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Abstract

Lattices are a popular field of study in mathematical research, but also in more practical areas like

cryptology or multiple-input/multiple-output (MIMO) transmission. In mathematical theory, most often

lattices over real numbers are considered. However, in communications, complex-valued processing is

usually of interest. Besides, by the use of dual-polarized transmission as well as the by the combination of

two time slots or frequencies, four-dimensional (quaternion-valued) approaches become more and more

important. Hence, in this paper, well-known lattice algorithms and related concepts are generalized to the

complex and quaternion-valued case. To this end, a brief review of complex arithmetic, including the sets

of Gaussian and Eisenstein integers, and an introduction into quaternion-valued numbers, including the

sets of Lipschitz and Hurwitz integers, are given. On that basis, generalized variants of two important

algorithms are derived: first, of the polynomial-time LLL algorithm, resulting in a reduced basis of

a lattice, and second, of an algorithm to calculate the successive minima—the norms of the shortest

independent vectors of a lattice—and its related lattice points. Generalized bounds for the quality of the

particular results are established and the asymptotic complexities of the algorithms are assessed. These

findings are extensively compared to conventional real-valued processing. It is shown that the generalized
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approaches outperform their real-valued counterparts in complexity and/or quality aspects. Moreover,

the application of the generalized algorithms to MIMO communications is studied, particularly in the

field of lattice-reduction-aided and integer-forcing equalization.

Index Terms

Lattices, lattice reduction, LLL algorithm, successive minima, Gaussian integers, Eisenstein integers,

quaternions, Lipschitz integers, Hurwitz integers, MIMO, lattice-reduction-aided equalization, integer-

forcing equalization.

I. INTRODUCTION

The concept of lattices has been studied for almost two centuries. Initial work was, e.g.,

published by Hermite [3], by Korkine and Zolotareff [4], and by Minkowski [5]. Nevertheless,

lattices remained a topic of theoretical mathematical studies for quite a long time.

This situation dramatically changed with the advent of the digital revolution in the late 20th

century. Suddenly, enough computational power was available to implement and run particular

algorithms for lattice problems. The most prominent one was proposed by Lenstra, Lenstra and

Lovász [6]. In particular, the LLL algorithm calculates a reduced basis of a lattice, i.e., a more

suited mathematical description of the lattice w.r.t. some quality criteria, with only polynomial-

time complexity. More powerful strategies for lattice basis reduction were addressed in the

sequel, e.g., the concepts of Hermite-Korkine-Zolotareff (HKZ) reduction [7]–[9] or Minkowski

reduction [9], [10], that, however, demand an exponentially-growing computational complexity

for calculating the reduced basis. All above-mentioned algorithms operate over real numbers,

i.e., the lattices are defined over the integer ring Z.

Apart from the application of lattices in cryptological schemes [11], lattices gained popular-

ity in the field of multiple-input/multiple-output (MIMO) communications [12]. In particular,

maximum-likelihood (ML) detection was enabled by the sphere decoder [13], however, with

the burden of a large computational complexity. An alternative, low-complexity strategy was

given with the concept of lattice-reduction-aided (LRA) equalization [2], [14]–[19]. Here, the

channel equalization is performed in a more suited basis which is obtained by one of the

above-mentioned lattice-basis-reduction algorithms—most often, by the polynomial-time LLL

algorithm. Since, for block-fading channels, this calculation has only to be done once in the

beginning, the computational complexity is dramatically decreased when compared with ML
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detection. Besides, in comparison to straight-forward linear equalization of the MIMO channel,

the noise enhancement can significantly be lowered, even resulting in the optimum diversity

behavior as shown in [20].

A few years ago, the concept of integer-forcing (IF) linear (MIMO) equalization has been

introduced [21]. The LRA and IF approaches share the philosophy of performing the channel

equalization in a more suited representation of the channel matrix such that the noise enhance-

ment inherently caused by equalization is lowered. However, it was found out that the restriction

to lattice basis reduction—described by a unimodular integer transformation matrix—is actually

not required. Instead, it is sufficient that this integer matrix has full rank—the lattice-basis-

reduction problem is weakened to the so-called successive minima problem. For a more detailed

insight into the topic, see, e.g., [19]. These successive minima are also quite important for the

derivation of bounds for lattice-basis-reduction schemes, as they serve as lower bounds for the

norms of the basis vectors.

