% posterior

credible interval. To measure relative precision, I found the ratio of the size of the credi-

ble interval for each forecasting horizon relative to the credible interval for the shortest

forecasting horizon (i.e. the model with the least data held out).

I estimated the amount of data necessary after a fixed date to estimate incidence with a

given level of precision on that date. That is, how many years of data collection do we need

after time t to cover true incidence at time t α% of the time? To answer this question, I

found the 95% posterior coverage of true incidence across district, sex, and forecasting

horizon by the amount of time between each estimate date and the final in-sample data

point. I selected 95% as the target level of precision only because it is widely used as a

standard level of uncertainty. Other targets could be selected in future work.

To assess the model’s ability to recover true incidence given each forecasting horizon, I

found the share of district-sex-time combinations in which true incidence was within the

95% credible interval of predicted incidence. I stratified this measurement of 95% posterior

coverage of true incidence by forecasting horizon to try to identify an ideal horizon that

balanced accuracy and precision.

6.3 Results

Two forecasting horizons (1 April 2023 and 1 April 2024) failed to converge. Figure 6.1

presents box plots of 95% CI ratio relative to the shortest forecasting horizon pooled across

quarter, district, and sex for six estimate years. Each panel groups together estimated

incidence for a given year. Higher x values indicate earlier forecasting horizons (more data

included), and higher values y values indicate wider credible intervals relative to the model

that included the most data. As the amount of data included in the model increased, the

credible intervals of estimated incidence contracted, an effect that was more pronounced

in estimates for more recent years. Assuming the earliest forecasting horizon (1 January
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Figure 6.1: Box plots of the ratios of the 95% credible intervals on posterior
incidence by holdout start date compared to the intervals for the latest start
date by estimate year.

2021), the mean 95% credible interval ratio increased from 1.2 for incidence in 1995 to 1.6

for incidence in 2020.

This trend is particularly clear in the Karonga District, presented in Figure 6.2. For the

same estimate dates, models with less data predicted incidence less precisely. Among both

women andmen, the precision of estimated incidence increased asmore data were included,

although the effects are lessened in earlier estimate years. For example, among women in

2020, the size of the 95% CI of incidence ranged from 5.2 when holding out the most data

to 2.2 when holding out the least.

Figure 6.3 present the data from Figure 6.1 as a heat map, with estimate year increasing

along the x-axis and holdout start dates increasing along the y-axis. Darker green values

indicate greater uncertainty relative to the shortest forecasting horizon. In general, the

CI ratio decreases as the holdout start date increases with each column, showing that, as

more simulated data were included, the precision of estimates at fixed dates increased. For

example, the mean 95% credible interval ratio for incidence at the end of 2020 decreased

from 1.6 when only one quarter of simulated data was included to 1.1 when all but two
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Figure 6.2: Estimated HIV incidence (medians and 95% CIs) in Karonga from
2010 through 2021 by sex and selected holdout start date. The red line is
median incidence from the model fit from which the data in this chapter were
simulated. Paler blue lines and regions included less data than darker blue
lines and regions.

quarters of simulated data were included.

Because the simulated data were generated using a known epidemic, we can find the share

of observations (district-/quarter-/sex-combinations) in which true incidence fell within

the estimated posterior 95% credible interval for each forecasting horizon. I estimated how

much data were necessary after a fixed point in time to reach 95% posterior coverage of

incidence. Figure 6.4 plots 95% posterior coverage of true incidence at fixed dates stratified

by the difference between each date and the date of the last data point. Negative values

of x were aggregated over estimate dates that were later than the last held out data point

(forecasts), while positive values were aggregated over estimates dates that were before

the last data point. Posterior coverage was highest when aggregating over forecasted dates

and decreased steadily as more data were added. Posterior coverage was closest to the

target of 95% when the model had six quarters of data after each date, suggesting that the

desired level of precision for a given date was achieved 1.5 years after that date. Although

Figure 6.4 suggests that incidence was estimated most reliably for time periods before

the final data point, I still assessed the ability of the model to forecast incidence. Figure

6.5 presents posterior coverage of true incidence by holdout start date for time periods
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Figure 6.3: Mean 95% CI ratio for each holdout start date relative to the latest
holdout start date by estimate date. Higher values indicate that adding new
data has a greater effect on precision.
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Figure 6.4: 95% posterior coverage of true incidence by distance between
estimate date and the final quarter of data for estimate dates later than 2020.
Negative x values are aggregated over estimate dates that are beyond the last
data point (i.e. forecasted).
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Figure 6.5: 95% posterior coverage of true incidence by holdout start date for
the time periods fit to simulated data

with simulated data. Coverage decreased as more data were included, crossing the target

coverage of 95% when holdout began at the beginning of 2024. Coverage was 96.2% when

forecasting began in the fourth quarter of 2023 and decreased to 94.6% when forecasting

began in the first quarter of 2024. Notably, 95% posterior coverage of incidence crosses the

target threshold after more than 50% of the simulated data have been included. Because

this analysis continued to add data that the original simulation did not have, the model

was able to estimate past incidence more precisely than the original fit.

Figure 6.6 presents 95% posterior coverage of incidence disaggregated by estimate quarter.

As in Figure 6.3, higher values on the y-axis indicate less data held out and higher values

on the x-axis indicate later estimate quarters. Cells below the red dashed line correspond

to forecasted estimates. The model achieved target coverage above the line of equality,

meaning that no forecasted estimates were properly calibrated.

6.4 Discussion

In this analysis, I tested the ability of the model described in Chapter 2 to provide quarterly

estimates of HIV incidence by successively including data simulated from a previously

fit model. Each additional quarter of data increased the precision of estimates across the

whole projection period, although the effects were larger for more recent periods. The
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Figure 6.6: 95% posterior coverage of true incidence by holdout start date and
estimate year for the time periods fit to simulated data. Cells below red line
of equality correspond forecasted incidence estimates (estimate dates greater
than holdout start dates).
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model was able to infer incidence at 95% level of precision or better at a given date when it

was presented with between one and two years of data collected after that date.

Figure 6.1 shows that sequentially incorporating quarterly programmatic data into this

model improved the precision of recent estimates and had a noticeable effect on earlier

estimates. An estimation process that automatically adds new data on a regular basis or as

it becomes available would fit neatly into increasingly widespread digital reporting systems.

This analysis shows that such a process could have benefits beyond limiting the need for

human intervention.

Under the correct model specification, the model was able to estimate incidence from

simulated data in Malawi after approximately 1.5 years of data collection. Prevalence and

ART patient counts fundamentally reflect past incidence, so the ability to reliably estimate

incidence at a given date within two years of that date indicates good performance. However,

the model failed to achieve 95% posterior coverage of incidence for all forecasted time

points. Even under a correctly specified model in a highly regular epidemic, incidence was

too uncertain to forecast reliably.

This study is subject to important weaknesses that limit its generalisability. First, by append-

ing simulated data to real data, as opposed to using a fully synthetic data set, I have limited

our ability to interpret incidence as “true” incidence. Because I re-fit the model over the

entire period, estimated incidence series between 1995 and 2020 are not necessarily compa-

rable between this analysis and the analysis from Chapter 5. I appended the simulated data

to real data fromMalawi to investigate the effects of incrementally including quarterly data

in Malawi as directly as possible, but using purely synthetic data would allow us to study

how the model performs in forecasting in greater generality. I plan to conduct a larger

simulation study investigating the ability of models like this one to detect changes in true

incidence in the future.

Second, the scope of both the simulated and real data I have used here is limited. Data

in Malawi are highly regular, making them a relatively easy case for forecasting. Future

work will test these methods on fully simulated data designed to exhibit greater spatio-

temporal heterogeneity. Further, to limit computation time, I have only used one set of

simulations sampled using the mode parameter set from Chapter 5. Working with a larger

set of simulated data would offer more robust results.
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Estimating how much data are needed after a given date to reliably estimate incidence at

that date is a central question in HIV incidence modelling. Loosely speaking, we must be

able to assess whether a given incidence is trustworthy.This study found that, given data

from Malawi, my model was able to infer incidence accurately after about 1.5 years. Future

work will examine the performance of this model using a greater number of fully synthetic

datasets, but the results presented here hint at the potential impact of deeper integration

between HIV incidence models and digital data collection mechanisms.
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Chapter 7

Modelling Self-Reported Sexual

Partner Age Distributions

Although I have omitted age structure from the compartmental model described in Chap-

ter 2, explicitly modelling age dynamics of HIV transmission could greatly increase the

accuracy of my predictions. To model the rate of sexual HIV transmission in one age

group attributable to another age group, I would need to make an assumption (or set of

assumptions) about the rate of sexual partnership between all pairs of age groups. Data

on sexual partnership formation are available from a variety of sources, but they must be

smoothed and interpolated before being integrated into an epidemic model. In this chapter,

I describe a distributional regression strategy for modelling self-reported sexual partner

age distributions.The estimates from such a model could be integrated into an age-specific

epidemic model. Alternatively, because both models are Bayesian, we could estimate the

parameters for both models simultaneously.This more complex use case would allow us to

incorporate the uncertainty from the partner age distribution model seamlessly into the

epidemic model.

This chapter has been reproduced from an article originally published in eLife Sciences

on 24 June 2021 (Wolock et al., 2021).The authors of the original article were myself, Dr

Seth Flaxman, Dr Kathryn Risher, Tawanda Dadirai, Prof Simon Gregson, and Dr Jeffrey

Eaton. I designed and performed the experiments described in this chapter and wrote the

article published in eLife.The Appendix associated with that article has been reproduced in

Appendix B, and references to sections of that appendix have been updated appropriately
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in the text.

7.1 Introduction

Patterns in sexual mixing across ages determine patterns of transmission of sexually trans-

mitted infections (STIs). Consequently, sexual age-mixing has been of great interest to

researchers studying the human immunodeficiency virus (HIV) since the beginning of the

global epidemic. Anderson et al. (1992) used a model of partnership formation to predict

that mixing between young women and older men would amplify the already-substantial

effect on HIV on population growth. Garnett & Anderson (1994) used a mathematical

model to show that patterns of age-mixing could substantially influence the magnitude and

timing of hypothetical epidemic trajectories, while Hallett et al. (2007) demonstrated that

delaying sexual debut and increasing age-similar partnerships could reduce an individual’s

risk of HIV infection in a highly endemic setting.

These modelling studies have been complemented by analyses of survey and population

cohort data on age-mixing patterns. Gregson et al. (2002) observed that individuals with

older partners were at greater risk of HIV infection. Ritchwood et al. (2016) and Maughan-

Brown, Evans, & George (2016) found that larger age differences were associated with

more risky sexual behaviour in surveys of young South African people. On the other hand,

Harling et al. (2014) found that age-disparate relationships were not associated greater risk

of HIV acquisition in young women in South Africa.

These results underscore the importance of considering age-mixing dynamics when de-

signing and evaluating HIV prevention strategies, and, consequently, the importance of

measuring them accurately. For example, an intervention aiming to prevent new HIV

infections among young women could be undermined by high prevalence among older

men. Identifying changes in sexual partner age distributions and attributing them to inter-

ventions might even be a valuable end by itself, in which case accurate measurement must

be complemented by an effective modelling strategy.

Data about sexual partner age-mixing are routinely collected by long-term cohort studies

(such as those that comprise the ALPHANetwork) and large-scale household surveys (such

as the Demographic and Health Surveys) (Reniers et al., 2016; “The DHS program,” 2021).
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Typically, these data consist of the respondent’s age and sex and the ages of their sexual

partners in the last 12months.These data are highly variable, skewed, and often deviate

substantially from conventional parametric distributions, such as the normal distribution

or the gamma distribution (Beauclair, Hens, & Delva, 2018).

