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A Widely Linear Complex Autoregressive Process

of Order One
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Abstract—We propose a simple stochastic process for modeling
improper or noncircular complex-valued signals. The process is
a natural extension of a complex-valued autoregressive process,
extended to include a widely linear autoregressive term. This
process can then capture elliptical, as opposed to circular,
stochastic oscillations in a bivariate signal. The process is or-
der one and is more parsimonious than alternative stochastic
modeling approaches in the literature. We provide conditions for
stationarity, and derive the form of the covariance and relation
sequence of this model. We describe how parameter estimation
can be efficiently performed both in the time and frequency
domain. We demonstrate the practical utility of the process

in capturing elliptical oscillations that are naturally present in
seismic signals.
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I. INTRODUCTION

C
OMPLEX-valued stochastic processes are useful models

for parameterizing bivariate signals. Such models are in

widespread use in applications including oceanography [1]

and functional Magnetic Resonance Imaging [2]. The theory

for complex-valued representations has been developed both

in the context of stochastic processes [3], as well as for

signal processing [4], with notable recent developments in [5]

and [6]. The complex-valued representation is sometimes

preferred to the bivariate representation, due to its compactness

and interpretability [7]. For example, complex-valued signals

can be naturally decomposed into analytic and anti-analytic

signals [8], and provide a practical framework for assessing

impropriety or noncircularity in a complex signal [9]. On the

other hand, the bivariate vector representation can provide

better physical understanding of the generating mechanism of

the modeled process, and its usage is commonplace in the time

series community, see e.g. [10, Ch. 10–11].
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The complex autoregressive process [11], [12] is a gen-

eralization of a real-valued autoregressive process, in which

the autoregressive coefficients and noise increments are both

complex-valued. Typically, the real and imaginary components

of the noise are assumed to be independent and identically

distributed [12], thus creating statistically isotropic (i.e. cir-

cular) oscillations in the signal. The process is therefore said

to be statistically circular or proper, defined subsequently, as

opposed to one that is noncircular or improper.

In many real-world observations of complex-valued signals,

noncircular or improper structure is expected to be present;

examples include seismic traces [13], oceanographic velocity

measurements [14], and wind measurements [5]. In Fig. 1, we

display a bivariate signal from a seismic trace of the 1991

Solomon Islands Earthquake, previously studied in [15]–[17].

In Fig. 1(c), the elliptical orbital shape of the oscillations

become apparent when viewed in the complex plane, and we

will refer to such motion as “elliptical oscillations.” In cases

such as these, in which the signal appears improper, a proper

process would be a poor choice of model and would fail to

summarize important characteristics of the data.

Motivated by this, in this paper we generalize the complex

autoregressive processes to a widely linear complex autore-

gressive process that is statistically improper or noncircular.

The notion of wide linearity was introduced in [18], and

we use this concept to relate the complex-valued process Zt
to its previous value Zt−1 and its complex conjugate Z∗

t−1.

Our process is order one and hence Markovian, such that

Zt is not dependent on Zt−k (given Zt−1) for k > 1, and

is a special case of the widely linear autoregressive moving

average (ARMA) model of [19]. The widely linear ARMA is a

general and flexible framework for improper processes that is

well understood in the context of signal prediction [19], [20],

and signal estimation [21], in settings where parameter values

are assumed to be known. In practice, these parameters would

need to be estimated when modeling real-world signals.

In this paper, we provide time- and frequency-domain

techniques for estimating the parameters of our order one

widely linear process, where we will also derive the form of

the covariance and relation sequences. A key innovation will

be to relate the process to a real-valued bivariate vector autore-

gressive process, which will provide intuitive understanding

of the process generating mechanism, and will simplify the

problem to the estimation of five real-valued parameters.

We will demonstrate that despite its simplicity, the model

we propose can effectively capture the elliptical oscillatory

structure present in the seismic signal displayed in Fig. 1.

We contrast our widely linear process with the improper

http://arxiv.org/abs/1511.04128v3
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Fig. 1. Seismic traces from the Feb. 9th, 1991 Solomon Islands earthquake as
measured from the Pasadena recording station in California. The radial com-
ponent, Xt, is displayed in (a) and the vertical component, Yt, is displayed
in (b). In (c) we display the complex-valued signal, Zt = Xt + iYt, from
16:31:55 to 16:44:35 (UTC), as indicated by the vertical dashed boundaries
in (a) and (b).

complex autoregressive process of [12], [22], where the im-

propriety is created using improper noise. We will demonstrate

how the inclusion of a widely linear autoregressive component

allows our process to reproduce stochastic elliptical oscilla-

tions despite being order one, whereas to generate elliptical

oscillations in the framework of [12], an order two process is

required, as investigated in [23]. We propose our order one

process as a simpler and more intuitive model for generating

elliptical oscillations in a complex-valued signal.

II. BACKGROUND

Consider a zero-mean complex-valued stationary stochastic

process Zt where t ∈ Z. The covariance sequence, sτ , and the

relation sequence, rτ , are defined at lag τ ∈ Z by

sτ = E{ZtZ∗

t+τ}, rτ = E{ZtZt+τ},
where E{·} denotes expectation and Z∗

t is the complex con-

jugate of Zt. The process Zt is said to be proper if

rτ = 0, ∀τ ∈ Z,

and is improper otherwise. A proper process therefore has a

relation sequence equal to zero, and is also commonly referred

to as a circular process [4]. It can be shown that the second-

order statistical properties of a proper process are isotropic,

such that its distribution is invariant to rotation. Second-order

proper processes can be treated much like second-order real-

valued processes, in that the second-order properties are fully

specified by the covariance sequence.

The improper complex autoregressive process of [12], [22]

is given by

Zt =

p
∑

j=1

gjZt−j + νt, gj, νt ∈ C, (1)

where p is the order of the process, and where νt is a noise

process that is permitted to be noncircular or improper. The

coefficients gj are in general assumed to be complex-valued.