In MIMO transmission, the channel matrix is usually assumed to be complex-valued due to

representation in the equivalent complex-baseband domain [22]. Since the algorithms available

for lattice-basis-reduction have initially been real-valued, equalization was performed with an

equivalent real-valued representation of the complex-valued channel, resulting in a doubled

dimension. The concept of LLL reduction could be extended to the complex case in [23],

where the lattice was not formed over Z any more, but over the complex integers—the so-

called Gaussian integers G [24], [25]. Moreover, HKZ reduction [26] and Minkowski reduction

[27], respectively, were adapted in order to run over Gaussian integers. Efficient algorithms

for the determination of the successive minima have recently been proposed in [28]–[30]. The

algorithm in [30] only operates over real-valued lattices, whereas the algorithms in [28], [29]

have been adapted to operate over complex numbers (and the Gaussian integers as the related

ring). Furthermore, it was found out that the use of another complex-valued integer ring may be

beneficial [31], [32]—of the so-called Eisenstein integers E [25], [33], forming the hexagonal

lattice over the complex numbers.

Moreover, in recent years, four-dimensional signaling techniques have become more and more

popular. In particular, in the field of optical communications, it is already quite common to

employ both polarization planes of electromagnetic waves [34], resulting in a dual-polarized

transmission. In wireless (MIMO) communications, dual-polarized antennas have been designed,

e.g., in [35]–[37]. Besides, diversity schemes that are suited to combine the transmit symbols
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of two different time steps or frequencies are known for some time, e.g., the famous Alamouti

scheme [38]. Given such a four-dimensional signal space, its representation over the set of

quaternion numbers [25], [39] is quite obvious [40], [41]. Thereby, it has to be taken into

account that quaternion-valued (scalar) multiplication is not commutative any more, i.e., the

quaternion numbers do not form a field but only a skew field.

Unfortunately, up to now, hardly anything is known about lattice problems and algorithms that

are defined over quaternion numbers, particularly over the integer rings of the Lipschitz integers

L and the Hurwitz integers H [25], [39]. It has to be clarified to which extent these rings are

suited to defined a quaternion-valued lattice-basis reduction, particularly based on a generalized

variant of the LLL reduction, and if/how the respective successive minima can be calculated.

Moreover, such findings still have to be assessed w.r.t. the quality of the results as well as the

computational complexity—especially in comparison to lattices over real or complex numbers.

Hence, the aim and contribution of this work is the closing of the gaps in knowledge w.r.t. the

extension and/or generalization of schemes for complex and quaternion-valued LLL reduction as

well as the determination of the respective successive minima. To this end, generalized variants

of the LLL reduction approach and the list-based successive-minima algorithm [29] are proposed

which are suited for the combination with all real, complex, and quaternion-valued integer rings

mentioned above. Both implementations are provided in such a way that the non-commutative

behavior of quaternion-valued multiplication is adequately taken into account.

On the basis of these generalized criteria and their related algorithms, generalized quality

bounds are derived. They particularly concern the norms of the basis vectors (and the re-

spective successive minima), as well as the orthogonality defect of a lattice basis. It is shown

that the quaternion-valued and/or complex-valued approaches may outperform their real-valued

equivalents—especially if lattices over the Eisenstein or the Hurwitz integers are considered.

Moreover, the asymptotic computational complexities of the different approaches are established.

Concerning the (polynomial-time) LLL lattice-basis-reduction approach, these derivations reveal

that the complexity can considerably be decreased if the respective complex- or quaternion-

valued variants are employed. By providing additional results from numerical simulations, it

is shown that the quality bounds and complexity evaluations reflect the behavior that can be

observed when i.i.d. Gaussian stochastic models are applied in practice.

Finally, the application of the derived approaches in MIMO communications, particularly

in the case of (multi-user) MIMO uplink transmission [12] based on the concepts of LRA
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and IF equalization, is extensively studied. This includes a discussion on how the quaternion-

valued concept can be employed in dual-polarized transmission, as well as in the Alamouti-

based combination of two time steps or frequencies. Respective system models are derived and

evaluated by means of numerical simulations for particular transmission scenarios. These results

show that the theoretical derivations and bounds also reflect the behavior in practical MIMO

schemes.