One may consider statistical modelling approaches for the distribution of partner age as

a function of respondent age and sex. Some notable previous approaches to modelling

partner age distributions include Hallett et al., who used a log-logistic distribution to

model partner age differences for women aged 15 to 45 years, assuming that the partner

age difference distributions did not vary over respondent age. More recently, as an input

to a model of Chlamydia trachomatis, Smid et al. (2018) fit skew normal distributions to

each age-/sex-specific partner age distribution and used a secondary regression model

to smooth the estimated skew normal parameters across respondent age.They observed

substantial changes in the estimated skew normal parameters with respect to respondent

age. Although this method allows for non-linear variation across respondent age, their two-

stage estimation process makes uncertainty propagation complex. Replacing this process

with a single “distributional” regression model, in which all distributional parameters

(e.g. the location, scale, skewness, etc.) are modelled as functions of data (Kneib & Umlauf,

2017), allows for complex variation across respondent age while still robustly incorporating

uncertainty. Another elegant approach has been the development of exponential-family

random graph models (ERGMs) to infer full partnership networks from indivuals reports

of the partnerships (‘ego-centric’ observations of the network) (Krivitsky & Morris, 2017).

These stochastic methods, along with the broader suite of ERGMs (Hunter et al., 2008;

Hunter, Goodreau, & Handcock, 2008; Krivitsky & Handcock, 2014; Krivitsky, Handcock,

& Morris, 2011), can model social network data accurately with robust incorporation of

covariates, and tools exist to incorporate their estimates into epidemic models (Jenness,

Goodreau, & Morris, 2018; Morris, 1993).

More broadly, no previous work has systematically evaluated the wide variety of distri-

butions potentially available to model partner age distributions. These distributions are

skewed, heavy-tailed, and otherwise dissimilar to conventional statistical distributions

due to personal preferences, social dynamics, demographic change, and any number of

other factors. We were specifically interested in distributions that introduce parameters to
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control tail weight, which may capture intergenerational mixing that could sustain endemic

HIV and STI transmission (Akullian et al., 2017; Harling et al., 2014; Schaefer et al., 2017).

This led us to test the ability of the four-parameter “sinh-arcsinh” distribution originally

proposed by Jones & Pewsey (2009) to fit to these data.

We hypothesized that integrating the sinh-arcsinh distribution into a distributional mod-

elling framework would allow us to replicate observed partner age distributions more

accurately than prior modelling strategies. We tested this theory by comparing a variety

candidate strategies, which varied along three dimensions: the parametrisation of the

dependent variable, the choice of distribution, and the method for incorporating variability

across respondent age and sex.

7.2 Methods

We conducted two model comparison experiments to identify which of a set of strategies

best replicated partner age distributions. First, in our probability distribution comparison,

we identified which of a set of distribution-dependent variable combinations fit best to age-

/sex-specific data subsets, and then, in our distributional regression evaluation, we tested

whether distributional regression methods could be used to estimate age-/sex-specific

partner age distributions by sharing strength across observations. We divided the model

comparison into two separate experiments to make the probability distribution comparison

as fair as possible (accounting for the possibility that certain distributions would perform

particularly well under certain regression specification).

7.2.1 Data

We analysed data on sexual partner age distributions from three sources: the Africa

Centre Demographic Information System, a health and demographic surveillance site

in uMkhanyakude district, South Africa collected by the African Health Research Institute

(AHRI) (Gareta et al., 2021; Gareta, Dube, &Herbst, 2020a, 2020b), theManicalandGeneral

Population Cohort in Zimbabwe (Gregson et al., 2017), and the 2016-2017 Demographic

and Health Survey (DHS) in Haiti (Institut Haïtien de l’Enfance - IHE/Haiti & ICF, 2018).
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The AHRI andManicaland studies aremulti-round open, general population cohort studies

designed to measure the dynamics of HIV, sexual risk behaviour, and demographic change

in sub-Saharan African settings. We used rounds 1 through 6 of the Manicaland study,

collected between 1998 and 2013.The AHRI data we used were collected annually between

2004 and 2018. The 2016-17 Haiti DHS was a large, nationally representative household

survey conducted in 2016 and 2017. We did not incorporate the weights associated with the

survey into this analysis because our primary interest was in statistical modelling of partner

age distribution as a function of respondent age, not producing population representative

statistics for the Haiti population.

These data sets consisted of individuals’ reports of their own age and sex and the ages of each

of their sexual partners from the last year. Let i ∈ (1, ...,N) index reported partnerships,

ai ∈ [15, 64] and si ∈ {0, 1} be the age and sex of the respondent in partnership i with

s = 1 indicating female, and pi be the age of non-respondent partner in partnership i.

These questionnaires do not ask specifically about partner sex, but self-reporting of non-

heterosexual partnerships in these populations is thought to be low (Arias Garcia et al.,

2020; World Health Organization & UNAIDS, 2020).

Respondents in each of these data sets are disproportionately likely to report that their

partners’ ages are multiples of five or multiples of five away from their own age, leading to

distinct “heaping” in the empirical partner age (or age difference) distributions at multiples

of five. We tested the sensitivity of our results to heaping by developing a simple “deheaping”

algorithm, applying it to the AHRI data, and running each analysis on the deheaped AHRI

data. We present these results in Section B.1.

7.2.2 Probability distribution comparison

To identify the best probability distribution for modelling sexual partner age distributions,

we split each data set into 12 subsets by sex and five-year age bin ranging from 20 to 50,

resulting in 36 subsets, and fit a number of distribution-dependent variable combinations

to each subset.
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Distribution Parameters Domain PDF

Normal
µ (location)
σ > 0 (scale) R

1
σ
√
2π
exp [−xz2 ]

Skew
normal

µ (location)

σ > 0 (scale)
є (skewness)

R
2
σ p(xz)Φ(єxz)

Gamma
k > 0 (shape)
θ > 0 (scale) R+

1
Γ(k)θk x

k−1 exp [−xθ ]
Beta

α > 0 (left)
β > 0 (right) R(0,1)

xα−1(1−x)β−1
B(α,β)

Sinh-arcinh

µ (location)
σ > 0 (scale)
є (skewness)
δ > 0 (tail weight)

R
1

σ
√
2π

δCє ,δ(xz)√
1+x2z

exp [− Sє ,δ(xz)2
2 ]

Table 7.1: Details of the five distributions tested in this analysis. We define
xz = (x − µ)/σ , p(x) to be the standard normal PDF,Φ(x) to be the standard
normal cumulative density function, Sє,δ(x) = sinh(є + δ asinh(x)), and
Cє,δ = cosh(є + δ asinh(x)).

Distributions

We tested five candidate probability distributions: normal, skew normal, beta, gamma, and

sinh-arcsinh. Table 7.1 summarises the domains, parameters, and probability density func-

tions (PDFs) of these distributions. Because the gamma distribution is always right-skewed

and men typically partner with women who are younger than them, we transformed data

among male respondents to be right-skewed when using the gamma distribution. Specifi-

cally, we multiplied the men’s partners’ ages by -1 to reflect the distribution horizontally

across the y-axis, and added 150 to the reflected ages to ensure that all resulting values

were positive. Similarly, the beta distribution is only defined on the interval (0, 1), so, only
when using a beta distribution, we scaled all partner ages to be between zero and one using

upper and lower bounds of 0 and 150.The sinh-arcsinh distribution, presented by Jones &

Pewsey (2009), is an extension of Johnson’s SU distribution (Johnson, 1949). It has four

parameters: location, scale, skewness, and tail weight (denoted, µ, σ , є, and δ respectively),

and it can deviate substantially from the normal distribution. Figure 7.1 plots the density of

this distribution with µ = 0 and σ = 1 for a variety of values of skewness and tail weight.
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Figure 7.1: The sinh-arcsinh density with µ = 0, σ = 1, and a variety of
assumptions about є and δ

Dependent variable transformations

We considered the possibility that certain distributions could interact well with particular

transformations of the dependent variable (partner age) by testing a set of four potential

outcome parametrisations. For example, if X is a positive-valued, right-skewed random

variable, then assuming logX is normally distributedmight bemore effective than assuming

that X itself is normal.

Let yi be the dependent variable value for partnership i, and let ai and pi be the respondent

age and partner age of partnership i, respectively. We tested the following dependent

variables:

1. Linear age: yi = pi .This is untransformed partner age, included as a baseline. It has

the undesirable quality of being able to predict negative ages.

2. Age difference: yi = pi − ai . If changes in expected partner age are consistent

across respondent age then this variable would be more consistent across respondent

age than the linear age. This parametrisation also allows for negative partner age

predictions.

3. Log-age: yi = log pi . We can use a log link function to ensure that our predictions

will be positive-valued.

4. Log-ratio: yi = log(pi/ai). Finally, we can combine the link function and differenc-

ing approaches by modelling the log of the ratio of partner to respondent age.This

variable will only produce positive predictions and should exhibit the same relative
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stability as the age difference variable.

Because the gamma and beta distributions are not defined on the entire real line, we only fit

them with the linear age dependent variable with the previously discussed transformations.

To identify which distribution-dependent variable combination best modelled the charac-

teristics of sexual partner age distributions, we stratified each of our three data sets by sex

and five-year age bin from 20-24 through 45-49. We fit every viable distribution-dependent

variable combination to all 36 subsets independently. Given that we fit only the linear age

dependent variable to the gamma and beta distributions, comprising a total of 504models

(14 per data set). We fit each model using the brms R package (Bürkner, 2018), defining

custom families as necessary.

7.2.3 Distributional regression evaluation

Given a probability distribution that accurately replicated the non-Gaussian characteristics

of partner age distributions, we tested whether or not distributional regression would allow

us to pool data across age and sex without sacrificing fit. This is a method in which we

make all of our distributional parameters, not just the mean, functions of data (Kneib &

Umlauf, 2017). Taking conventional Bayesian regression as an example, we have

yi ∼ N(µi , σ)
µi = βXi ,

(7.1)

where β and log σ are free parameters.There is an explicit assumption in this model that

the standard deviation of the generating distribution is constant across all observations.

We can use distributional regression to relax this assumption, making σ a function of data:

yi ∼ N(µi , σi)
µi = βµX

µ
i

log σi = βσXσ
i ,

(7.2)

where βµ and βσ are now our free parameters. Note that we have not assumed that Xµ =
Xσ . If Xσ is a column of ones, this model is identical to the conventional case. This
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Model Distributional? Location Other parameters

Conventional No Age-sex interaction Constant
Distributional 1 Yes Age-sex interaction Age and sex effects
Distributional 2 Yes Age-sex interaction Age-sex interaction
Distributional 3 Yes Sex-specific splines Age-sex interaction
Distributional 4 Yes Sex-specific splines Sex-specific splines

Table 7.2: Summary of five models fit in this analysis.

approach increases the complexity of the model and requires more data, but, based on

previously described characteristics of how the distribution of partnership age distribution

changes with age, even a simple model for our distributional parameters could yield large

improvements.

In this case, we used a sinh-arcsinh distribution and specified a model for each of its four

parameters. We fit a series of increasingly complex distributional regression specifications

to the three data sets using brms (Bürkner, 2018), which has deep support for distributional

regression.

1. Conventional: linear age-sex interaction for location and constants for all three

higher-order parameters

2. Distributional 1: linear age-sex interaction for location and independent age and

sex effects for all other parameters

3. Distributional 2: linear age-sex interactions for all four parameters

4. Distributional 3: sex-specific spline with respect to age for location and linear age-

sex interactions for all other parameters

5. Distributional 4: sex-specific splines with respect to age for all four parameters

Table 7.2 describes all five models. By fitting a wide set of specifications, we hoped to assess

whether the additional complexity incurred by distributional regression was valuable. More

detailed descriptions of each model are available in Section B.2.

7.2.4 Model comparison

Across both analyses, we used two metrics to measure model fit. First, we calculated the

expected log posterior density (ELPD), which estimates the density of the model at a new,
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unobserved data point (Vehtari, Gelman, & Gabry, 2017). In cases where we wanted to

compare across dependent variables, we multiplied the posterior densities of any variables

resulting from non-linear transformations of observed partner ages by the Jacobians of

the transformations. For example, if our observation model was defined on the log-age

dependent variable yi = log pi , we divided the posterior density by pi . We used the loo R

package (Vehtari et al., 2020) to calculate ELPD values.

To measure the ability of our models to replicate partner age distributions in an objective

and interpretable way, we found the root mean squared error (RMSE) between the observed

and posterior predictive quantiles. We calculated quantiles from 10 to 90 in increments

of 10 by age bin and sex in the data and in the posterior predictions, and found the error

in model prediction of each quantile.This measure tells how well our model predicts the

entire distribution in the same units as our predictions. It is equivalent to finding the mean

squared or median absolute distance from the line of equality in a quantile-quantile (QQ)

plot.