An important special case of this process is the proper complex

autoregressive process of order one [11], which we denote

by Z ′

t and has three real-valued parameters {a, θ, σ2
ǫ}, and is

given by

Z ′

t = aeiθZ ′

t−1 + ǫt, a ≥ 0, (2)

where the complex autoregressive coefficient has been ex-

pressed in terms of an amplitude a and phase θ, both real-

valued. Here {ǫt} is a sequence of i.i.d. complex-valued Gaus-

sian noise where the real and imaginary parts are independent,

and each has zero mean and variance given by σ2
ǫ > 0. The

process is stationary if and only if a < 1, with variance given

by 2σ2
ǫ/(1− a2). In such cases, a is commonly referred to as

the damping parameter. For identifiability a is not permitted to

be negative, as a negative autoregression is achieved instead

when a > 0 and π/2 + 2kπ < θ < 3π/2 + 2kπ, where

k ∈ Z. The parameter θ ∈ R is the angle of a rotation of

the process at each time step and is usually referred to as

the spin parameter [24]. The process Z ′

t is an example of a

proper process, and we will refer back to this process when

we construct our widely linear improper process.

The improper complex autoregressive model (1) was gen-

eralized to a class of autoregressive moving average (ARMA)

models in [19], which uses finite-length widely linear filters

on both the autoregressive and noise components such that

Zt =

p
∑

j=1

gjZt−j+

p
∑

j=1

hjZ
∗

t−j+

q
∑

j=0

kjǫt−j+

q
∑

j=0

ljǫ
∗

t−j . (3)

This more general framework has larger flexibility in mod-

eling improper signals. A challenge however is that as

{gj, hj , kj , lj} are complex-valued, then the number of pa-

rameters that need to be estimated is large, even for moderate

values of p and q. In this paper we shall focus on the special

case of p = 1 and q = 0 in (3), thus creating a simple order-

one widely linear improper process.

Finally, [12] more generally show that any second-order

stationary process can be expressed as a widely linear filter

of a complex-proper white noise process ǫt such that

Zt =

∞
∑

j=−∞

kjǫt−j +

∞
∑

j=−∞

ljǫ
∗

t−j, kj , lj , ǫt ∈ C. (4)

This is in essence the complex-analogue to the well-known

Wold decomposition for real-valued processes [25], and in

general this will be an infinite-order process.

III. THE WIDELY LINEAR COMPLEX AUTOREGRESSIVE

ORDER ONE PROCESS

In this section we introduce the widely linear complex

autoregressive process of order one. We do this by extend-

ing (2) to a widely linear form for the autoregressive and noise

components of the process, such that it is parameterized by

seven real-valued parameters. We will subsequently reduce this

model to five free parameters, by constraining two parameters,

for practical reasons that we shall discuss shortly.

We call our process the widely linear complex autoregres-

sive process of order one, denoted by Zt, which has parameters

{λ, α, γ, φ, σ2
ν , cν}, and is given by

Zt = λeiαZt−1 + γeiφZ∗

t−1 + νt, λ, γ ≥ 0, (5)

where {νt} is a sequence of i.i.d. complex-valued Gaussian

noise with variance σ2
ν = E{νtν∗t } > 0 and relation at lag

zero specified by cν = E{νtνt} ∈ C. The noise process

νt is specified by three real-valued parameters as cν is in
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general complex-valued, therefore our process has seven real-

valued parameters. The remaining four parameters {λ, α, γ, φ}
define an iterative relationship between the process Zt and the

previous value Zt−1 as well as its conjugate Z∗

t−1, where γ
and φ are respective analogues of the damping parameter, λ,

and the spin parameter, α, in this widely linear setting. Further

intuition for each of the parameters is gained when we derive

covariance sequences in Sections IV.

The widely linear complex autoregressive process of order

one is recovered from the ARMA model (3) of [19] by taking

p = 1 and q = 0. Furthermore, we combine the widely linear

noise term k0ǫt + l0ǫ
∗

t into the noise process νt, which has

variance σ2
ν = |k0|2+|l0|2 and relation at lag zero cν = 2k0l0.

For this reason νt is commonly referred to as doubly white

noise [12], as it is the pointwise superposition of two complex-

proper white noise processes. As we have implicitly chosen

the initial phase angle of the noise, we have for parsimony

reduced the number of real-valued parameters from the eight

used in (3) (with p = 1 and q = 0), to the seven we have

defined in (5), without any loss of generality.

The model (5) introduces wide linearity in the autoregres-

sive component of an order one process, and allows the process

to map out stochastic elliptical oscillations, as we now demon-

strate. In Fig. 2, we contrast realizations from our process with

an improper order one process (1) from the framework of [12]

using doubly white noise. The model (1) only has impropriety

in the noise component—equivalent to setting γ = 0 in (5). It

is clear from the figure that when the autoregressive coefficient

λ is close to unity (in panels (a) and (b)), then the widely

linear complex autoregressive process (5) has a tendency to

generate elliptical oscillations (panel (a)), whereas an improper

order one process (1) generates oscillations that appear to be

circular (panel (b)). This is because the motion (1) is largely

determined by Zt = λeiαZt−1, a deterministic component

which specifies a circular oscillation. When λ is low (panels

(c) and (d)), then the noise term νt dominates both signals.

As νt is doubly white noise, then both processes are improper

in their distribution, but neither generate elliptical oscillations

that resemble the seismic traces seen in Fig 1(c)—this can only

be generated using (5) with a larger autoregressive coefficient,

and with γ > 0.

In general, the process (5) has seven real-valued parameters,

whereas (2) has three. The additional four parameters in (5)

are present because each component in (2)—the deterministic

autoregressive component and the noise component—has been

given its own improper elliptical structure with two parameters

respectively, one to stretch (γ and |cν |) and one to rotate (φ and

arg{cν}). Here we have defined |cν | as the complex modulus

of cν , and arg{cν} as the complex argument or phase. In

practical problems the four parameters {γ, φ, |cν |, arg{cν}}
will be difficult to identify simultaneously from observed

signals. For this reason we reduce the widely linear process (5)

to five free parameters, effectively making two parameters

redundant, which in our case will be |cν | and arg{cν}. This

is achieved by “aligning” the elliptical structure of the deter-

ministic autoregression and the stochastic noise. The appeal of

reducing to five parameters is that the process will then have

the same number of free parameters as an improper order one
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Fig. 2. Simulated signals of length 512 (—-), from the widely linear complex
autoregressive process (5) in (a) and (c), and from an order one improper
process (1) in (b) and (d). In (a) and (b), the parameters are λ = 0.99,
α = π/6, σ2ν = 1, and cν = exp(3πi/4)/5. In (c) and (d), the parameters
are λ = 0.297, α = π/6, σ2ν = 1, and cν = 2 exp(3πi/4)/3. For the widely
linear complex autoregressive process (5) in (a) and (c), we additionally set
γ = 0.099 and φ = −π/4, which are set to zero in (b) and (d) for the
model (1). Expected second moment ellipses for the standard deviation are
also given (- - -), which are calculated from Section IV.

linear model (1), but will produce elliptical oscillations using

widely linear forcing (cf. Fig. 2). The order two process for

elliptical oscillations of [23] in general requires seven real-

valued parameters.