The paper is structured as follows: In Sec. II, complex integer rings are briefly reviewed and

an introduction to quaternions including the sets of Lipschitz and Hurwitz integers is given. In

Sec. III, the LLL algorithm as well a list-based algorithm for the determination of the successive

minima of a lattice are generalized to complex and quaternion-valued integer rings. Related

quality bounds and the assessment of the computational complexities are provided in Sec. IV.

In Sec. V, the particular application of the generalized algorithms is regarded in the field of

MIMO communications. The paper is closed by a brief summary and an outlook in Sec. VI.

II. TWO- AND FOUR-DIMENSIONAL EXTENSIONS OF THE REAL NUMBERS AND RELATED

LATTICES

In this section, the sets of complex numbers and quaternions that form a two- and four-dimensional

extension of the real numbers, respectively, are reviewed. The related algebras are presented and

important subsets, particularly integer rings, are discussed. On that basis, generalized lattices are

defined.

A. Complex Numbers and Quaternions

First, the extension of the real numbers R to complex numbers and quaternions, respectively,

is reviewed. For a deeper insight into the topic, see [25], [39], [42].

1) Complex Numbers: The set of complex numbers

C = {c = c(1)︸︷︷︸
Re{c}

+ c(2)︸︷︷︸
Im{c}

i | c(1), c(2) ∈ R} (1)

forms a field extension of the real numbers. It is obtained by extending the first, real component

c(1) (real part Re{c}) by a second component c(2) which is multiplied by the imaginary unit

i =
√
−1 (imaginary part Im{c}).

The complex conjugate of c ∈ C reads c∗ = c(1) − c(2) i and its absolute value is given as

|c| =
√

(c(1))2 + (c(2))2. Scalar additions (and subtractions) over complex numbers are performed
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individually per component. The multiplication of two complex numbers u, v ∈ C can be

expressed as
w = (u(1) + u(2) i) · (v(1) + v(2) i)

= (u(1)v(1) − u(2)v(2))︸ ︷︷ ︸
w(1)

+ (u(1)v(2) + u(2)v(1))︸ ︷︷ ︸
w(2)

i .
(2)

Hence, four multiplications and two additions/subtractions are required. Following the concept

of the Karatsuba algorithm [43], this multiplication can alternatively be realized by three mul-

tiplications and five additions/subtractions. The scalar division of u by v is performed by the

scalar multiplication u · v−1 with the element v−1 = v∗/|v|2.

Based on (2), an equivalent real-valued representation of complex matrices can be given. An

N ×K matrix C ∈ CN×K may be represented via its equivalent 2N × 2K real matrix

Cr =

C(1) −C(2)

C(2) C(1)

 ∈ R2N×2K , (3)

where C(1) and C(2) denote the real and imaginary part of C, respectively. If N ≥ K,

det(CHC) =

√
det(CT

r Cr) (4)

is valid [42], where CH denotes the Hermitian of C, i.e., the conjugated transpose. Utilizing (3),

the matrix addition (and subtraction) S = U +V , where U and V denote complex matrices, as

well as the related complex matrix multiplication (and division) W = U ·V , can isomorphically

be represented by the real-valued addition Sr = U r + V r and the real-valued multiplication

W r = U r · V r, respectively.

2) Quaternions: The set of quaternions1 [25], [39]

H = {q = q{1}︸︷︷︸
q(1)+q(2)i

+ q{2}︸︷︷︸
q(3)+q(4)i

j | q{1}, q{2} ∈ C}

= {q = q(1) + q(2) i + q(3) j + q(4) k |

q(1), q(2), q(3), q(4) ∈ R}

(5)

extends the set of complex numbers by an additional complex-valued component which is

multiplied by the imaginary unit j. Hence, four real-valued components are present, where

the real part of a quaternion reads Re{q} = q(1) and its imaginary part is represented by the

3-tuple Im{q} = (q(1), q(2), q(3)). The related imaginary quaternion units are given as i, j, and

1In honor of Sir William Rowan Hamilton, the set of quaternions is denoted by H.
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TABLE I

HAMILTON EQUATIONS [39] FOR THE PRODUCT u · v, WHERE u AND v ARE QUATERNION UNITS, I.E., u, v ∈ {1, i, j, k}.

u

v
1 i j k

1 1 i j k

i i −1 +k −j

j j −k −1 +i

k k +j −i −1

k = i j. The relations between these units are described by the Hamilton equations [39], which

are stated in Table I.