7.2.5 Software

We conducted all of these analysis using the R programming language (R Core Team, 2020)

and the brms library (Bürkner, 2018). We used the loo library to estimate all ELPDs (Vehtari

et al., 2020), and produced all plots in this paper with the ggplot2 library (Wickham, 2016).

We provide code and data for an example case on Github.

7.3 Results

The AHRI data included 77,619 partnerships, Manicaland had 58,676, and the Haiti DHS

had 12,447. As an illustrative example of the distribution of partner ages, Figure 7.2 presents

histograms of reported partner ages among women aged 35-39 for each of our three data

sets. Figure 7.3 shows the sex- and age bin-specific empirical moments for the three datasets.

Mean partner age increased with respondent age consistently for both sexes across all three

datasets: among women, mean partner age increased by 26.0, 22.7, and 23.7 years in the

AHRI data, Haiti DHS data, and Manicaland data, respectively, between age bins 20-24
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Figure 7.2: Observed partner age distributions among women aged 34 years
in all three data sets.

and 45-49. However, higher order moments were less consistent: the standard deviation of

women’s partners’ ages changed by 2.3, 0.5, and 3.5 years in the AHRI data, Haiti DHS data,

and Manicaland data, respectively.

Within each dataset, there is systematic variation across sex. For example, the standard

deviation of partner ages in the Haiti DHS increased by 2.5 years among men and only by

0.5 years among women.These summary statistics illustrate the heterogeneity of partner

age distributions across age and sex.

7.3.1 Probability distribution comparison

To identify the probability distribution that most accurately described the variation in

sexual partner age distributions, we identified the dependent variable with the highest

ELPD for each distribution-dependent variable combination. Figure 7.4 illustrates each

probability distribution’s best fit to AHRI data among women aged 35-39 with each of

the best distribution-specific dependent variables. Results for all 36 data subsets and the

12 deheaped subsets are in Section B.3. The best dependent variable varied across data

subset and probability distribution. Table 7.3 provides the share of data sets for which

each dependent variable has the highest ELPD given each distribution. The log-ratio

dependent variable was best in 50.0% of subsets with a normal distribution, but it was

best in only 27.8% of subsets with a skew normal distribution.The dependent variable that

was best in a plurality of subsets in each probability distribution (i.e. the variable with the
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AHRI (N = 77,619) Haiti 2016−17 DHS (N = 12,447) Manicaland (N = 58,676)
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Figure 7.3: Observed means, variances, skewnesses, and kurtoses of partner
age by five-year age bin and sex in all three datasets
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Figure 7.4: Observed partner age distributions (grey bars) and posterior predic-
tive partner age distributions (lines) for each probability distribution among
women aged 35-39 in the AHRI data set. Posterior predictive distributions
come from fitting each age bin/sex combination independently.
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Variable Normal Skew normal Sinh-arcsinh

Age difference 22.2% 25.0% 16.7%
Linear age 8.3% 5.6% 16.7%
Log-age 19.4% 41.7% 30.6%

Log-ratio 50.0% 27.8% 36.1%

Table 7.3: Share of subsets in which each dependent variable yields the highest
ELPD given each probability distribution (excluding deheaped AHRI data).

highest percentage in each column of Table 7.3) used a log link function. We restricted all

remaining comparisons to each distribution-subset combination’s best dependent variable.

The sinh-arcsinh distribution had the highest ELPD in 35 of 36 data subsets (98%). In 29

of the 35 (83%) cases in which the sinh-arcsinh provided the highest ELPD, the absolute

value of the ratio of the difference between the two best ELPDs and the estimated standard

error of the difference was greater than 2, indicating that the sinh-arcsinh distribution was

significantly better than the alternatives in the majority of cases. In one case, men aged

20-24 in the Haiti DHS, the skew normal distribution resulted in a slightly higher ELPD

than the sinh-arcsinh distribution, but the standard error of the difference was greater than

the difference.These results were not affected by deheaping the data first (Section B.1).

To summarise each distribution’s performance, we calculated the average ELPD and QQ

RMSE across the three datasets (Table 7.4).The sinh-arcsinh distribution had the highest

average ELPD and lowest average QQ RMSE in all three datasets.The sinh-arcsinh distri-

bution was, on average, able to predict the empirical quantiles of each data set within half a

year of accuracy (0.36, 0.37, and 0.44 years for the AHRI, Haiti DHS, and Manicaland data,

respectively). Non-aggregated tables of ELPD differences and QQ RMSEs are presented

in the Section B.3.2. Figure 7.5 overlays each data subset-/probability distribution-specific

QQ plot within study and distribution choice. Greater deviation from the line of equality

indicates less accurate replication of empirical quantiles. We present these plots for both

sexes and all age groups in the Section B.3.1.

7.3.2 Distributional regression evaluation

We fit all five distributional regression specifications to all three of our datasets with sinh-

arcsinh distributions and log-ratio dependent variables and compared the ELPDs and
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tion’s best fit to data in all three main datasets. Presented quantiles range from
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Distribution AHRI Haiti 2016-17 DHS Manicaland

ELPD
Gamma -14847.2 -2917.9 -13152.8
Beta -14748.0 -2896.5 -13003.5
Normal -14593.7 -2868.4 -12856.8
Skew normal -14505.1 -2854.0 -12778.5
Sinh-arcsinh -14312.5 -2839.5 -12625.8

QQ RMSE
Gamma 0.83 0.82 0.95
Beta 0.99 0.82 1.11
Normal 0.82 0.68 0.97
Skew normal 0.77 0.65 0.85
Sinh-arcsinh 0.36 0.37 0.44

Table 7.4: Model comparison metrics averaged across all data subsets for all
three datasets. Higher ELPD values indicate better fit. Lower QQ RMSE
values indicate more accurate prediction of empirical quantiles. Bolded rows
are best across all three data sets.

QQ RMSEs as before (provided in Table 7.5). Across all three datasets, the most complex

distributional model (Distributional 4) had the highest ELPD and lowest QQ RMSE.

When fit to the AHRI and Manicaland data sets (but not for the Haiti DHS), the most

complex distributional model was a least two standard errors better than the next best

model. Notably, the largest ELPD improvements came from moving from conventional

regression (Conventional) to the simplest distributional model ( 1646.0 units, 361.0 units,

and 2181.2 units in the AHRI, Haiti DHS, and Manicaland data, respectively). Full tables

are available in Section B.3.2. Figure 7.6 shows the posterior predictive distributions from

the conventional regression model and the most complex distributional model among men

aged 16 years, 24 years, and 37 years in the AHRI data to illustrate the effect of distributional

regression. Not only does the distributionalmodel capture the high peak in the youngest age

more accurately, but it also allows the variance of the distributions to change appropriately

(beyond the change that naturally results from the log link function). Figure 7.7 illustrates

posterior summaries among men and women in the AHRI data for all four distributional

parameters for the conventional regression model, the simplest distributional model, and

the most complex distributional model.The red estimates (Conventional Regression) of the

three higher order parameters were constant across age and sex, whereas the blue estimates

(Distributional Model 1) included independent, linear age and sex effects. The orange

estimates (Distributional Model 4) were generated sex-specific splines with respect to age,
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Figure 7.6: Observed partner age distributions (grey bars) and posterior pre-
dictive partner age distributions (lines) for conventional regression and the
most complex distributional model among men aged 16, 24, and 37 years in
the AHRI dataset. Posterior predictive distributions come from regression
models fit to the entire AHRI dataset.
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Model AHRI Haiti 2016-17 DHS Manicaland

ELPD
Conventional 52689.2 4777.8 21011.3
Distributional 1 54335.2 5140.8 23192.5
Distributional 2 54794.8 5138.7 23472.1
Distributional 3 55534.2 5196.7 24313.7
Distributional 4 55841.9 5207.6 24516.1

QQ RMSE
Conventional 1.30 1.33 2.05
Distributional 1 1.15 0.98 1.89
Distributional 2 1.21 0.99 1.80
Distributional 3 0.93 0.91 1.34
Distributional 4 0.66 0.84 1.04

Table 7.5: ELPD and QQ RMSE values for all five distributional regression
models fit to each dataset. The models increase in complexity from Con-
ventional Regression to Distributional Model 4. Bolded ELPD values are
more than two standard errors higher than the next best value in the column.
Bolded QQ RMSE values are lowest in their column.

allowing for flexible variation across age and sex.

The third row of plots in Figure 7.7, which corresponds to the skewness parameter, illustrates

the impact of incorporating sex and age effects into the model.The conventional regression

model estimated that neither the distrbution for men nor women exhibited much skewness;

the estimated parameter value was -0.05 (95% UI: -0.06 to -0.05) regardless of age, with

0.0 corresponding to perfect symmetry. However, when we allowed independent age and

sex effects in Distributional Model 1, we estimated that at age 15, women’s skewness was

-0.26 (95% UI: -0.27 to -0.25) and men’s was 0.11 (95% UI: 0.10 to 0.12).

The most complex model (Distributional Model 4) inferred sex-specific, non-linear vari-

ation with respect to age in all four distributional parameters. The non-linearity was

particularly dramatic in the scale parameter among men. The scale value began at 0.05

(95%UI: 0.05 to 0.06) among 15-year-olds, peaked among 37-year-olds at 0.11 (95%UI: 0.10

to 0.11), and decreased back down to 0.05 (95% UI: 0.04 to 0.06) at age 64. Finally, Figure

7.8 presents inferred distributional parameters from Distributional Model 4 for both men

and women for all three datasets. Based on those plots, the flexible model was justified for

most distributional parameters in all three datasets. Were we to continue developing these

models, this plot suggests that skewness might only need linear, sex-specific effects with
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Figure 7.7: Estimated sinh-arcsinh distributional parameters from the con-
ventional regression model, and distributional models 1 and 4 fit to the AHRI
data. “Conventional" assumes no variation across age and sex, “Distributional
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respect to age. Interestingly, the 2016-2017Haiti DHS and Manicaland estimates exhibit

similar patterns across all four parameters, despite the different socio-cultural contexts

surrounding partnerships in the two populations. We also note that the DHS does not

collect data on adults aged 50 years and older, so our estimates in Haiti from age 50 to age

64 are purely extrapolated.

7.4 Discussion

We found that the sinh-arcsinh distribution reproduced observed sexual partner age distri-

butions better than a number of other possible distributional assumptions across age and

sex in three distinct data sets. We integrated this finding into a distributional regression

framework using existing statistical modelling software. Even the simplest distributional

regression in our set of candidate models far outperformed conventional regression, in

which all moments except the first are estimated as constants. Our most complex distribu-

tional model fit better than all other models in all three data sets, suggesting that modelling

these data benefits from the additional complexity.

These results indicate that distributional regression models with sinh-arcsinh distributions

can accurately replicate age-/sex-specific sexual partner age distributions.This approach

presents a number of advantages over previous methods. First, like Smid et al., it allows a

unique distribution for every age-sex combination. As Figure 7.3 illustrates, partner age

distributions can exhibit substantial, systematic variation across age and sex in any of the

first four moments, so we must consider modelling strategies that allow for such variation.

Second, distributional regression offers a principled method to propagate uncertainty

through this estimation process.

Finally, distributional regression implemented through brms provides access to a deep

set of hierarchical modelling tools that could enable estimation in a variety of low-data

settings. We evaluated a small set of relatively simple distributional models in this work,

but, theoretically, each distributional parameter could have its own, arbitrarily complex

hierarchical regression model. Using these tools, one could estimate unique partner age

distributions across levels of stratification that are substantively interesting but do not

provide sufficient sample size for independent estimation (e.g. study sites or geographic
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areas).

We have identified several limitations in this approach. First, the amount of data required

to produce usefully precise estimates is not tested. Each additional distributional parameter

introducesmodel parameters, so thismethod ismore complex than conventional regression.

The sinh-arcsinh distribution did fail to produce the highest ELPD in our smallest data

subset (N = 170), but it was not significantly worse than the best distribution. More

importantly, by integrating these data into a distributional modelling framework, we gain

the ability to impose structure on these parameters, which could easily offset the cost of

any additional model parameters.

Interpreting the inferred model parameters in sinh-arcsinh regression can also be difficult.