To reduce our model to five free parameters, we equate

the process to a bivariate process with elliptical covariance

structure. We start from the complex-proper autoregressive

process of order one (2). We rewrite this process as a bivariate

process in terms of (X ′

t Y
′

t )
T , where Z ′

t = X ′

t + iY ′

t ,
(

X ′

t

Y ′

t

)

= aR

(

X ′

t−1

Y ′

t−1

)

+ σǫ

(

ǫ1,t
ǫ2,t

)

, (6)

where,

R =

(

cos θ − sin θ
sin θ cos θ

)

.

It follows that (6) is an isotropic real-valued bivariate vector

process. Here ǫ1,t and ǫ2,t are i.i.d. Gaussian random variables

with mean 0 and variance 1. The matrix R accomplishes a

rotation by the angle −π < θ ≤ π in the Cartesian plane. For

identifiability we set a ≥ 0 and for stationarity we require a <
1, as we show in Appendix A. We then construct a new process

(Xt Yt)
T , which we call the elliptical bivariate autoregressive

process (of order one), using an elliptical transformation
(

Xt

Yt

)

= QP

(

X ′

t

Y ′

t

)

, (7)

where

Q =

(

cosψ − sinψ
sinψ cosψ

)

, P =

(1
ρ

0

0 ρ

)

,

in which 0 ≤ ψ < π defines the orientation of an ellipse,

and 0 < ρ ≤ 1 defines the eccentricity, 0 ≤ ε < 1, where



4

ε =
√

1− ρ4. We call this transformation “elliptical” as it first

stretches the X-axis by a factor of 1/ρ, and compresses the

Y -axis by a factor of ρ, before then rotating these axes through

angle ψ. This transformation leads to elliptical statistical

properties, and the process remains stationary for a < 1.

This can be seen by examining the 2× 2 covariance matrices

associated with (6) and (7) which are respectively given by

E

{

X ′

t
2

X ′

tY
′

t

X ′

tY
′

t Y ′

t
2

}

=

(

σ2
ǫ

1− a2

)

I,

and

E

{

X2
t XtYt

XtYt Y 2
t

}

=

(

σ2
ǫ

1− a2

)

QP 2QT ,

where I is the identity matrix. The covariance matrix of

(X ′

t Y ′

t )
T is isotropic or circular, whereas in general the

covariance matrix of (Xt Yt)
T is elliptical with orientation

ψ and ratio of semi-minor to semi-major axis ρ2.

The elliptical bivariate autoregressive process of order one is

defined by five parameters, namely {a, θ, ρ, ψ, σ2
ǫ}. We now

express the widely linear complex autoregressive process of

order one as Zt = Xt + iYt, and in Proposition 1 we relate

the parameters of this process to those of the elliptical bivariate

autoregressive process to form a five-parameter process.

Proposition 1: Suppose the process (Xt Yt)
T is an elliptical

bivariate autoregressive process of order one, as defined in (6)

and (7) by the parameters {a, θ, ρ, ψ, σ2
ǫ}. This process is

equivalent to a widely linear complex autoregressive process

of order one (5), specified by Zt = Xt + iYt where

Zt = a

{

cos θ +
i sin θ

2

(

1

ρ2
+ ρ2

)}

Zt−1

+
a sin θ

2

(

1

ρ2
− ρ2

)

ei(2ψ−
π

2
)Z∗

t−1

+ σǫ

{

eiψ

ρ
ǫ1,t + ρei(ψ+

π

2
)ǫ2,t

}

.

The relationship with the parameters {λ, α, γ, φ, σ2
ν} in the

specification of (5) is given in Table I, with the final redundant

parameter, the relation at lag zero cν , specified by

cν = σ2
ǫ

(

1

ρ2
− ρ2

)

ei2ψ = σ2
ν

( γ

λ sinα

)

ei(φ+
π

2
). (8)

The proof of Proposition 1 is given in Appendix B. There-

fore in order to represent the elliptical bivariate process (7)

in terms of the widely linear complex process (5), we have

required to use only five parameters. We can therefore simply

fix cν using either {a, θ, ρ, ψ, σ2
ǫ} or {λ, α, γ, φ, σ2

ν}, as given

in (8). This equivalence can be verified using the transforma-

tions in Table I. We note that this is how the value of cν was

set earlier in Fig 2.

The eccentricity parameter, ε, can also be found in terms of

the widely linear complex process parameters using Table I

ε =
√

1− ρ4 =

√

2γ

λ| sinα|+ γ
. (9)

Therefore for the widely linear process to return valid values

for the eccentricity, 0 ≤ ε < 1, we require

γ ≤ λ| sinα|. (10)

Additionally, for the widely linear process to be stationary we

require a =
√

λ2 − γ2 < 1. Therefore from (10) it follows

that a > 0. Then we see that stationarity is guaranteed when

λ < 1, and otherwise for stationarity we require that

γ >
√

λ2 − 1, when λ ≥ 1. (11)

These inequalities also ensure that θ and σ2
ǫ return valid values

when mapping parameters from the complex to bivariate

specifications. Increasing γ increases the eccentricity, until

eventually larger values of γ are not valid. This means that

there is a range of values for γ, which depends on both λ and

α, for our five-parameter process to be valid and stationary.