From Table I, it becomes apparent that the multiplication of two quaternions is—in general—

not commutative. Consequently, the quaternions do not form a field but only a skew field, i.e.,

they fulfill all conditions which are required to form a field—except for the commutativity of

the multiplication.

By analogy with complex numbers, the conjugate of a quaternion q ∈ H is given as q∗ =

q(1) − q(2) i − q(3) j − q(4) k. Its absolute value is uniquely defined by |q| =
√
qq∗ =

√
q∗q =√

(q(1))2 + (q(2))2 + (q(3))2 + (q(4))2. Moreover, additions (and subtractions) are performed in-

dividually per component. The (non-commutative) multiplication of two quaternions u, v ∈ H is

expressed as [39]

u · v = (u(1)v(1) − u(2)v(2) − u(3)v(3) − u(4)v(4))

+ (u(1)v(2) + u(2)v(1) + u(3)v(4) − u(4)v(3)) i

+ (u(1)v(3) − u(2)v(4) + u(3)v(1) + u(4)v(2)) j

+ (u(1)v(4) + u(2)v(3) − u(3)v(2) + u(4)v(1)) k ,

(6)

i.e., 16 multiplications and 12 additions/subtractions are required. Alternatively, this multiplica-

tion can be realized using eight multiplications and 28 additions/subtractions [44]. The division

can be implemented via the multiplication with the inverse element v−1 = v∗ · (v∗v)−1, where

this choice ensures that vv−1 = 1 (right inverse) and v−1v = 1 (left inverse).

Similar to the real-valued representation of complex matrices, the quaternion-valued arithmetic

defined in (6) can be realized by the equivalent complex- or real-valued matrix representation.
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In particular, an N ×K matrix M ∈ HN×K can be represented as 2N × 2K complex-valued

matrix3

M c =

 M {1} −M {2}

(M {2})∗ (M {1})∗


=

M (1) +M (2)i −M (3) −M (4)i

M (3) −M (4)i M (1) −M (2)i

 ,

(7)

where (7) directly corresponds to (3), with the only difference that an additional conjugation

has to be performed in the second row. In (3), this step is not required since only real numbers

are present. By plugging (7) into (3), i.e., by forming the real-valued representation of the

complex matrix M c, one would obtain one particular real-valued 4N×4K representation of the

quaternion-valued matrix M . However, for the subsequent system model, it is more convenient

to form a real-valued representation according to2

M r =


M (1) −M (2) −M (3) −M (4)

M (2) M (1) −M (4) M (3)

M (3) M (4) M (1) −M (2)

M (4) −M (3) M (2) M (1)

 , (8)

in which the four components are directly stacked in the left-most column. Here, if N ≥ K, we

have3

det(MHM ) =

√
det(MH

cM c) =
4

√
det(MT

r M r) , (9)

MH denoting the Hermitian (conjugated transpose) of M .

B. Integer Rings

The set of integers

Z = {. . . ,−2,−1, 0, 1, 2, . . . } (10)

2In particular, the complex- and real-valued representations (7) and (8), respectively, are not unique. There exist several

representations that differ in the positions of the minus signs within the matrices M c and M r, see, e.g., [25], [45], [46].

However, all these representations isomorphically express the quaternion-valued multiplication (division) according to (6).
3 Due to the skew-field property, quaternion-valued determinants do not necessarily posses all properties which are known

from real or complex ones. However, for Hermitian matrices (here, MMH), they can, to a large extent, be deployed just like

real or complex determinants, cf. [45].
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forms a subset of the real numbers R and additionally a Euclidean ring. Hence, for u, σ, v, ρ ∈ Z

and v 6= 0, a division u/v with small remainder according to4

u = σ · v + ρ , (11)

is possible, where the term small remainder implicates that |ρ| < |v| is valid [47, Def. 2.5].