Whereas conventional regression estimates the effects of covariates on expected values, the

sinh-arcsinh distribution is parametrised in terms of a location parameter.This parameter

correlates closely with the central tendency of the distribution, but it is not strictly the mean

We can reparametrise the distribution so that we estimate a mean (and therefore effects

of covariates on the expected value), but it is not currently possible in the probabilistic

programming software that underlies brms.

Third, our analysis assumed that we were operating at a level of stratification at which

partnerships are basically comparable, but any number of factors could lead to fundamen-

tally different partner age distributions. For example, we did not control for whether the

partnership was same-sex or the type of the partnership (married, casual, etc.).That said,

our distributional framework would allow us to incorporate data on any of those factors

directly into the model.

Despite these limitations, we believe that the strategy we present will work well in future

projects that require estimates of partner age distributions. We plan to use these methods

to produce age-mixing matrices to inform epidemic models of HIV, but there are a number

of directions that could be explored. We are specifically interested in leveraging the spatio-

temporal structure of the survey data used here. Hierarchical mapping exercises with

household survey data are increasingly common in epidemiology, but estimating spatially

varying partner age distributions would require an evaluation of how best to model higher

order moments over space. For example, we would need to consider how the variance of

partner age distributions varies by urbanicity.
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Similarly, population-based studies typically collect far more detailed information on

partnerships than we took advantage of here. Relationship type is a key confounder of the

association between respondent age and partner age (that we ignored for the purposes of

our experiments). We might, for example, expect the age distributions of casual partners

to vary substantially from those of long-term cohabiting partners. Because we have built

our model in a pre-existing regression framework, incorporating new covariates into any

of the distributional regression specifications should be simple.

We believe that our framework offers a flexible, accurate, and robust method for smoothing

and interpolating sexual partner age distributions, but these methods are not specific to

partner age distributions. The sinh-arcsinh distribution is relatively easy to implement

and does not incur high computational cost, so it could be applied in many settings. Even

without the distributional regression framework we have used here, allowing the third

and fourth moments of the distribution to vary from the “default” normal values could be

valuable across a variety of applications.

Distributional regression is also underutilised in social science applications. We often work

with large surveys that would comfortably support models for higher order parameters.

Data requirements will vary by application and model, but, as we have shown here, even a

simple distributional model can improve fit and avoid biasing estimates.
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Chapter 8

Discussion

In the previous chapters, I have developed and tested a spatio-temporal epidemic model of

HIV. I have discussed the strengths and weaknesses of each experiment in its own chapter.

In this chapter, I discuss the body of work as a whole and outline a number of directions

for future research.

8.1 Summary of work

In this work, I have developed a hierarchical Bayesian epidemic model of HIV that infers

prevalence, incidence, and ART coverage simultaneously over space and time.This model

incorporates all available biomarker data from household surveys and a wider set of ANC

facility testing data than previous models. Unlike previous work, the model incorporates

regional ART patient counts into the likelihood, rather than treating them as constraints

for the epidemic model.

The model connects the epidemic model to a suite of generalised additive models for under-

lying dynamics, the parameters of which are inferred. Although EPP has always inferred

time-varying HIV transmission rates, the model I proposed here allows transmission rates

to vary over both space and time and additionally infers the rate of ART initiation and the

initial state of the epidemic model. Inferring the ART initiation rate fits more naturally

into a model defined in terms of partial derivatives than directly modelling ART coverage.

I attached onto this model a version of the ART attendance model from Eaton et al. (2021),
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which reconciles household-based survey data with facility-based ART programme data.

Specifying the model requires numerous design decisions related to both the underlying

linear models and the likelihood. To empirically guide these decisions, I conducted a large

model specification experiment with data fromMalawi using a cross-validation strategy

designed to promote accuracy in recent estimates. Consistent with Eaton & Bao (2017),

I found that ANC testing data were more effectively modelled by the overdispersed beta-

binomial distribution than by a binomial distribution. Given the beta-binomial ANC

observation model, the cross-validation strategy identified a number of model features as

better than others but did not conclusively identify one specific configuration as best.

For computational efficiency, the model comparison study omitted spatial transmission,

assuming instead that all infections among residents of a region were endogenous to the

region. I conducted a separate experiment examining the impact of spatial transmission

on inferred incidence by applying five different assumptions about the degree of spatial

mixing to one of the better configurations from the model comparison study. I found that

incorporating spatial mixing into the model increased computation time by approximately

a factor of six. Spatial mixing had spatially heterogeneous effects on inferred incidence, but

the cross-validation strategy weakly suggested that the best model was still the one without

spatial mixing.

With the results of the model specification tests, I fit the model to to the full dataset from

Malawi to produce estimates of district-level HIV incidence rates, prevalence, and ART

coverage amongmen andwomen aged 15-49 years.Themodel fit well to prevalence data and

ART patient counts, but smoothed ART coverage across sex.There was substantial variation

in incidence across districts, highlighting the importance of spatially resolved modelling.

The model estimated that recent trends in the epidemic in Malawi have been dominated by

rapid increases in ART coverage across district and sex, resulting commensurate decreases

in incidence.

I then explored the potential of integrating this model into digital data collection mecha-

nisms and updating estimates with new data as they become available. Rather than update

estimates once per year in a process requiring substantial human intervention, we could au-

tomatically update estimates once every quarter. By supplementing real data with simulated

future observations, I found that adding new data every quarter improved the precision of
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estimates even far in the past and that the model was able to recover true incidence at a

fixed date with a reasonable degree of precision after less than two years of data collection

after the date. Because current data on HIV indicators reflect past incidence, the model

was not able to forecast incidence reliably.

Finally, I presented a statistical model designed to smooth and interpolate self-reported

sexual partner age data. Although my epidemic model has no age structure, sexual age-

mixing datawould need to be smoothed before inclusion into an age-structured version.The

statistical model of partner age data integrates the four-parameter sinh-arcsinh distribution

into a distributional regression framework. It fit well to observed partner age distributions

from a variety of settings and could be extended to include any of the familiar hierarchical

modelling tools available in brms.

8.1.1 Assessment of original aims

In Section 1.1, I outlined the specific aims of my thesis. In brief, they were to develop

and validate a spatio-temporal epidemic model capable of estimating HIV incidence at a

subnational level in data-sparse settings. Acknowledging that true model validation was

impossible in the absence of direct measurement of incidence, I outlined a cross-validation

strategy based on observable indicators and proposed comparisons to other estimates of

HIV burden. I also specified that the model would be “sufficiently precise” if it estimated

that the posterior probability of a 50% or greater decrease in incidence between 2010 and

2021 was less than 20% or greater than 80% in every district of Malawi.

In general, the proposed model met these aims. It fit well to most of the incorporated data

and, in recent years, aligned well with other estimates of HIV burden in Malawi. Although

these results do not indicate if predicted incidence is accurate, they suggest that themodel is

consistent with the data that are available andwith othermethods ofHIV burden estimation.

Notably, relatively diverse sets ofmodel specifications led to similar fit to out-of-sample data,

indicating that the same dataset could be generated by substantially varying incidence series.

This means that the cross-validation strategy cannot be interpreted as cross-validating with

respect to incidence. In Chapter 6, the model recovered true incidence after approximately

1.5 years of new data. Finally, the model achieved the desired level of precision: posterior

probabilities of 50% or greater decreases in incidence between 2010 and 2021 of less than
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20% or greater than 80%. In fact, the estimates of the changes in incidence over this period

were considerably more precise than the target level of precision.

8.2 Strengths

The model proposed here incorporates a number of methodological improvements over its

predecessors.

8.2.1 Multivariate modelling of HIV

First, I have focused on incorporating more population-level data sources than previous

models in as robust a way as possible. Following Eaton et al. (2021), I fit simultaneously to

HIV testing, ART adherence, and recency data from large household surveys. Independent

measurement of ART coverage provides a particularly important point of leverage for

reconciling prevalence data and patient counts. Given total population, prevalence implies

a number of PLHIV that should, in theory, be consistent with the observed patient counts;

direct measurement of ART coverage gives us an alternate view of this system, improving

inference.

Unlike Naomi, this model was designed to infer changes in the epidemic over time. Naomi

fits to a single survey at an initial point in time, and projects up to two time points in the

future by linearising the epidemic. In a typical use case, the user inputs a survey from 2015

and produce estimates for 2015, 2018, and 2020. Because Naomi ignores progression and

mortality dynamics and takes such large time steps, it is not well-suited for estimation of

trends in incidence. Without considering disease progression dynamics, a single survey

provides little information about changes in incidence. As discussed in Chapter 1, reliable

estimates of how HIV incidence varies over both space and time are critical for effective

policy-making.
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8.2.2 ANC data and observation model

I have also included a broader set of ANC data than previous models (Bao, 2012; Eaton

et al., 2019). With access to granular data fromMalawi, I re-aggregated facilities that are

already included in EPP by quarter, as opposed to year, to align them with the modelled

time step. I also produced regional measurements of ANC prevalence by aggregating over

the hundreds of facilities that are not currently including the UNAIDS estimation process.

Fitting to all facilities individually might be preferable, but even including a regional

aggregate should reduce the selection bias induced by using historical sentinel sites. I have

also built the insight from Eaton & Bao (2017) into a more natural observation model,

using the overdispersed beta-binomial distribution instead of the normal approximation

proposed by Eaton et al. The cross-validation exercise in Chapter 3 suggested that the

beta-binomial observation model captured the variation across facility and time better

than a binomial model.

8.2.3 Improved model of treatment seeking

Perhaps the most significant change this model makes in terms of data is its handling

of ART patient counts. Forcing an epidemic model to match exogenous patient counts

exactly at every time point requires us to account for parameter sets that do not produce

enough PLHIV without treatment under the current to reach the target number of patients.

The model either needs to generate new PLHIV, distorting the meaning of the parameters

with respect to incidence, or carry the difference forward and fail to match the target

counts. This problem becomes substantially more complex when the epidemic model uses

a more granular level of stratification than the ART patient counts. In this work, I fit the

predicted number of PLHIV on treatment to ART patient counts, obviating the need for

such constraints, while still matching the observed patient counts nearly perfectly.

This approach acknowledges that patient count series must contain a small amount of error

and gives the user more flexibility in how they prepare their ART data. Existing models

need complete series of counts, requiring the user to remove outliers and interpolate over

time. My model requires no interpolation and can handle outliers as well as any other

statistical model.The user can drop any data points they believe to be erroneous, and the
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model will smooth over the gap.

I also note that if treatment coverage continues to increase and times until initiation

decrease, the change in the number of ART patients will become an increasingly accurate

measurement of true new infections. If every new person LHIV began treatment the

moment they were infected and no one on treatment died, then the change in patient

counts would be exactly the number of new infections.That case does not reflect the real

world, but the thought experiment highlights the potential value of ART programme data

in models of HIV incidence.

The ART observation model is facilitated by the novel model of ART initiation I have

developed. Rather than model ART coverage as in Eaton et al. (2021), I model ART

initiation directly. In a temporally structured setting, modelling coverage over time and

imposing it on an ODE-based epidemic model creates a numerical problem similar to the

one in EPP: it introduces a constraint that the epidemic model might not be able to meet

in an internally consistent way. Modelling initiation directly introduces no such constraint

and offers inference that might be interesting on its own.

8.2.4 General model developments

In a similar vein, this model infers the initial state of the projection.The earliest data points

in sub-Saharan Africa were collected in the mid-1990s, so beginning projection in 1970 is,

in one sense, computationally wasteful. On the other hand, the differences between my

estimates and the UNAIDS estimates in earlier time periods suggest that this choice might

come with certain disadvantages. A user could begin projection of my model much earlier,

or we could consider methods to align initial transmission rates with external estimates.

I have also considered, but not tested, the hypothesis that beginning projection after the peak

of the epidemic makes the approximate inference strategy more appropriate. If the overall

trajectory of the epidemic is more closely determined by early transmission rates than

later transmission rates, then earlier transmission rate parameters will be correlated with

much later parameters in potentially complex ways that make the Laplace approximation

inappropriate. I have found this to be true in an informal simulation study and in an

application to a model of COVID-19 (Flaxman et al., 2020), but I have not tested the
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intuition formally.