Combining the inequalities in (10) and (11) we see that we

require λ2 < 1/ cos2 α for our process to be valid and

stationary. When α = 0, the case of no spin, then γ = 0
from (10) and we require λ < 1 for stationarity. However as

α increases then interestingly, there are parameter values for

which λ > 1 and the process can still be stationary, unlike the

proper case, although this then requires a non-zero γ as can

be seen from (11).

We gain further insight by analyzing the relationships in

Table I. The first three parameters on each side of the table,

{λ, α, γ} and {a, θ, ρ}, have a direct one-to-one mapping,

where {λ, α} and {a, θ} become identical as ρ → 1 or

γ → 0. The parameters a and λ are monotonic functions

of each other, as are α and θ, which have the same sign

in the range (−π, π]. The bivariate ellipse orientation ψ and

the complex-conjugate spin parameter φ are directly related,

but are adjusted depending on the sign of θ and α. The ratio

of the variance parameters, σ2
ν and σ2

ǫ , is determined by the

eccentricity. The effect of each parameter can therefore be

closely related row-by-row in Table I.

By connecting to a bivariate process, we have gained the

advantages of both specifications: we benefit from the com-

pactness and applicability of a complex representation, and we

benefit from the interpretability and physical understanding

gained from a bivariate representation. A particularly useful

feature of complex signals is that we can perform hypothesis

tests for impropriety [9], and we will demonstrate the insight

gained from such an analysis in our seismic data example in

Section VI.

IV. COVARIANCE AND RELATION SEQUENCE

In this section we compute the covariance and relation

sequences for the widely linear complex autoregressive process

of order one. It follows directly from (5) that the process

is Gaussian, as it is a linear combination of complex-valued

Gaussian random variables. Therefore the covariance and

relations sequences fully specify the process. These sequences

would have complicated expansions if expressed analytically,

so instead we find recurrence relationships between the lags.

First we find that the variance (σ2
Z) and relation at lag zero
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TABLE I
THIS TABLE PROVIDES A MAPPING BETWEEN THE PARAMETERS OF THE ELLIPTICAL BIVARIATE PROCESS OF ORDER ONE (7), AND THE WIDELY LINEAR

COMPLEX AUTOREGRESSIVE PROCESSES OF ORDER ONE (5). WE REQUIRE λ ≥ 0, −π < α ≤ π, γ ≥ 0 AND σ2ν > 0 FOR THE WIDELY LINEAR COMPLEX

PROCESS, AND a ≥ 0, −π < θ ≤ π, 0 < ρ ≤ 1 AND σ2ǫ > 0 FOR THE ELLIPTICAL BIVARIATE PROCESS. THE PARAMETERS φ AND ψ ARE UNRESTRICTED

IN THIS MAPPING. THE FUNCTION atan2 IS THE FOUR QUADRANT INVERSE TANGENT, acos IS THE INVERSE COSINE FUNCTION AND sgn IS THE SIGNUM

FUNCTION. THESE FUNCTIONS ARE CHOSEN TO ENSURE THAT α AND θ HAVE A ONE-TO-ONE MAPPING IN THE RANGE (−π, π].

Bivariate elliptical to widely linear complex Widely linear complex to bivariate elliptical

λ = a

√

cos2 θ + sin2 θ
4

(

1

ρ2
+ ρ2

)2

a =
√

λ2 − γ2

α = atan2

{

sin θ
2

(

1

ρ2
+ ρ2

)

, cos θ
}

θ = sgn(α)acos
(√

λ2

λ2−γ2
cosα

)

γ = a
2
| sin θ|

(

1

ρ2
− ρ2

)

ρ =
(

λ| sinα|−γ
λ| sinα|+γ

)1/4

φ = 2ψ − sgn(θ)π
2

ψ = φ
2
+ sgn(α)π

4

σ2ν = σ2ǫ

(

1

ρ2
+ ρ2

)

σ2ǫ = σ2ν

√
λ2 sin2 α−γ2

2λ| sinα|

(cZ) are given by

σ2
Z = E{ZtZ∗

t }
= E

{(

λeiαZt−1 + γeiφZ∗

t−1 + νt
)

×
(

λe−iαZ∗

t−1 + γe−iφZt−1 + ν∗t
)}

= (λ2 + γ2)σ2
Z + λγei(α−φ)cZ + λγei(φ−α)c∗Z + σ2

ν ,
(12)

cZ = E{ZtZt}
= E

{(

λeiαZt−1 + γeiφZ∗

t−1 + νt
)

×
(

λeiαZt−1 + γeiφZ∗

t−1 + νt
)}

= 2λγei(α+φ)σ2
Z + λ2e2iαcZ + γ2e2iφc∗Z + cν . (13)

We now combine (12) and (13) to solve for σ2
Z and cZ ,

yielding





σ2
Z

cZ
c∗Z



 =





λ2 + γ2 λγei(α−φ) λγei(φ−α)

2λγei(α+φ) λ2e2iα γ2e2iφ

2λγe−i(α+φ) γ2e−2iφ λ2e−2iα









σ2
Z

cZ
c∗Z





+





σ2
ν

cν
c∗ν



 (14)

and hence




σ2
Z

cZ
c∗Z



 =M−1





σ2
ν

cν
c∗ν



 , (15)

where

M =





1− λ2 − γ2 −λγei(α−φ) −λγei(φ−α)
−2λγei(α+φ) 1− λ2e2iα −γ2e2iφ
−2λγe−i(α+φ) −γ2e−2iφ 1− λ2e−2iα



 .

The analytic form for the inverse matrix M−1 in (15) is

provided as part of the online software available at http://

ucl.ac.uk/statistics/research/spg/software

and is not included here for space considerations. When

simulating signals from the process, in addition to satisfying

the inequalities specified in (10), then for the process to be

stationary we require that the first observation is generated

from the complex-valued normal distribution with mean zero,

variance σ2
Z , and relation at lag zero cZ . See Section V-A for

more detail on the complex-valued normal distribution. This

is how the signals in Fig. 2 have been simulated, and more

details on this can be found in the supporting online code.