Consequently, the Euclidean algorithm [48] can be used to calculate the greatest common divisor

(gcd) of two numbers u, v ∈ Z. The squared minimum distance between the elements of Z reads

d2
min,Z = 1.

A real number r ∈ R is quantized to its nearest integer via

QZ{r} = bre ∈ Z , (12)

i.e., by a simple rounding operation b·e, where ties are resolved towards +∞. The squared

maximum quantization error occurs for all half-integer values (Z + 1
2
) and is given as ε2Z =

|QZ{1
2
}− 1

2
|2 = 1

4
. The related (non-square) error corresponds with the maximum of the remainder

in (11), i.e., we have |ρ| < 1
2
< |v|, since |v| ≥ 1 ∀v ∈ Z \ {0}. Based on the quantization (12),

the modulo function

modZ{r} = r −QZ{r} (13)

yields a congruent point r + λ, λ ∈ Z located within [−1
2
, 1

2
), forming the Voronoi cell of Z

w.r.t. the origin [22], [25].

1) Complex-Valued Integer Rings: Integers in the complex plane are represented by the

Gaussian integers [24], [25], [49]

G = {c = c(1) + c(2)i | c(1), c(2) ∈ Z} = Z + Z i . (14)

They are illustrated in Figure 1 (left). The squared minimum distance between the elements

reads d2
min,G = 1. The quantization of a complex number c ∈ C to G is performed as

QG{c} = bc(1)e+ bc(2)e i ∈ G , (15)

where the squared maximum quantization error sums up to ε2G = |QG{1
2

+ 1
2
i} − (1

2
+ 1

2
i)|2 = 1

2
.

The modulo operation modG{c} = c−QG{c} reduces a complex number c to the Voronoi cell

of G (w.r.t. the origin), which forms a square in the complex plane where all values are located

within the range [−1
2
, 1

2
) per component.

4We assume that negative remainders may occur, i.e., the modulo operation defined in (13) is assumed to be symmetric

w.r.t. the origin.
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−1 0 1

−1

0

1

dmin = 1

G

c(1) −→

c(
2
)
−→

−1 0 1
d
m
in

=
|ω
|
=

1

E2

E1

c(1) −→

Fig. 1. Illustration of the Gaussian integers G (left) and the Eisenstein integers E (right). For the Eisenstein integers, the two

subsets E1 (filled circles) and E2 (hollow circles) are shown.

The Eisenstein integers [25], [33]

E = {c = c(1) + c(2)ω | c(1), c(2) ∈ Z} = Z + Zω , (16)

with the Eisenstein unit ω = e
2π
3

i (third root of unity), represent the hexagonal numbers (A2

lattice [25]) in the complex plane, cf. Fig. 1 (right). Without a decrease in minimum distance

(d2
min,E = 1), the elements are more densely packed (particularly, the densest packing in two-

dimensions is achieved [22], [25]). The quantization is realized as [25], [50]

QE{c} = argmin
QE1{c},QE2{c}

{|c−QE1{c}|, |c−QE2{c}|} , (17)

QE1{c} = QZ
{
c(1)
}

+
√

3 QZ

{
c(2)

√
3

}
i , (18)

QE2{c} = QZ

{
c(1) − 1

2

}
+

1

2
+(

√
3 QZ

{
c(2) −

√
3

2√
3

}
+

√
3

2

)
i , (19)

i.e., by performing a quantization to the subsets E1 (filled circles in Fig. 1 (right)) and E2 (hollow

circles) and a subsequent decision to the point which is located closer to the original value c ∈ C.

The squared maximum quantization error reads ε2E = 1
3
, cf. [2], [22], [25]. The modulo operation

modE{c} = c − QE{c} calculates a point c + λ, λ ∈ E , located within the hexagonal Voronoi

cell of E w.r.t. the origin.
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Both Gaussian and Eisenstein integers form Euclidean rings [51]. Due to the maximum

quantization errors, for the former, |ρ| < 1√
2
< |v|, with |v| ≥ 1 ∀v ∈ G \ {0}, is valid if the

division with remainder according to (11) is performed over G. For the latter, |ρ| < 1√
3
< |v|,

with |v| ≥ 1 ∀v ∈ E \{0}, holds. A division with small remainder can be performed by analogy

with (11) and, thus, it is possible to define a Euclidean algorithm over Gaussian and Eisenstein

integers.