I have also proposed a novel parametrisation for transmission rate of HIV that extends

existing approaches to space and integrates them into a broader family of stochastic time

series models. The transmission rate model proposed in Section 2.4.2 could be viewed

as a conceptual generalisation of the “r-spline” model with respect to time (Hogan &

Salomon, 2012) and an extension with respect to space, although those authors modelled

force of infection, not log-transmission rates. ARIMA models are well understood and

offer desirable statistical properties in forecasting applications.

8.2.5 Robust cross-validation

Because we are most interested in estimates of recent and near-future incidence, I have used

a cross-validation scheme that focuses on short-term forecasting of programmatic data.

This strategy is designed to mimic new data acquisition and therefore does not include

any degree of spatial cross-validation. Because these types of models are designed to be

used on fixed sets of known administrative regions, I argue that spatial cross-validation is

inappropriate.The strategy used here also acknowledges the fact that the bulk of future data

on HIV indicators in SSA will likely come from programmatic sources, not large household

surveys.

The model specification experiment conducted in Chapter 3 gives us some reassurance that

the decisions used later in the work were, if not better than others, then at least comparably

good. I did not find that one model was best, although certain individual choices did lead

to better out-of-sample fit. Such model specification tests are often relegated to sensitivity

analyses to verify that intuitively made choices have not had too large of an effect on results,

but, given the sheer number of decisions needed to specify the model in Chapter 2, a more

systematic approach was needed. The model is designed to run on a high-performance

computing (HPC) cluster, so fitting hundreds of specifications is as easy as fitting one.

8.2.6 Comparison to Sartorius et al. (2021)

There are fundamental similarities between this work and Sartorius et al. (2021), so a

detailed delineation of the differences between the two methods is valuable. First, Sartorius
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et al. fit to posterior prevalence predicted by the geostatistical model from Dwyer-Lindgren

et al. (2019), not to the data that the geostatistical model was originally fit to. This ap-

proach encouraged consistency between the two sets of estimates, but fitting directly to the

data used by Dwyer-Lindgren et al. is intuitively and technically preferable.The authors

approximated the district-level posterior distribution of temporally varying prevalence

from the geostatistical with a multivariate normal distribution designed to capture the

correlation in prevalence over time within each district. However, it is unclear how the

uncertainty in predicted incidence that resulted from fitting to these multivariate normal

approximations compared to the uncertainty that would arise from fitting the incidence

model to the original data. In particular, by fitting to posterior prevalence in years as early

as 2000, their model could be unduly confident in times when there were effectively no data.

Because the model proposed here is fit directly to data, it should not raise such concerns.

Although the two models function similarly, their respective treatments of spatial dynam-

ics are substantively different. Sartorius et al. fit EPP independently for every district,

meaning that any spatial correlation in their estimates was an artefact of the inherent

spatial correlation in prevalence from the geostatistical model. In the model proposed

here, statistical strength is pooled across districts in the models for initial prevalence, ART

initiation, and HIV transmission rates, resulting in more reliable estimation in districts

with less data. More complex spatial priors for each any underlying linear model could also

be considered. Although I did not include spatial in the final model presented here, the

model from Sartorius et al. cannot accommodate explicit spatial mixing without substantial

modifications.

Finally, the two models varied dramatically in their treatments of ART programme data.

First, Sartorius et al. did not have access to the spatio-temporally granular ART programme

data used in this analysis and in Eaton et al. (2021). Instead, they conducted a literature

review that found estimates of subnational ART coverage in 29 of 44 countries. In the 15

countries with no subnational ART coverage data, they assumed that ART coverage in every

district was exactly national-level ART coverage. Treatment coverage is a key determinant

of population-level incidence, so assuming that it was constant over space fundamentally

limited their ability to detect the spatial disparities a model of this kind is designed to detect.

It is also unclear how this approach exacerbated or resolved the discrepancies described by
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Eaton et al. and in Section 1.3.3 between household-based coverage data and facility-based

patient count data.

8.3 Limitations

Taking my PhD work as a whole, I have noted several limitations. Some of these are

fundamental, and some can be addressed in future research. First, the compartmental

model lacks certain structure across which outcomes vary substantially. I have used four

CD4 compartments in alignment withThembisa, whereas Spectrum uses seven. Assuming

estimates of mortality and progression are sufficiently reliable for each of the seven CD4

groups, a more detailed model of disease progression could offer more accurate estimates

of mortality and incidence. I have also omitted progression through ART duration in order

to minimise the number of compartments.

More importantly, I have omitted age structure. Initial conceptualisations of this model

included single-year ages, but the additional computational costmade inference impractical.

Model fits expired after three days on the Imperial College HPC cluster without converging

even using the approximate inference strategy. I have attempted to account for the lack of

explicit age structure by age-weighting mortality and progression rates over time using

estimates from Spectrum and EPP-ASM. This problem is not unique my model; EPP-

ASM separates its age-structured demographic model from its age-aggregated disease

progression model. Further work is needed to identify computational strategies that are

efficient enough to fit a combined demographic-epidemic model to data.

These omissions point to a broader limitation of this analysis: due to time constraints, I

was only able to cross-validate a relatively small subset of the design decisions needed to

specify the model. I did not interrogate the effects of the structural decisions made in the

specification of the compartmental model: specifically, the choices of CD4 categories, the

omission of age, and the progression of people on treatment.These decisions could have

material effects on inferred incidence. For example, a model that incorporated age would

naturally capture the effects of an ageing population of PLHIV on age-specific incidence,

as well as the differential effects by age and sex (Akullian et al., 2017). Critically for this

exercise, the age-/sex-structures of populations can vary substantially over small areas, so
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any bias in incidence induced by omitting age dynamics likely affects the spatial distribution

of incidence. As it stands, my model must absorb the net effects of these dynamics into the

spatio-temporally varying transmission rate parameters.

Similarly, the choice of CD4 categories could substantially impact these estimates. If reliable

estimates of progression and mortality are available for finer CD4 categories than the ones

used here, a model that stratifies by those categories will produce more accurate estimates

of mortality than this model. This effect will be particularly pronounced in cases where

the distribution of PLHIV across the finer categories is not uniform and the changes in

mortality are nonlinear, because the approach used here is effectively a linear approximation.

More accurate estimation of mortality would result in a more accurate decomposition of

changes in prevalence and therefore allow the model to identify incidence more precisely.

Conversely, I did not consider simpler model structures. It is possible that in settings with

high ART coverage, a model stratifying by fewer CD4 categories or not stratifying at all

could offer sufficiently accurate estimates of mortality. Such a strategy would reduce the

computational cost of each projection, potentially facilitating inference in larger cases than

the one presented here. However, an approach that separates PLHIV only by treatment

statusmight bemost effective in settings with reliable cause-specificmortality data, in which

mortality can be inferred directly. Relying on fixed assumptions about AIDS mortality with

and without treatment in a model with no CD4 stratification would likely compound the

issues raised in the previous paragraph.

Themodel of ARTpatient counts represents an improvement overmany existing approaches

to incorporating ART programme data, but it could be substantially improved. In particular,

it assumes that attendance at time t is independent from time t − 1; that is, that individuals
are newly allocated to a treatment region at every time point. I expect that this results in

overestimation of variance in patient counts. Relaxing this assumption presents a substantial

challenge. We could track PLHIV on treatment by district-of-treatment in addition to

district-of-residence, but this would multiply the size of the compartmental model by

slightly less than the number of regions. As I will discuss in Section 8.5, a more productive

approach might be to focus on this problem at the national first, by integrating model of

ART initiation into existing models of testing and treatment behaviour.

Further, we only know how many people are receiving treatment at each facility, not where
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those people typically reside.The ART attendance model reconciles the counts of PLHIV

on treatment implied by ART coverage and prevalence with observed patient counts but

does not fit directly to data measuring where people from each region seek treatment. If

the model sees far more or far fewer people on treatment in a given district than it would

expect given population, prevalence, and ART coverage, then it adjusts the number of

people receiving treatment in that district and its neighbours. In many cases, this model is

not well-identified by data.

A separate approximation is that I aggregated data from hundreds ANC facilities to produce

regional aggregates, while still treating historical sentinel sites fundamentally different than

the other sites. Aggregating over facilities masks meaningful variation, and separating out

former sentinel sites likely gives them undue influence. However, testing a model that fits

to every site was out of scope for this analysis. Future models should consider how best to

model the full set of ANC testing data.

I accounted for systematic differences between prevalence data from ANC facilities and

household surveys with amodel that takes logit-transformed general-population prevalence

as the intercept for a logit-linear model for facility-specific prevalence. This method is

directly inspired by the one proposed by Bao (2012), but in this case, I included facility-

specific random effects for both the level and trend with respect to time in logit-prevalence.

The facility-level temporal trends allow the representativeness of each facility to change

with the ageing population of PLHIV, but if surveys are not conducted regularly in the

future, the estimates of these trends will become increasingly unreliable.

I have also ignored all routine HIV testing and diagnosis data from the general population.

We can reasonably assume that testing behaviour is correlated with HIV infection risk,

so routine testing data by themselves are unlikely to offer accurate measurement of HIV

prevalence in the general population. Re-testing among PLHIV is also thought to be

common (Maheu-Giroux et al., 2019), introducing another source of bias.This problem

is closely related to the inaccuracies in the ART attendance model and could similarly be

resolved with a more accurate model of testing and treatment seeking.

Finally, most of the results in this work were the result of fitting with approximate inference

strategy that assumes that all hyperparameters are fixed and that all other parameters

comprise a multivariate normal distribution. Even with this strategy, the model still takes
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one to two hours to fit in Malawi. There are likely to be improvements made in the

implementation, but alternate computational strategies are worth exploring.

8.4 Implications

This work addresses several notable methodological gaps, some specific to HIV mod-

elling and others applicable to infectious disease modelling more generally. As has been

highlighted repeatedly during the ongoing SARS-CoV-2 pandemic, statistical and com-

putational concerns about how to connect epidemic models to data are far from resolved

(Chatzilena et al., 2019; Flaxman et al., 2020; Grinsztajn et al., 2021). Certain lessons from

this work apply specifically to HIV, while others might be instructive in other applications.

Setting aside the utility of the estimates themselves, much of the methodological work

from my thesis can be applied directly to existing models of HIV.The beta-binomial ANC

observation model handles ANC testing data in a more natural way than the one proposed

by Eaton& Bao (2017) and does not require artificially inflating variance.The beta-binomial

likelihood could be added to any existing models of ANC testing data.

The model of treatment seeking, although imperfect, could also be incorporated directly

into existing models. The generalised negative binomial distribution I have used here

enabled comparison across time and across geographic units of dramatically varying sizes.

More fundamentally, treating ART patient counts as data, not as constraints, allowed us to

infer ART initiation.

More broadly, this work demonstrates a largely successful fusion of Bayesian hierarchical

statistical models with an epidemic model. Epidemic models take advantage of the funda-

mental dynamics of infections disease to predict burdenwith aminimumof parameters, but

they are rarely underpinned by hierarchical statistical models.The simple transformation

at the beginning of Section 2.4.2 illustrates that standard epidemic models are, in a manner

of speaking, compatible with hierarchical modelling. Equation (2.14) would be just as valid

a model of incidence if it included a more complex regression specification. If we had

data on risk factors that varied across observation units, we could add a linear regression

component to the expression for log λ:
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log λ = log β + γ ⋅Xt + log
I

N
. (8.1)

This framework would lessen my model’s dependence on random effects and could even

incorporate classical causal inference regression designs.

This work also illustrates the value of multivariate statistical models in infectious disease

epidemiology. I have modelled underlying dynamics using the epidemic model, which

provided all required indicators to specify likelihoods for many different sources of data.

Fitting to prevalence, ART coverage, and ART patient counts simultaneously identified an

epidemic model that would otherwise likely be non-identifiable. Estimating the underlying,

true epidemic with a model that leveraged the principles of infectious disease epidemiology

provided a coherent, self-consistent way to reconcile varied data sources.

8.5 Future work

This work could be improved upon or extended in any number ways. First and foremost,

future work must examine methods for incorporating age into the epidemic model. It is

possible a different implementation of the model would facilitate efficient computation.