After computing σ2
Z and cZ from (15), the covariance

sequence, sτ , and the relation sequence, rτ , can be found for

any τ > 0 using the following recurrence relationships

sτ = E
{

ZtZ
∗

t+τ

}

= E
{

Zt
(

λe−iφZ∗

t+τ−1 + γe−iφZt+τ−1 + ν∗t+τ−1

)}

= λe−iαsτ−1 + γe−iφrτ−1, (16)

rτ = E {ZtZt+τ}
= E

{

Zt
(

λeiφZt+τ−1 + γeiφZ∗

t+τ−1 + νt+τ−1

)}

= λeiαrτ−1 + γeiφsτ−1. (17)

Therefore, after solving for s0 = σ2
Z and r0 = cZ , we iterate

to find sτ and rτ using (16) and (17). To find the sequences

for negative lags we use the simple relationship s−τ = s∗τ and

r−τ = rτ .

From (16) and (17) we see that λ and α contribute to the

exponential decay of the autocovariance—this is expected as

autoregressive processes are short memory. Conversely, γ and

φ have a “flipping” effect on sτ and rτ , where the covariance

is dependent on the relation at previous lags and vice-versa.

This is a consequence of the widely linear form in (5), where

the conjugate action creates an iterative ‘flip’ of the process

about the real axis in the complex plane.

V. METHODS FOR ESTIMATING PARAMETERS

In this section we detail how the parameters of the widely

linear complex autoregressive process of order one can be

estimated from an observed signal using maximum likeli-

hood. We first resolve the exact form of the likelihood in

Section V-A, and then provide an approximate method in

the frequency domain in Section V-B. The latter method has

practical advantages in real-world applications, as we shall

discuss.
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A. Maximum Likelihood

Suppose that Zt follows a stationary widely linear complex

autoregressive process or order one, as specified in (5) with

parameters satisfying (10) and (11), then the probability dis-

tribution of Zt follows a complex-valued normal distribution.

For a general complex-valued normally distributed random

variable z, we denote its distribution by NC(µ, σ
2, c), with

mean µ, variance σ2, and relation at lag zero c. The probability

density function of z is then given by

p(z) =
1

π
√

(σ2)2 + |c|2
×

exp

{

−1

2

(

z∗ − µ∗ z − µ
)

(

σ2 c
c∗ σ2

)−1 (
z − µ
z∗ − µ∗

)

}

.

It then follows that the probability distribution of the widely

linear complex autoregressive process or order one, denoted

Zt, is given by

Zt ∼ NC

(

0, σ2
Z , cZ

)

,

where σ2
Z and cZ are found using (15). For a given observed

signal z0, . . . , zN−1 from the process Zt, the probability of ob-

serving the first value z0 directly follows from the probability

distribution of Zt,

p(z0; θ) =
1

π
√

(σ2
Z )

2 + |cZ |2
×

exp

{

−1

2

(

z∗0 z0
)

(

σ2
Z cZ
c∗Z σ2

Z

)−1 (
z0
z∗0

)

}

,

where θ = {σ2
Z , cZ}. Next we make use of the Markovian

property of the process to find the conditional distribution of

Zt given Zt−1 = zt−1, for 1 ≤ t ≤ N − 1

(Zt|Zt−1 = zt−1) ∼ NC

(

λeiαzt−1 + γeiφz∗t−1, σ
2
ν , cν

)

,

such that the condition probability of observing zt given zt−1

is

p(zt|zt−1; θ) =
1

π
√

(σ2
ν)

2 + |cν |2
×

exp

{

−1

2

(

z∗t − µ∗

zt
zt − µzt

)

(

σ2
ν cν
c∗ν σ2

ν

)−1 (
zt − µzt
z∗t − µ∗

zt

)

}

,

where θ = {µzt , σ2
ν , cν} and

µzt = λeiαzt−1 + γeiφz∗t−1. (18)

The likelihood of observing the signal z0, . . . , zN−1 is found

by evaluating

p(z0, . . . , zN−1; θ) = p(z0; θ)

N−1
∏

t=1

p(zt|zt−1; θ).

The log-likelihood (denoted ℓt(θ)) is therefore

ℓt(θ) = log (p(z0; θ)) +

N−1
∑

t=1

log (p(zt|zt−1; θ)) ,

which for a widely linear complex autoregressive process of

order one is found to be

ℓt(θ) = −N log π − N − 1

2
log

(

(σ2
ν)

2 + |cν |2
)

−
N−1
∑

t=1

1

2

(

z∗t − µ∗

zt
zt − µzt

)

(

σ2
ν cν
c∗ν σ2

ν

)−1(
zt − µzt
z∗t − µ∗

zt

)

− 1

2
log

(

(σ2
Z)

2 + |cZ |2
)

− 1

2

(

z∗0 z0
)

(

σ2
Z cZ
c∗Z σ2

Z

)−1 (
z0
z∗0

)

,

(19)

with µzt given in (18). The optimal parameter choice θ̂ is then

found by maximizing the log-likelihood (19)

θ̂ = argmax
θ∈Θ

ℓt(θ), (20)

where Θ is the permitted parameter range for θ, recalling that

for the five-parameter process, cν is specified by (8), and that

the inequalities (10) and (11) should also be satisfied.

B. Frequency Domain “Whittle” Likelihood

The parameters of the widely linear complex autoregressive

process of order one can also be computed in the frequency

domain using Whittle’s approximation to maximum likelihood

[26], known as the ‘Whittle likelihood.’ This approximation

of the time-domain likelihood is in the frequency domain,

and relies solely on applying Fourier Transforms which can

be computed in O(N logN) operations. We use a bias-

corrected form of the Whittle likelihood, which was extended

to complex-valued signals in [27] and is given by

ℓ(θ) = −
∑

ω∈Ω

{

log (|f(ω; θ)|) + JH(ω)f−1(ω; θ)J(ω)
}

,

(21)

where Ω is the set of Fourier frequencies used in the estima-

tion, θ is the unknown parameter vector, and J(ω) and f(ω; θ)
are given by

J(ω) =
1√
N

N−1
∑

t=0

(

Zt
Z∗

t

)

e−iωt, (22)

f(ω; θ) =

(

S̄(ω; θ) R̄(ω; θ)
R̄∗(ω; θ) S̄(−ω; θ)

)

. (23)