2) Quaternion-Valued Integer Rings: With regard to the set of quaternions H, two important

subsets, in particular integer rings, can be defined. The first type are the Lipschitz integers

L = {q = q(1) + q(2)i + q(3)j + q(4)k

| q(1), q(2), q(3), q(4) ∈ Z}

= Z + Z i + Z j + Z k ,

(20)

i.e., following the philosophy of the Gaussian integers, integer values are present in each of the

four components. A two-dimensional projection of the Lipschitz integers is illustrated in Fig. 2

(left). Again, the squared minimum distance reads d2
min,L = 1. The quantization of a quaternion

q ∈ H to the closest Lipschitz integer is realized by

QL{q} = bq(1)e+ bq(2)e i + bq(3)e j + bq(4)e k ∈ L . (21)

The modulo operation reads modL{q} = q − QL{q}, where the Voronoi region constitutes a

hypercube with the range [−1
2
, 1

2
) per component. The squared maximum quantization error is—

in comparison to the Gaussian integers—increased to ε2L = |1
2

+ 1
2
i + 1

2
j + 1

2
k|2 = 1. A direct

consequence thereof is that the division with remainder according to (11), with u, σ, v, ρ ∈ L,

is not a Euclidean one any more [39]: Here, the case uv−1 ∈ L + (1 + i + j + k)/2 may

occur. Then, for the absolute value of the remainder, |ρ| = |(1 + i + j + k)/2| = 1 ≤ |v|, with

|v| ≥ 1 ∀v ∈ L \ {0}, is obtained. Hence, |ρ| = |v| may be present, i.e., the inequality required

to ensure a small remainder is, in general, not achieved. Thus, it is not possible to define a

Euclidean algorithm in order to calculate the gcd of two Lipschitz integers u, v ∈ L.

Nevertheless, the non-Euclidean property of the Lipschitz integers can be “cured” by the

insertion of additional points at the problematic coordinates—the half-integer values located at

L + (1 + i + j + k)/2. Then, as depicted in Fig. 2 (right), the so-called Hurwitz integers [25],

[39]
H =

{
q = q(1) + q(2)i + q(3)j + q(4)k |

(q(1), q(2), q(3), q(4)) ∈ Z4 ∪
(
Z +

1

2

)4} (22)
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−1 0 1

−1

0

1

dmin = 1

L

q(1), (q(3)) −→

q(
2
)
,
q(

4
)
−→

−1 0 1

dm
in
=

√ 4(
1
2
)
2
=
1

H1

H2

q(1), (q(3)) −→

Fig. 2. Two-dimensional projection of the Lipschitz integers L (left) and the Hurwitz integers H (right). The components q(3)

and q(4) are projected onto q(1) and q(2), respectively. For the Hurwitz integers, the two subsets H1 (filled circles) and H2

(hollow circles) are shown.

are obtained, where all components are—at the same time—either integers or half-integers. In

particular, the number of points (in quaternion space) is doubled within the same hypervolume—

without a decrease in (squared) minimum distance, which still reads d2
min,H = 1. They form the

densest packing in four-dimensional space [25], as will be discussed in Sec. II-C. The squared

maximum quantization error reads ε2H = |1
4

+ 1
4
i + 1

4
j + 1

4
k|2 = 1

2
, i.e., for the division with

remainder according to (11), we have |ρ| = 1√
2
≤ |v|, with |v| ≥ 1 ∀v ∈ H \ {0}. As a

consequence, a Euclidean ring is present and a related Euclidean algorithm can be applied.