Regardless, by omitting age, the dynamics of mortality and disease progression used here

are likely to be biased.

Between Chapters 3, 4 and 6, I made extensive use of the proposed cross-validation strategy

to assess the identifiability and precise specification of the epidemic model. However, each

of these exercises was limited in scope due to time and computational constraints. Chapter 3

focused primarily on the transmission ratemodel because it is largest unknown determinant

of incidence, while Chapter 6 combined real and synthetic data to maximise short-term

utility for applications in Malawi. In restricting the scope of these analyses, I have limited

their abilities to answer important, broad questions about identifying incidence and model

specification, but I two new analyses extending their methodologies.

First, as discussed briefly in Section 6.4, the partial simulation study presented in Chapter 6

could be replaced with a larger-scale study on broader set of fully simulated datasets. In this

analysis, we would simulate hundreds or thousands of datasets from randomly generated
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epidemics resembling the epidemics of SSA. We could then assess the identifiability of

incidence under the correct model specification by fitting to each dataset without holding

any data out and comparing each inferred incidence series to the true incidence series

originally used to generate the data. Because correct specification is impossible in real-

world applications, this analysis could be replicated with varying, incorrect specifications

to measure impact of specification on how accurately incidence can be inferred.

These simulated datasets could also be used in the same analysis to generalise the results

from Chapter 6. Averaging across all simulated datasets, we could more robustly estimate

the amount of data needed after a fixed time point to estimate incidence at that time point.

Perhapsmore usefully, we could estimate the number of years of data needed to recover true

incidence for each dataset separately and identify which epidemic characteristics (high or

low prevalence, high or low ART coverage, etc.) affect the amount data needed.This would

provide countries with a set of heuristics for understanding how reliable their incidence

estimates are, even in the absence of direct measurement. With these methods, the first

study would measure how well incidence is identified by data under correct and incorrect

model specifications and provide countries with guidance on how many years of data are

needed to accurately predict incidence at a fixed point in time.

A second study would extend the cross-validation exercise presented in Chapter 3 to

include as many of the decisions required to specify this model as possible. For a fixed

set of real data, this analysis would test the transmission rate model, the ART initiation

model, the model of the initial state of the epidemic, the prior assumptions for each of

these models (in particular, the use of i.i.d. random effects), the subdivision of PLHIV

into CD4 categories, and the assumptions about mortality and progression. Because of the

computational challenges involved in adding age structure to this model, I do not believe it

is practical to test in this analysis. Even if each of these seven decisions was restricted to

three possible values, this analysis would require fitting 2,187 unique models.This is not an

insurmountable computational challenge, but parsing the results of this analysis would be

more complex than those of Chapter 3.This analysis would identify the best specification

or set of specifications for a single country and provide a template for similar exercises in

other countries.

To improve the model of treatment seeking and begin to incorporate general population
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routine testing data, the models of ART initiation and ART patient counts could be incor-

porated into the Shiny90model, which is a national-level model of testing and treatment

(Maheu-Giroux et al., 2019).The Shiny90model fits simultaneously to self-reported HIV

testing data and HIV testing service programme data but does not infer incidence or ART

initiation. Modelling ART initiation and HIV testing at the national level would allow us

to infer incidence and treatment seeking behaviour from widely available routine testing

and treatment data.

Noting that many of the weaknesses I have discussed stem of choices made in the name of

computational efficiency, a comprehensive review of software and inference procedures

for deterministic inferential epidemic models would be valuable. I have implemented this

model in C++ with TMB, but developing these types of models on graphical processing

units (GPUs) could lead to significant improvements in computation time.

An alternate approach could be to omit costly ODE simulations and replace prediction with

a black-box, learned simulator. Recent work in particle- andmesh-based physics simulation

has shown that neural networks can be taught to replicate extremely complex physical

systems, dramatically reducing the amount of computation required for simulation (Pfaff

et al., 2021; Sanchez-Gonzalez et al., 2020). On the scale of physics simulations, ODE-based

epidemic models are quite simple and stable, so I believe that a learned simulation approach

is worth investigating. Replacing forward Euler or Runge-Kutta with a GPU-compatible

neural network prediction step could dramatically improve computation time, facilitating

inference with robust MCMCmethods in cases where inference is otherwise not possible.

8.6 Conclusion

In this work, I have developed a model of HIV that allows for flexible inference of many key

epidemiological indicators from population-level data. In doing so, I have demonstrated

how combining hierarchical linear models, epidemic models, and disparate data sources

facilitates inference of otherwise-unobservable epidemic dynamics. I have proposed several

directions for future work, many of which could improve inference for epidemic models of

other infectious diseases.
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District ISO-3166-2 code

Northern
Chitipa CT
Karonga KR
Likoma LK
Mzimba MZ
Nkhata Bay NB
Rumphi RU

Central
Dedza DE
Dowa DO
Kasungu KS
Lilongwe LI
Mchinji MC
Nkhotakota NK
Ntcheu NU
Ntchisi NI
Salima SA

Southern
Balaka BA
Blantyre BL
Chikwawa CK
Chiradzulu CR
Machinga MH
Mangochi MG
Mulanje MU
Mwanza MW
Neno NE
Nsanje NS
Phalombe PH
Thyolo TH
Zomba ZO

Table A.1: ISO-3166-2 codes for every district in Malawi with "MW" prefix
removed.
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Figure A.29 compares district-level incidence between 2000 and 2018 from this study and

Sartorius et al. (2021). The correlation between the two sets of point estimates was 0.94.

The estimates from this study were within the LBD credible interval in 73.7% of cases, while

CIs from this study covered the LBD estimates in 53.4% of cases.
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Figure A.1: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Chitipa district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.2: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Karonga district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.3: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Likoma district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.4: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Mzimba district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.5: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Nkhata Bay district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.6: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Rumphi district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.7: Estimated prevalence, ART coverage, incidence, ANC prevalence,
andART patient counts in theDedza district ofMalawi with household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.8: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Dowa district of Malawi with household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.9: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Kasungu district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.10: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Lilongwe district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.11: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Mchinji district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.12: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Nkhotakota district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.13: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Ntcheu district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.14: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Ntchisi district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.15: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Salima district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.16: Estimated prevalence, ART coverage, incidence, ANC prevalence,
andARTpatient counts in the Balaka district ofMalawi with household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.



192 Appendix A. Supplementary information

Female Male

10%

20%

30%

Pr
ev

al
en

ce
Blantyre

0%

25%

50%

75%

A
RT

 C
ov

er
ag

e

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
0

10

20

30

40

Date

In
ci

de
nc

e R
at

e

10%

20%

30%

40%

2000 2005 2010 2015 2020
Date

ANC prevalence

     0

20,000

40,000

60,000

2000 2005 2010 2015 2020
Date

ART patients

Figure A.17: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Blantyre district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.18: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Chikwawa district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.19: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Chiradzulu district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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FigureA.20: Estimated prevalence, ART coverage, incidence, ANCprevalence,
and ART patient counts in the Machinga district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.21: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Mangochi district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.22: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Mulanje district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.23: Estimated prevalence, ART coverage, incidence, ANC prevalence,
and ART patient counts in the Mwanza district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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FigureA.24: Estimated prevalence, ART coverage, incidence, ANCprevalence,
and ART patient counts in the Neno district of Malawi with household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.25: Estimated prevalence, ART coverage, incidence, ANC prevalence,
andARTpatient counts in theNsanje district ofMalawiwith household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.
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FigureA.26: Estimated prevalence, ART coverage, incidence, ANCprevalence,
and ART patient counts in the Phalombe district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.27: Estimated prevalence, ART coverage, incidence, ANC prevalence,
andARTpatient counts in theThyolo district ofMalawiwith household survey
data, ANC facility data, and programmatic reporting data (points). Different
colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.28: Estimated prevalence, ART coverage, incidence, ANCprevalence,
and ART patient counts in the Zomba district of Malawi with household
survey data, ANC facility data, and programmatic reporting data (points).
Different colours on panel "ANC prevalence" indicate different ANC facilities.
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Figure A.29: Comparison of the estimates from Sartorius et al. to the estimates
from this study from 2000 through 2018 aggregated over sex.
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Appendix B

Appendix of Wolock et al. (2021)

This is a reproduction of the appendix fromWolock et al. (2021). I have updated the section

references.

B.1 Age heaping

Respondents in each of these data sets are disproportionately likely to report that their

partners’ ages are multiples of five or multiples of five away from their own age, leading to

distinct “spikes” in the empirical partner age (or age difference) distributions at multiples

of five. The left panel of Figure B.1 illustrates this phenomenon among women aged 24

years in the AHRI data.These spikes, widely referred to as “heaping,” could bias our results

towards certain probability distributions, so we developed a simple deheaping algorithm,

applied it to the AHRI data. To account for the possibility that heaping affected the results,

we developed a simple deheaping algorithm and treated the deheaped AHRI data as a

fourth dataset. Due to the structure of the questionnaire (“how many years older/younger

is your partner than you?”), the AHRI partner age data exhibit strong heaping on partner

ages that are multiples of five years from the respondent’s age. For example, among women

aged 24 years, we observe far more partners aged exactly 29 years than expected.

Let ns,a,p be the number of observed partnerships with si = s, ai = a, and pi = p. Fixing age
to be a and sex to be s, we can find the expected count at partner age p, n̂s,a,p by fitting a

Nadaraya-Watson estimator to all ordered pairs (p, ns,a,p) such that p − a is not a multiple
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Figure B.1: Illustration of the effect of the deheaping algorithm on women
aged exactly 24 years in the AHRI data. Dark grey bars correspond to ages
identified as potentially heaped (multiples of five away from 24).The red line
is the expected count of observations estimated by excluding any potentially
heaped ages.

of five. We can then find the positive-valued excess counts at all p such that p − a is a

multiple of five:

es,a,p =max(ns,a,p − n̂s,a,p, 0). (B.1)

This quantity, es,a,p, is what the Nadaraya-Watson estimator has identified as number of

heaped observations. Fixing p⋆ to be a partner age such that (p⋆−a)mod 5 ≡ 0, we assume

that all of the excess mass at p⋆ will be allocated to the four partner ages on either side of

p⋆. We find the share of es,a,p⋆ to be allocated to each of (p⋆ − 2, ..., p⋆ + 2), denoted bs,a,p,

as

bs,a,p = ns,a,p

∑2
i=−2 ns,a,p⋆+i

, (B.2)

substituting in n̂s,a,p⋆ for ns,a,p wherever applicable. Finally, we find the number of individ-

uals to be reassigned from p⋆ to each p within two years of y⋆ as ds,a,p = bs,a,p ⋅ es,a,p⋆ . Note
that each partner age can only “receive” partnerships from its nearest multiple of five and

that each multiple of five can only “send” partnerships to itself and the four partner ages on

either side of it. For each y within two years of y⋆, we randomly select ⌊ds,a,p⌉ individuals
to move from p⋆ to p. We apply this method for both sexes and all respondent ages with at
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least two observations separately.

Figure B.1 illustrates the effect of this process on data among women aged 24 in the AHRI

data. Despite its simplicity, the deheaping algorithm seems to produce distributions that

should be sufficiently plausible for the purposes of this experiment. If our results differed

substantially between the original and deheaped AHRI data, we would need to consider

the possibility that our results could be an artefact of heaping.

This method is quite simple, but it seems to work reasonably well on the AHRI data.

Regardless, we do not need a perfect deheaping algorithm for this application; we just need

one that will give us a plausibly deheaped version of the AHRI data. If the results differ

drastically between the heaped and deheaped datasets (i.e. if one probability distribution

works perfectly only on the deheaped data), then we will know that our results are sensitive

to irregularities in the data.

B.1.1 Results

Figure B.2 shows the presence of age heaping among women in the AHRI data, as well as

the effects of our deheaping algorithm. Visible diagonal lines indicate that women were

disproportionately likely to report that the difference between their partner’s age and their

own age was a multiple of five. Heaping to partner ages (not partner age differences) would

manifest as horizontal lines. As we can see in the right panel, the deheaping procedure

resolves the majority of the heaping. We cannot validate the algorithm, but for the purposes

of this experiment, simply producing plausibly deheaped age distributions should be

sufficient. Table B.1 provides ELPD and QQ RMSE values for all five regression models fit

to the deheapedAHRI data. Aswith the heapedAHRI data, themost complex distributional

model had the highest ELPD (58504.0). From these results, we conclude that the presence

of heaping in the three main datasets is unlikely to have substantially altered the results of

this analysis.
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Figure B.2: Observed sexual partner age distributions among women in the
AHRI data.The left panel is original data, and the right panel is the same data
set after deheaping age differences from multiples of five.