The vector J(ω) is the Discrete Fourier Transform for a

signal Z0, . . . , ZN−1, evaluated at the Fourier frequencies. The

matrix f(ω; θ) contains the expected periodogram, S̄(ω; θ) =
E{|J(ω)|2}, and the expected complementary periodogram,

R̄(ω; θ) = E{J(ω)J(ω)}, and is dependent on both the signal

length N , and the parameter vector θ. Expected periodograms

are used in (21), rather than theoretical spectral densities,

as this removes the known bias effects from using Discrete

Fourier Transforms in (21) for finite N . We then compute

S̄(ω; θ) and R̄(ω; θ) directly from the covariance and relation

sequences using the relationships

S̄(ω; θ) =

N−1
∑

τ=−(N−1)

sτ (θ)

(

1− |τ |
N

)

e−iωτ , (24)

R̄(ω; θ) =

N−1
∑

τ=−(N−1)

rτ (θ)

(

1− |τ |
N

)

e−iωτ . (25)
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The expected complementary periodogram R̄(ω; θ) will in

general be a complex-valued quantity. The usefulness of (24)

and (25) is that they can be computed in O(N logN) time

as they are Discrete Fourier Transforms, ensuring the Whittle

likelihood remains an O(N logN) procedure in this bias

corrected version. This method is proven to be statistically

consistent in [28], and is shown to significantly remove bias

effects for sample sizes as large as 1,000 data points.

For the widely linear complex autoregressive process of

order one, sτ and rτ in (24) and (25) are computed using

the recurrence relationships given in Section IV, which is an

O(N) computation. Both f(ω; θ) and J(ω) are then computed

using Fast Fourier Transforms, thus giving O(N logN) effi-

ciency overall. The optimal parameter choice θ̂ is then found

by maximizing the Whittle likelihood in the same way as (20).

The advantage of performing maximum likelihood in the

frequency domain is that we can restrict the range of frequen-

cies used in the summation in (21). This allows the parameter

estimation to be performed semi-parametrically, by ignoring

frequencies that are known to be contaminated or not specified

well by the model. For example, this was used in [29] to

remove the effect of eddies when estimating the parameters

of a turbulent flow model for the ocean surface. We will also

employ such semi-parametric procedures in our data example

in Section VI.

We note that the Whittle likelihood can be alternatively used

with tapered spectral estimates in (22), where the triangle

kernel 1 − |τ |/N in (24) and (25) is then replaced with a

modified kernel of smaller width, as documented in [28].

Tapering the likelihood helps reduce mean square error in

parameter estimates when the process is long memory or has

steep spectral slopes. As the widely linear complex autore-

gressive process of order one is short memory, then tapering

is unnecessary and we use the periodogram approach defined

in (21)–(25).

VI. APPLICATION TO SEISMIC DATA

In this section we investigate using the widely linear

complex autoregressive process of order one as a model for

seismic data. We analyze the seismic trace from the Feb 9th

1991 Solomon Islands earthquake, as presented in Fig. 1 in

Section I. The data is sampled every second and is freely

available from http://ds.iris.edu/wilber3. All the

results in this section (and all figures in this paper) are exactly

reproducible with MATLAB code available from http://

ucl.ac.uk/statistics/research/spg/software.

The seismic trace consists of three components: a radial,

vertical, and transverse signal [30]. We model the radial and

vertical components as a complex-valued signal, as they are

strongly coupled due to the presence of a Rayleigh wave. We

do not analyze the transverse component as the expression of

the Rayleigh wave does not exist in the transverse signal [17].

The radial, Xt, and vertical, Yt, signal are displayed in

Figs. 1(a) and 1(b) respectively. Our analysis will first focus

on the segment between the dashed vertical lines in the figure.

We combine these signals within this partition to form a single

complex-valued signal, Zt = Xt + iYt, as displayed on the
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Fig. 3. Panel (a) displays the periodogram (—) and model fit (- - -) of the
signal Zt displayed in Fig. 1(c). Panel (b) shows Zt in the interval (UTC)
16:33:46 to 16:36:26 (—) and 16:38:19 to 16:40:59 (—). The periodogram
(—) and model fit (- - -) are displayed for Zt in the intervals (c) 16:33:46
to 16:36:26 and (d) 16:38:19 to 16:40:59. In (a), (c), and (d), parameter
estimation is performed for ω ∈ [−π/4, π/4], as indicated by the vertical
dashed boundaries, and we extend the fitted lines to all frequencies (-·-).

complex plane in Fig. 1(c). The signal has evident improper

structure, as can be seen from the elliptical paths of the signal

in the complex plane.

We first fit the widely linear complex autoregressive process

of order one to the entire signal displayed in Fig. 1(c) using the

Whittle likelihood, as detailed in Section V. The periodogram

of the data, and the resulting model fit of the periodogram,

are displayed in Fig. 3(a). For all parameter estimates in

this section, we perform the Whittle likelihood estimation

semi-parametrically over a reduced range of frequencies, ω ∈
[−π/4, π/4], as the signal energy is strongly concentrated

within this frequency range. For complex-valued signals, the

spectrum is defined at both negative and positive frequencies,

and will in general be asymmetric. The two peaks of different

magnitude on each side of the spectra, at approximately the

same frequency, indicate elliptical oscillatory motion. Our

fitted process has located the frequency of these peaks, but

overall is a poor fit to the periodogram. This is due to the non-

stationarity of the signal. Inspecting Fig. 1(c) in more detail we

can see that the amplitude, eccentricity and orientation of the

elliptical oscillations are changing in time. Our model, which

is stationary, is not able to capture this variable structure.

To investigate these nonstationary effects we separately

analyze two segments of the data, each 161 seconds (or data

points) long, spanning the periods 16:33:46 to 16:36:26 and

16:38:19 to 16:40:59 (UTC) respectively. The complex-valued

signals corresponding to these time periods are displayed in

Fig. 3(b). The choice of window length is motivated by the

example signal itself, and has been selected such that it is

as short as possible (to capture as much time variability as

possible), while still being able to robustly estimate all five

free parameters. For automated windowing procedures we

refer the reader to [31], which is outside the scope of this

paper. The periodograms and model fits of each segment are

displayed in Figs. 3(c) and 3(d). The process is now seen to
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Fig. 4. Spectrograms using a 161-second sliding window of the seismic
signal of Fig. 1. Panel (a) is the evolving periodogram of Zt, (b) is the
evolving model fit to the periodogram using our widely linear process, (c) is
the magnitude of the evolving complementary periodogram of Zt and (d) is
the magnitude of the evolving model fit to the complementary periodogram.
The color scale is given in decibels.

be a good fit to these shorter signals. The optimal parameters

are significantly different for each segment. For example, the

eccentricity estimate in the first segment is 0.29 whereas in

the second segment it is 0.56. These differing eccentricity

estimates are related to the different ratios of the amplitudes

of the two peaks in each respective periodogram.