Thereby, similar to the Eisenstein integers in (17), the quantization is performed as [25], [50]

QH{q} = argmin
QH1

{q},QH2
{q}
{|q −QH1{q}|, |q −QH2{q}|} , (23)

QH1{c} = QL {q} , (24)

QH2{c} = QL{q − oH}+ oH , oH =
1 + i + j + k

2
. (25)

Hence, both a quantization to all Lipschitz integers (filled circles in Fig. 2 (right)) and a

quantization to all Lipschitz integers shifted by 1
2

per component (hollow circles) is done;

subsequently, the closest result is chosen as the quantized value. The modulo reduction is, again,

described as modH{q} = q−QH{q}. The points are reduced to the Voronoi cell located around

the origin which forms a 24-cell with 24 vertices, 96 edges, and 96 faces [25].
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C. Generalized Definition of Lattices

A lattice Λ forms an infinite set of points that are distributed over the Euclidean space in such

a way that an Abelian group w.r.t. addition is present [22], [25], [52]. An N -dimensional lattice

of rank K, with N ≥ K, can be defined by

Λ(G) =
{
Gζ =

∑K

k=1
gkζk | ζk ∈ I

}
, (26)

whereG = [g1, . . . , gK ] denotes the N×K generator matrix of the lattice, and ζ = [ζ1, . . . , ζK ]T

an integer vector with elements drawn from the constituent integer ring I.

Most often, lattices over the real numbers are considered, i.e., I = Z and G ∈ RN×K are

assumed. Nevertheless, the generalized definition of lattices in (26) enables the construction of

lattices over complex numbers, where G ∈ CN×K . Here, both the integers rings I = G and I = E

are suited. Moreover, lattices over the quaternions, with G = HN×K , can be defined based on

the Lipschitz integers (I = L) or the Hurwitz integers (I = H) as the constituent integer ring.

The basis of a lattice is not unique. Instead, there exists an infinite number of generator

matrices that span the same lattice. The transformation to an alternative generator matrix can be

realized by the multiplication with a unimodular integer matrix T ∈ IK×K according to

Gred = GT , with det(T HT ) = 1 . (27)

The alternative generator matrix is often called reduced matrix, since by means of lattice reduc-

tion algorithms, a matrix is constructed that fulfills some desired quality criteria. Noteworthy, if

the unimodularity constraint is relaxed to the full-rank constraint rank(T ) = K, sublattices of

the original lattice with the order
√

det(TT H) may be obtained [2], [19].

In order to evaluate the quality of a lattice basis, the length (norm) of the basis vectors

g1, . . . , gK is often assessed. The Euclidean norm of a vector v over R, C, or H is given as

‖v‖ =
√
vHk v . (28)

Another quality criterion is the orthogonality defect [22], [25]

Ω(G) =

∏K
k=1 ‖gk‖

vol(Λ(G))
(29)

of a lattice basis which is given as the product of the basis vectors over the volume of (a Voronoi

cell of) the lattice

vol(Λ(G)) =

√
det(GHG) . (30)

Thereby, the volume is the same for all generator matrices that span the same lattice [22], [25].
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1) Real Representation of Complex Lattices: The Gaussian integers are isomorphic to the

two-dimensional real-valued integer lattice Z2 (generator matrix5 G = I2), cf. [25]. Hence,

a complex lattice with generator matrix G ∈ CN×K defined over G, can isomorphically be

expressed by a real-valued lattice (over Z) with the generator matrix Gr according to (3).

Moreover, the Eisenstein integers are isomorphic to the two-dimensional real-valued hexagonal

lattice A2. A real-valued representation of lattices over E is obtained via [2]

Gr,E = Gr︸︷︷︸
(3)

IK −1
2
IK

0K
−
√

3
2
IK


︸ ︷︷ ︸

GE

(31)

where the right-hand-side matrix in (31) represents the generator matrix of the A2 lattice [25].

2) Real and Complex Representation of Quaternion-Valued Lattices: The Lipschitz integers

are isomorphic to the four-dimensional (real-valued) integer lattice Z4 (generator matrix I4). By

analogy with (3), quaternion-valued lattices (over L) can equivalently be expressed by complex-

valued lattices (over G) via the construction of a generator matrix Gc ∈ C2N×2K according

to (7), or by real-valued lattices (over Z) with the corresponding generator matrix Gr ∈ R4N×4K

from (8).