Model AHRI Deheaped

ELPD
Conventional 55296.2
Distributional 1 57097.4
Distributional 2 57503.7
Distributional 3 58219.2
Distributional 4 58504.0

QQ RMSE
Conventional 1.26
Distributional 1 1.06
Distributional 2 1.14
Distributional 3 0.92
Distributional 4 0.62

Table B.1: ELPD and QQ RMSE values for all five models fit to deheaped
AHRI dataThe models increase in complexity from Conventional Regression
to Distributional Model 4. Bolded ELPD values are more than two standard
errors higher than the next best value in the column. BoldedQQRMSE values
are lowest in their column.
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B.2 Model specification details

We modelled the log-ratio dependent variable using the four-parameter sinh-arcsinh

distribution:

yi ∼ sinh(µi , σi , єi , δi)
µi = βµX

µ
i

log σ⋆i = βσXσ
i

єi = βєXє
i

log δi = βδXδ
i

σi = σ⋆i δi ,

(B.3)

where βµ, βσ , βє, and βδ are free parameters. We placed essentially arbitrary shrinkage

priors on all coefficients:

βµ , βσ , βє , βδ ∼ N(0, 5). (B.4)

First, we fit a conventional regression, in which only the location parameter, µ, is a function

of data. Specifically, we allowed for linear sex and age effects and a linear interaction

between respondent sex and age (si and ai , respectively) in the model of µ:

X
µ
i = (1, si , ai , si ⋅ ai)

Xσ
i ,X

є
i ,X

δ
i = (1). (B.5)

In the second model, we allowed the three higher order distributional parameters to vary

by age and sex:

X
µ
i = (1, si , ai , si ⋅ ai)

Xσ
i ,X

є
i ,X

δ
i = (1, si , ai). (B.6)

In the third model, all four distributional parameters had age, sex, and age-sex interaction

effects:
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X
µ
i ,X

σ
i ,X

є
i ,X

δ
i = (1, si , ai , si ⋅ ai) (B.7)

To allow for the possibility of non-linear variation with respect to age in the fourth model,

we modelled the location parameter using sex-specific natural splines on age:

X
µ
i = (1, si , ϕ1(ai), ..., ϕK(ai), si ⋅ ϕ1(ai), ..., si ⋅ ϕK(ai))

Xσ
i ,X

є
i ,X

δ
i = (1, si , ai , si ⋅ ai), (B.8)

where K is the number of columns in the spline design matrix. By including a second

set of basis function values that are multiplied by si , we are estimating an additional,

female-specific trend with respect to age.

Finally, we fit a fifth model, in which all four distributional parameters were modelled as

sex-specific splines with respect to age:

X
µ
i ,X

σ
i ,X

є
i ,X

δ
i = (1, si , ϕ1(ai), ..., ϕK(ai), si ⋅ ϕ1(ai), ..., si ⋅ ϕK(ai)) . (B.9)
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B.3 Full Results

B.3.1 Supplementary Figures
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Figure B.3: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among women in the AHRI data set. Here, we plot the posterior predic-
itve distribution associated with each distribution’s highest-ELPD dependent
variable.
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Figure B.4: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among men in the AHRI data set. Here, we plot the posterior predicitve distri-
bution associated with each distribution’s highest-ELPD dependent variable.
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Figure B.5: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among women in the AHRI Deheaped data set. Here, we plot the poste-
rior predicitve distribution associated with each distribution’s highest-ELPD
dependent variable.
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Figure B.6: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
amongmen in theAHRIDeheaped data set. Here, we plot the posterior predic-
itve distribution associated with each distribution’s highest-ELPD dependent
variable.
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Figure B.7: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among women in the Haiti 2016-17 DHS data set. Here, we plot the poste-
rior predicitve distribution associated with each distribution’s highest-ELPD
dependent variable.
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Figure B.8: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among men in the Haiti 2016-17 DHS data set. Here, we plot the posterior
predicitve distribution associated with each distribution’s highest-ELPD de-
pendent variable.
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Figure B.9: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among women in the Manicaland data set. Here, we plot the posterior predic-
itve distribution associated with each distribution’s highest-ELPD dependent
variable.
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Figure B.10: Observed partner age distributions (grey bars) and posterior
predictive partner age distributions (lines) for each probability distribution
among men in the Manicaland data set. Here, we plot the posterior predic-
itve distribution associated with each distribution’s highest-ELPD dependent
variable.
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B.3.2 Supplementary Tables
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Female 20-24
1 Sinh-arcsinh -31750.94 0.00 0.00 0.32
2 Skew normal -32056.39 -305.46 48.63 0.47
3 Normal -32414.54 -663.61 60.54 0.62
4 Beta -32953.92 -1202.98 112.08 0.77
5 Gamma -33461.85 -1710.92 148.15 0.80

AHRI Female 25-29
1 Sinh-arcsinh -24647.65 0.00 0.00 0.28
2 Skew normal -24906.22 -258.57 43.27 0.52
3 Normal -25238.71 -591.06 54.82 0.68
4 Beta -25701.13 -1053.48 114.84 0.89
5 Gamma -25995.81 -1348.16 132.15 0.90

AHRI Female 30-34
1 Sinh-arcsinh -19831.53 0.00 0.00 0.44
2 Skew normal -20200.44 -368.91 69.40 0.51
3 Normal -20314.79 -483.26 52.24 0.80
4 Beta -20575.61 -744.08 67.46 0.93
5 Gamma -20708.35 -876.82 73.89 0.91

AHRI Female 35-39
1 Sinh-arcsinh -15469.18 0.00 0.00 0.31
2 Skew normal -15749.79 -280.61 53.04 0.77
3 Normal -15834.32 -365.14 41.23 0.80
4 Beta -16026.51 -557.33 53.99 1.18
5 Gamma -16087.40 -618.22 57.06 1.04

AHRI Female 40-44
1 Sinh-arcsinh -12556.61 0.00 0.00 0.45
2 Skew normal -12876.71 -320.10 45.85 1.27
3 Normal -12935.34 -378.73 52.38 0.92
4 Beta -13137.69 -581.08 69.18 1.38
5 Gamma -13150.66 -594.05 62.73 1.19

AHRI Female 45-49
1 Sinh-arcsinh -10059.21 0.00 0.00 0.59
2 Skew normal -10391.95 -332.74 42.75 1.36
3 Normal -10433.64 -374.43 48.91 1.53
4 Gamma -10527.00 -467.79 50.72 1.35
5 Beta -10545.33 -486.12 56.02 1.58

Table B.2: Full ELPD and QQ RMSE table for women in the AHRI dataset.
Higher ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Male 20-24
1 Sinh-arcsinh -20428.11 0.00 0.00 0.23
2 Skew normal -20499.86 -71.75 17.12 0.25
3 Normal -20503.89 -75.79 16.85 0.22
4 Beta -20545.59 -117.49 23.21 0.22
5 Gamma -20700.24 -272.13 43.53 0.29

AHRI Male 25-29
1 Sinh-arcsinh -12664.21 0.00 0.00 0.26
2 Skew normal -12727.03 -62.82 17.86 0.28
3 Beta -12739.03 -74.82 18.65 0.31
4 Normal -12753.25 -89.04 19.35 0.29
5 Gamma -12788.26 -124.05 35.07 0.38

AHRI Male 30-34
1 Sinh-arcsinh -9301.03 0.00 0.00 0.29
2 Skew normal -9357.18 -56.15 14.08 0.43
3 Beta -9371.86 -70.83 16.48 0.37
4 Normal -9385.63 -84.60 14.67 0.46
5 Gamma -9419.34 -118.31 35.11 0.27

AHRI Male 35-39
1 Sinh-arcsinh -6746.89 0.00 0.00 0.30
2 Skew normal -6812.77 -65.88 17.73 0.64
3 Normal -6817.86 -70.97 23.24 0.70
4 Beta -6830.95 -84.06 17.95 0.71
5 Gamma -6832.47 -85.58 32.03 0.44

AHRI Male 40-44
1 Sinh-arcsinh -4610.95 0.00 0.00 0.35
2 Skew normal -4711.78 -100.84 18.66 0.92
3 Normal -4713.78 -102.83 18.82 0.78
4 Gamma -4718.28 -107.33 24.83 0.63
5 Beta -4742.70 -131.75 17.28 1.07

AHRI Male 45-49
1 Sinh-arcsinh -3683.47 0.00 0.00 0.34
2 Skew normal -3770.59 -87.12 16.56 0.81
3 Gamma -3776.33 -92.86 15.56 0.87
4 Normal -3778.84 -95.37 14.50 1.17
5 Beta -3805.78 -122.31 17.40 1.36

Table B.3: Full ELPD andQQRMSE table formen in theAHRI dataset. Higher
ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Deheaped Female 20-24
1 Sinh-arcsinh -31411.24 0.00 0.00 0.26
2 Skew normal -31797.37 -386.13 53.15 0.59
3 Normal -32179.29 -768.05 65.50 0.56
4 Beta -32737.57 -1326.32 118.47 0.76
5 Gamma -33254.17 -1842.92 155.14 0.78

AHRI Deheaped Female 25-29
1 Sinh-arcsinh -24439.47 0.00 0.00 0.27
2 Skew normal -24768.06 -328.59 46.71 0.65
3 Normal -25104.46 -664.99 58.32 0.82
4 Beta -25574.33 -1134.86 119.65 1.03
5 Gamma -25870.30 -1430.83 137.51 1.05

AHRI Deheaped Female 30-34
1 Sinh-arcsinh -19680.77 0.00 0.00 0.41
2 Skew normal -20112.70 -431.94 72.95 0.55
3 Normal -20228.52 -547.76 56.19 0.81
4 Beta -20492.23 -811.46 70.53 0.92
5 Gamma -20624.82 -944.06 76.98 0.80

AHRI Deheaped Female 35-39
1 Sinh-arcsinh -15381.68 0.00 0.00 0.26
2 Skew normal -15703.77 -322.09 55.30 0.68
3 Normal -15788.73 -407.05 43.67 0.82
4 Beta -15983.57 -601.90 56.31 1.13
5 Gamma -16044.22 -662.54 59.17 1.04

AHRI Deheaped Female 40-44
1 Sinh-arcsinh -12491.91 0.00 0.00 0.25
2 Skew normal -12846.63 -354.72 47.38 0.99
3 Normal -12905.04 -413.12 54.14 0.89
4 Beta -13109.82 -617.91 70.96 1.31
5 Gamma -13121.45 -629.53 64.12 1.13

AHRI Deheaped Female 45-49
1 Sinh-arcsinh -9981.83 0.00 0.00 0.53
2 Skew normal -10357.85 -376.01 45.08 1.43
3 Normal -10401.64 -419.80 51.57 1.46
4 Gamma -10493.73 -511.90 52.90 1.37
5 Beta -10513.46 -531.63 58.21 1.61

Table B.4: Full ELPD and QQ RMSE table for women in the AHRI Deheaped
dataset. Higher ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Deheaped Male 20-24
1 Sinh-arcsinh -20310.35 0.00 0.00 0.27
2 Skew normal -20429.90 -119.55 27.09 0.22
3 Normal -20459.73 -149.38 35.78 0.29
4 Beta -20574.15 -263.80 75.13 0.22
5 Gamma -20899.52 -589.17 175.99 0.27

AHRI Deheaped Male 25-29
1 Sinh-arcsinh -12585.54 0.00 0.00 0.28
2 Skew normal -12680.59 -95.05 21.53 0.44
3 Beta -12697.00 -111.46 23.31 0.37
4 Normal -12701.76 -116.23 22.96 0.41
5 Gamma -12763.81 -178.27 41.24 0.39