The appropriateness of our process to modeling shorter seg-

ments of this signal suggests that a locally stationary modeling

assumption should be used, see e.g. [32]. To investigate this in

more detail we perform the model fit to a rolling 161-second

window over the entire signal.

In Fig. 4(a) and 4(b) we plot the spectrogram of the data—

that is, a moving window of the periodogram—together with

the spectrogram of the expected periodogram from our model

fit. These spectrograms are only shown for the frequencies that

have been used in the fit. Note that the zero frequency is not

included in the fit as we have removed the sample mean for

each segment. From the figure it can be seen that the widely

linear complex autoregressive process of order one captures

the overall shape of the spectrum at each time slice, as well as

its evolution over time. In particular, the process has captured

the gradually changing frequency of the oscillations.

We also display, in Fig. 4(c) and 4(d), the time-frequency

plots for the magnitude of the complementary periodogram,

and the resulting model fit (respectively). The complementary

periodogram forms a Fourier pair with the sample relation

sequence, and as a consequence complementary periodograms

from observed improper processes are expected to exhibit

noticeable structure. This structure has been captured well in

the model fit, which is important, as the complementary pe-

riodogram is where information regarding impropriety—such

as the expected orientation of elliptical motion—is contained.

The complementary periodogram is complex-valued, but we

have not included plots for its phase here, for space saving
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Fig. 5. Estimates of (a) the eccentricity, ε, and (b) the orientation, ψ, in
radians, of the seismic signal of Fig. 1. (—-) are the estimates from fitting a
widely linear complex autoregressive process of order one across a 161-second
sliding window, with the 95% confidence intervals given in gray. (- · -) are the
estimates from the method of [33], and (- - -) are the estimates obtained from
the Fourier Transform evaluated at the two frequency peaks. All estimates
and confidence intervals, including the nonparametric techniques, have been
smoothed in time using a moving average window of width 11.

considerations.

In Fig. 5(a) and 5(b) we display the time-varying eccen-

tricity and orientation parameters from the model fit, calcu-

lated using Table I and (9). Other informative time-varying

summaries can also be found, such as of the noise variance

or damping terms. These can be generated as part of the

online software. In Fig. 5 we compare with two alternative

methods. First we compare against results obtained from the

nonparametric deterministic approach of [33], which models

the signal as a time varying ellipse, thus providing a good

comparison to our results despite being a complementary ap-

proach. Secondly, we compare against a simple nonparametric

approach of comparing the Fourier transform at the positive

and negative frequency peaks in the power spectral density,

which we denote as ±ωmax, where it can be readily shown that

eccentricity and orientation estimates can be obtained from

ε̂ =
2
√

|JZ(ωmax)JZ(−ωmax)|
|JZ(ωmax)|+ |JZ(−ωmax)|

ψ̂ =
1

2
[arg{JZ(ωmax)}+ arg{JZ(−ωmax)}] ,

with JZ(ω) defined as the top row of (22). In Fig. 5,

the estimated eccentricities and orientations broadly agree

across the different methods. The values obtained from our

parametric model are in general smoother, as the method

smooths over information across frequencies when estimating

parameters. The usefulness of our stochastic process is that it

prescribes a generating mechanism providing physical insight

and the ability to replicate signals, which the alternative purely

diagnostic metrics do not provide.

Another useful feature of a stochastic modeling approach is

that we can calculate confidence intervals for parameter esti-

mates, by numerically computing the Hessian of the Whittle

likelihood, as detailed in [29]. In Fig. 5 we include the 95%

confidence intervals for our parameter estimates, where care

must be taken when assessing significance across time as these

are not pointwise simultaneous confidence intervals.

Finally, another advantage of the stochastic modeling ap-

proach is that we can perform a parametric hypothesis test

for impropriety, to test for statistical significance for when
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16:26 16:30 16:34 16:38 16:42 16:46 16:50 16:54
time (UTC)

0

50
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W

Fig. 6. The likelihood ratio statistic W (—-) over time, smoothed with a
moving average window of width 11, from fitting the proper (2) and widely
linear improper (5) complex autoregressive order one processes to Zt across a
161-second sliding window. The signal is then divided into 11 non-overlapping
windows, as indicated by the vertical gray-dashed lines, where the vertical
black solid lines indicate the analysis window of Figs. 4–6. The likelihood
ratio statistic for each of these windows is then given by (—-). We also
display the 95th percentile of a χ2

2
distribution (- - -), and after applying a

False Discover Rate (FDR) procedure to control the rate of false positives,
we reject propriety in each segment except the first two.

an improper model should be used. This approach is simpler

than performing the test of [9], under the assumption that the

parametric model is appropriate. We perform the parametric

test by also fitting the proper complex autoregressive order

one process (2) to rolling windows of observations, in exactly

the same manner as performed for the widely linear improper

process. We then perform a likelihood ratio test, as proposed in

[27], to see if there is significant statistical evidence to suggest

the null hypothesis of a proper process should be rejected

in favor of an improper process. To do this we compute the

likelihood ratio statistic, given by W = 2{ℓ(θalt)− ℓ(θnull)},

where “alt” and “null” denote the alternative and null models

respectively. We compare the likelihood ratio statistic with the

95th percentile of a χ2
2 distribution. The χ2

2 distribution is used

because there are two additional parameters in the alternate

than in the null.

The results of the test are displayed in Fig. 6, where we

have extended the analysis and computed W over a longer

period of time. Similarly to Fig. 5, care must be taken here

when performing such an analysis over time, as a correction

must be made for multiple testing, to control the rate of

false positives. As a result, we have divided the analysis

into 11 non-overlapping windows, as indicated, and reported

the likelihood ratio test statistic within each window. Then

to control the rate of false positives, rather than rejecting

all segments with p-values less than .05 (found using the

χ2
2 distribution), a False Discovery Rate (FDR) procedure is

applied using the Benjamini-Hochberg procedure [34]. This

procedure ranks the p-values in ascending order (denoted

p1, . . . , p11) and finds the largest j such that pj ≤ .05j/11,

and then rejects all segments corresponding to p1, . . . , pj . This

procedure formally requires data segments to be independent,

and while mild correlations do exist, these can only result in

positive correlations between the statistics (as χ2
2 distributions

can only be positively correlated). Therefore we may still

employ this procedure, but the rejection rate is conservative.

The FDR analysis, which is included in the online code,

rejects all but the first two segments, which have the highest

associated p-values and are before the arrival of the Rayleigh

wave. Propriety is rejected within our main analysis window of

Figs. 4–6, and also afterwards where there is still some seismic

activity (as can be seen in Fig. 1). We can see that the rejection

of propriety in favor of our model is most significant at time

points where the signal is most eccentric, around 16:40 (cf.

Fig. 5(a)), which is intuitive as here a circular/proper model

is the least appropriate.

VII. CONCLUSIONS

In this paper we have proposed a widely linear complex

autoregressive process of order one. The key novelty of the

stochastic process is that impropriety is constructed by relating

the process to its conjugate at the previous timestep using

a widely linear representation, building on ideas developed

in [19] for higher order ARMA processes. Our approach is in

contrast to alternative approaches to modeling improper com-

plex autoregressive processes, where only the noise component

is improper. Our stochastic process can generate improper

structure in the form of elliptical oscillations, which is not

possible using alternative order one processes in the literature.

We reduced the specification of our process from seven free

parameters to five free parameters, by relating the process to

a bivariate elliptical process with interchangeable parameters,

and “aligning” the ellipticity of the signal and noise. Reducing

to five free parameters has the advantage that parameters of

our process are easier to identify and estimate in real-world

problems. Furthermore, linking to a bivariate process provided

the benefits of using both representations, where we were

then able to find conditions for stationarity, and describe the

structure of the elliptical oscillations. In general the parameter

connections between the representations are non-trivial, but

transforming between representations provided useful insight,

shedding light on the behavior of the more compact complex

widely linear representation.

A promising direction for gaining insight into the full

unconstrained seven-parameter widely linear specification, is

to relate the process to a bivariate process with two separate

elliptical transforms—one each for the autoregressive and

noise components in (6)—thus also now being specified by

seven parameters. Such an analysis should be performed if the

problem is known to have elliptical signal and noise structure

that is not aligned.

Another important innovation of this paper is that we have

provided time- and frequency-domain techniques to param-

eter estimation, and then applied them to demonstrate how

our widely linear improper process can effectively capture

elliptical oscillations in observed seismic traces. An advantage

of the complex-valued approach is that frequency-domain

understanding then becomes natural, as the asymmetry in

the power spectra defines preferred direction of rotation.

The process we propose has the potential to be applied to

other improper signals in numerous applications, including for

example modeling elliptical eddies as documented in [14], or

modeling phase-shifted stochastic cycles in econometric time

series [35].
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APPENDIX A

STATIONARITY OF THE BIVARIATE ELLIPTICAL

AUTOREGRESSIVE PROCESS

From [36, Ch. 11] we have that for (6) to be stationary we

require that the eigenvalues of the matrix

aR =

(

a cos θ −a sin θ
a sin θ a cos θ

)

have modulus less than one. The eigenvalues of this matrix

are found to be

λ1 = a cos θ + ia sin θ, λ2 = a cos θ − ia sin θ.

Therefore as |λ1| = |λ2| = a, it follows that requiring both

|λ1| < 1 and |λ2| < 1 for stationarity is equivalent to requiring

that a < 1 (as we already have that a ≥ 0).

APPENDIX B

PROOF OF PROPOSITION 1

Combining (6) and (7) we have the relationship
(

Xt

Yt

)

= QP

{

aR

(

X ′

t−1

Y ′

t−1

)

+ σǫ

(

ǫ1,t
ǫ2,t

)}

,

and then substituting (X ′

t−1 Y
′

t−1)
T for (Xt−1 Yt−1)

T , and

using that Q−1 = QT , it follows that
(

Xt

Yt

)

= QP

{

aRP−1QT
(

Xt−1

Yt−1

)

+ σǫ

(

ǫ1,t
ǫ2,t

)}

. (26)

To simplify (26) we first define

I =

(

1 0
0 1

)

, J =

(

0 −1
1 0

)

, K =

(

0 1
1 0

)

.

It then follows that

PRP−1 = cos θI+
sin θ

2

(

1

ρ2
+ ρ2

)

J− sin θ

2

(

1

ρ2
+ ρ2

)

K.

We then use the properties that

QIQT = I, QJQT = J, QKQT =

(

− sin 2ψ cos 2ψ
cos 2ψ sin 2ψ

)

,

which allows for a simple expression for L = QPRP−1QT

where

L = cos θI +
sin θ

2

(

1

ρ2
+ ρ2

)

J

− sin θ

2

(

1

ρ2
− ρ2

)(

− sin 2ψ cos 2ψ
cos 2ψ sin 2ψ

)

.

Therefore (26) simplifies to
(

Xt

Yt

)

= aL

(

Xt−1

Yt−1

)

+QPσǫ

(

ǫ1,t
ǫ2,t

)

. (27)

To reformulate this in terms of Zt = Xt + iYt we use the

relationship
(

Xt

Yt

)

=
1

2
T

(

Zt
Z∗

t

)

, where T =

(

1 1
−i i

)

. (28)

Substituting (28) into (27) and using that THT = 2I ,

where the subscript H denotes the Hermitian transpose, after

rearranging we see that
(

Zt
Z∗

t

)

=
a

2
THLT

(

Zt−1

Z∗

t−1

)

+ THQPσǫ

(

ǫ1,t
ǫ2,t

)

. (29)

Expanding (29) and taking the top row we then get the

relationship given in the proposition.
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