AHRI Deheaped Male 30-34
1 Sinh-arcsinh -9227.26 0.00 0.00 0.37
2 Skew normal -9302.42 -75.16 16.15 0.41
3 Beta -9318.24 -90.97 19.07 0.39
4 Normal -9327.58 -100.31 16.18 0.41
5 Gamma -9372.32 -145.06 38.27 0.27

AHRI Deheaped Male 35-39
1 Sinh-arcsinh -6694.86 0.00 0.00 0.30
2 Skew normal -6774.11 -79.26 19.32 0.61
3 Normal -6780.69 -85.84 25.42 0.44
4 Beta -6791.95 -97.10 19.81 0.69
5 Gamma -6796.41 -101.55 34.45 0.40

AHRI Deheaped Male 40-44
1 Sinh-arcsinh -4591.04 0.00 0.00 0.49
2 Skew normal -4700.54 -109.51 19.38 1.16
3 Normal -4703.52 -112.49 19.93 1.00
4 Gamma -4708.43 -117.40 25.94 0.89
5 Beta -4731.41 -140.37 17.84 1.30

AHRI Deheaped Male 45-49
1 Sinh-arcsinh -3680.18 0.00 0.00 0.30
2 Normal -3796.06 -115.88 19.24 1.15
3 Skew normal -3797.14 -116.95 23.48 1.02
4 Gamma -3801.02 -120.83 24.51 0.98
5 Beta -3817.97 -137.79 19.37 1.39

Table B.5: Full ELPD and QQ RMSE table for men in the AHRI Deheaped
dataset. Higher ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

Haiti 2016-17DHS Female 20-24
1 Sinh-arcsinh -3259.31 0.00 0.00 0.49
2 Skew normal -3263.46 -4.15 4.95 0.53
3 Normal -3338.23 -78.92 19.54 0.91
4 Beta -3441.91 -182.60 45.77 1.24
5 Gamma -3504.85 -245.54 53.90 1.29

Haiti 2016-17DHS Female 25-29
1 Sinh-arcsinh -4447.43 0.00 0.00 0.26
2 Skew normal -4471.22 -23.78 8.41 0.57
3 Normal -4527.25 -79.82 18.72 0.86
4 Beta -4625.97 -178.54 40.88 1.23
5 Gamma -4678.20 -230.77 45.81 1.22

Haiti 2016-17DHS Female 30-34
1 Sinh-arcsinh -4720.12 0.00 0.00 0.44
2 Skew normal -4749.57 -29.45 9.06 0.68
3 Normal -4763.78 -43.66 10.51 0.62
4 Beta -4809.11 -88.99 17.19 0.85
5 Gamma -4836.82 -116.70 20.32 0.83

Haiti 2016-17DHS Female 35-39
1 Sinh-arcsinh -4490.82 0.00 0.00 0.33
2 Skew normal -4518.58 -27.75 8.14 0.57
3 Normal -4526.55 -35.73 8.59 0.73
4 Beta -4561.27 -70.45 13.60 0.94
5 Gamma -4577.84 -87.01 15.27 0.86

Haiti 2016-17DHS Female 40-44
1 Sinh-arcsinh -3601.02 0.00 0.00 0.35
2 Skew normal -3629.45 -28.43 7.51 0.83
3 Normal -3633.14 -32.11 7.96 0.71
4 Beta -3641.61 -40.59 9.76 0.73
5 Gamma -3644.89 -43.86 10.47 0.64

Haiti 2016-17DHS Female 45-49
1 Sinh-arcsinh -3106.27 0.00 0.00 0.39
2 Skew normal -3133.10 -26.82 7.68 0.88
3 Gamma -3133.61 -27.33 7.50 0.68
4 Normal -3134.62 -28.35 7.46 0.81
5 Beta -3136.89 -30.62 8.61 0.88

Table B.6: Full ELPD and QQ RMSE table for women in the Haiti 2016-17
DHS dataset. Higher ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

Haiti 2016-17DHSMale 20-24
1 Skew normal -468.98 0.00 0.00 0.43
2 Sinh-arcsinh -469.60 -0.62 1.12 0.41
3 Normal -475.31 -6.33 4.28 0.67
4 Beta -483.53 -14.55 7.33 0.65
5 Gamma -500.53 -31.55 13.35 0.94

Haiti 2016-17DHSMale 25-29
1 Sinh-arcsinh -1386.13 0.00 0.00 0.38
2 Skew normal -1390.54 -4.41 3.19 0.49
3 Normal -1395.47 -9.34 4.79 0.60
4 Beta -1407.46 -21.32 7.31 0.62
5 Gamma -1434.18 -48.04 11.75 0.79

Haiti 2016-17DHSMale 30-34
1 Sinh-arcsinh -2217.20 0.00 0.00 0.44
2 Skew normal -2222.10 -4.89 3.42 0.69
3 Normal -2223.97 -6.76 4.48 0.45
4 Beta -2240.58 -23.37 9.32 0.52
5 Gamma -2281.18 -63.98 17.91 0.73

Haiti 2016-17DHSMale 35-39
1 Sinh-arcsinh -2185.96 0.00 0.00 0.28
2 Skew normal -2189.87 -3.91 2.67 0.69
3 Beta -2191.05 -5.10 3.68 0.48
4 Normal -2191.11 -5.16 3.55 0.49
5 Gamma -2205.69 -19.73 9.57 0.52

Haiti 2016-17DHSMale 40-44
1 Sinh-arcsinh -2051.62 0.00 0.00 0.39
2 Skew normal -2060.16 -8.54 4.21 0.72
3 Normal -2060.38 -8.75 4.57 0.69
4 Beta -2062.00 -10.37 4.87 0.70
5 Gamma -2063.79 -12.17 5.73 0.47

Haiti 2016-17DHSMale 45-49
1 Sinh-arcsinh -2138.34 0.00 0.00 0.23
2 Normal -2150.53 -12.19 6.38 0.35
3 Skew normal -2151.51 -13.17 5.97 0.56
4 Gamma -2152.88 -14.54 8.93 0.25
5 Beta -2156.13 -17.79 6.14 0.48

Table B.7: Full ELPD and QQ RMSE table for men in the Haiti 2016-17 DHS
dataset. Higher ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

Manicaland Female 20-24
1 Sinh-arcsinh -16390.77 0.00 0.00 0.31
2 Skew normal -16502.01 -111.25 21.22 0.44
3 Normal -16779.93 -389.16 37.05 0.67
4 Beta -17111.57 -720.80 62.02 0.86
5 Gamma -17387.38 -996.61 76.80 1.02

Manicaland Female 25-29
1 Sinh-arcsinh -18702.50 0.00 0.00 0.53
2 Skew normal -18923.04 -220.53 25.27 0.94
3 Normal -19080.66 -378.16 36.05 0.83
4 Beta -19405.80 -703.30 64.97 1.05
5 Gamma -19615.53 -913.03 76.38 1.09

Manicaland Female 30-34
1 Sinh-arcsinh -16523.81 0.00 0.00 0.48
2 Skew normal -16877.96 -354.15 40.36 0.87
3 Normal -16886.62 -362.80 36.41 0.99
4 Beta -17021.26 -497.44 43.60 1.12
5 Gamma -17094.58 -570.76 49.53 0.93

Manicaland Female 35-39
1 Sinh-arcsinh -14397.76 0.00 0.00 0.48
2 Skew normal -14736.64 -338.88 28.35 1.25
3 Normal -14798.55 -400.79 36.87 1.39
4 Beta -14824.80 -427.04 33.02 1.47
5 Gamma -14835.11 -437.35 34.49 1.14

Manicaland Female 40-44
1 Sinh-arcsinh -12293.13 0.00 0.00 0.68
2 Skew normal -12488.28 -195.15 21.36 1.03
3 Gamma -12500.93 -207.80 22.18 1.03
4 Normal -12508.91 -215.78 23.29 1.28
5 Beta -12537.14 -244.01 25.41 1.22

Manicaland Female 45-49
1 Sinh-arcsinh -9183.03 0.00 0.00 0.56
2 Skew normal -9455.87 -272.83 23.57 1.68
3 Normal -9477.33 -294.30 23.55 1.62
4 Gamma -9497.31 -314.27 25.08 1.44
5 Beta -9576.44 -393.40 32.07 1.94

Table B.8: Full ELPD and QQ RMSE table for women in the Manicaland
dataset. Higher ELPD values and lower QQ RMSE values are better.
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Rank Distribution ELPD ELPD Diff SE of Diff QQ RMSE

Manicaland Male 20-24
1 Sinh-arcsinh -9770.00 0.00 0.00 0.30
2 Skew normal -9895.82 -125.83 33.35 0.40
3 Normal -10139.11 -369.11 79.13 0.49
4 Beta -10587.64 -817.64 181.23 0.56
5 Gamma -11594.58 -1824.59 388.26 1.15

Manicaland Male 25-29
1 Sinh-arcsinh -13978.59 0.00 0.00 0.40
2 Skew normal -13990.39 -11.80 8.51 0.48
3 Normal -14018.60 -40.00 17.48 0.45
4 Beta -14152.35 -173.76 48.77 0.40
5 Gamma -14500.47 -521.87 117.58 0.55

Manicaland Male 30-34
1 Sinh-arcsinh -12949.24 0.00 0.00 0.31
2 Skew normal -13016.44 -67.21 25.01 0.37
3 Normal -13037.46 -88.22 16.57 0.49
4 Beta -13070.31 -121.07 54.74 0.41
5 Gamma -13285.47 -336.23 171.92 0.42

Manicaland Male 35-39
1 Sinh-arcsinh -11496.14 0.00 0.00 0.27
2 Skew normal -11528.36 -32.22 9.83 0.39
3 Normal -11530.43 -34.29 9.72 0.26
4 Gamma -11531.75 -35.61 12.47 0.24
5 Beta -11582.63 -86.49 12.97 0.48

Manicaland Male 40-44
1 Sinh-arcsinh -8714.06 0.00 0.00 0.35
2 Skew normal -8749.78 -35.72 10.11 0.51
3 Gamma -8777.08 -63.02 10.38 0.55
4 Normal -8791.45 -77.38 12.23 0.76
5 Beta -8860.22 -146.16 18.15 0.93

Manicaland Male 45-49
1 Sinh-arcsinh -7110.27 0.00 0.00 0.42
2 Skew normal -7177.03 -66.75 25.08 0.76
3 Gamma -7213.99 -103.72 13.02 1.07
4 Normal -7232.04 -121.77 13.09 1.28
5 Beta -7312.35 -202.08 18.61 1.61

Table B.9: Full ELPD and QQ RMSE table for men in the Manicaland dataset.
Higher ELPD values and lower QQ RMSE values are better.
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Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI
1 Distributional 4 55841.91 0.00 0.00 0.66
2 Distributional 3 55534.16 -307.75 32.36 0.93
3 Distributional 2 54794.79 -1047.12 51.69 1.21
4 Distributional 1 54335.19 -1506.72 72.32 1.15
5 Conventional 52689.21 -3152.70 100.59 1.30

AHRI Deaheaped
1 Distributional 4 58503.98 0.00 0.00 0.62
2 Distributional 3 58219.23 -284.75 28.64 0.92
3 Distributional 2 57503.68 -1000.30 47.14 1.14
4 Distributional 1 57097.39 -1406.59 64.48 1.06
5 Conventional 55296.25 -3207.73 99.42 1.26

Haiti 2016-17DHS
1 Distributional 4 5207.57 0.00 0.00 0.84
2 Distributional 3 5196.69 -10.89 6.54 0.91
3 Distributional 1 5140.77 -66.80 12.27 0.98
4 Distributional 2 5138.75 -68.83 12.24 0.99
5 Conventional 4777.78 -429.80 30.54 1.33

Manicaland
1 Distributional 4 24516.15 0.00 0.00 1.04
2 Distributional 3 24313.74 -202.40 20.52 1.34
3 Distributional 2 23472.07 -1044.08 47.77 1.80
4 Distributional 1 23192.49 -1323.66 54.97 1.89
5 Conventional 21011.29 -3504.86 89.01 2.05

Table B.10: LOO-CV estimated ELPD values, differences, and standard errors
of differences, as well as QQ RMSE values, for all five regression models fit to
all four datasets.The "difference" value of a row is the difference between that
row’s ELPD value and dataset-specific best ELPD value. Higher ELPD values
and lower QQ RMSE values are better.
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