Regarding the Hurwitz integers, an isomorphism to the four-dimensional checkerboard lattice

D4 is present [25]. This isomorphism can be exploited in order to define an equivalent real-

valued representation (over Z) for lattices over H. Here, the equivalent real-valued generator

matrix is obtained as

Gr,H = Gr︸︷︷︸
(8)


IK 0K 0K

1
2
IK

0K IK 0K
1
2
IK

0K 0K IK
1
2
IK

0K 0K 0K
1
2
IK


︸ ︷︷ ︸

GH

∈ R2N×2K (32)

by incorporating the generator matrix of the D4 lattice.6 In the same way, an equivalent complex-

5IK denotes the K ×K identity matrix and 0K the K ×K all-zero matrix (all elements are 0).
6In particular, the generator matrix of the lattice dual to D4 is employed, that actually corresponds to a version of the

orignal D4 lattice that is scaled by a factor of 1
2

. This is possible since D4 and its dual lattice form an isomorphism [25].

Using that strategy, the resulting points directly correspond to the set of Hurwitz integers (with half-integer values).
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valued representation (over G) is realized by using the generator matrix

Gc,H = Gc︸︷︷︸
(7)

IK (1
2

+ 1
2

i)IK

0K (1
2

+ 1
2

i)IK

 ∈ C2N×2K . (33)

III. ALGORITHMS FOR GENERALIZED LATTICE PROBLEMS

In this section, algorithms that are suited to (approximately) solve particular lattice problems are

reviewed and generalized to all real-, complex-, and quaternion-valued integer rings I that were

considered above.

A. Lattice Basis Reduction and the LLL Algorithm

The task of lattice basis reduction is to find a more suited basis Gred =
[
gred,1, . . . , gred,K

]
for

the representation of the lattice spanned by the (unreduced) generator matrix G. In particular,

for generalized lattices, a unimodular integer matrix T =
[
t1, . . . , tK

]
∈ IK×K according to (27)

has to be found in such a way that particular quality criteria are fulfilled.

To assess when a lattice basis is reduced, several different criteria can be defined. One is the

minimization of the orthogonality defect (29), i.e., the optimality criterion reads

T = argmin
T∈IK×K

det(T HT )=1

Ω(GT ) = argmin
T∈IK×K

det(T HT )=1

∏K
k=1 ‖gred,k‖

vol(Λ(G))
. (34)

Hence, the norms of all basis vectors are incorporated. An alternative approach is to consider

the lengths of these vectors individually, e.g., ‖gred,1‖. The minimization of the maximum norm

among the basis vectors is particularly known under the name shortest basis problem (SBP) and

described by

T = argmin
T∈IK×K

det(T HT )=1

max
k=1,...,K

‖Gtk‖2 . (35)

The most popular lattice-basis-reduction algorithm was derived by Lenstra, Lenstra, and

Lovász in [6]. It was initially proposed for the real-valued case (I = Z). The algorithm is

suboptimal w.r.t. the above-mentioned lattice-basis-reduction criteria, i.e., it only approximates

the respective optimization problems. Nevertheless, for LLL reduction, a polynomial asymptotic

complexity is ensured (over K), whereas for the solutions to the problems (34) and (35) an

exponential complexity is required, cf., e.g., [13], [53]. Moreover, it is possible to derive certain

performance guarantees (i.e., bounds) for LLL reduction. More details will be provided in

Sec. IV.
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In the following, the concept of LLL reduction will be generalized to lattices over real,

complex, or quaternion-valued integer rings. To this end, generalized variants of the reduction

criteria as well as the reduction algorithm will be given.

1) Gram–Schmidt Orthogonalization: The LLL reduction and its related criteria operate on

the Gram–Schmidt orthogonalization (GSO) [54] of the generator matrix7

QR = GP . (36)

In particular,Q =
[
q1, . . . , qK

]
forms an N×K matrix with orthogonal columns, andR =

[
rk,l
]
,

k = 1, . . . , K, l = 1, . . . , K, an upper triangular K×K matrix with unit main diagonal (rk,k = 1,

k = 1, . . . , K). The K ×K matrix P (permutation matrix with a single 1 per column and row

and all other elements equal to 0) can be used to sort the Gram-Schmidt vectors in Q according

to their length during the orthogonalization process (known as pivoting).

The GSO procedure8 is presented in Algorithm 1. In every step k = 1, . . . , K, the pivoting

is performed first, i.e., the shortest of the remaining columns qk, . . . , qK is inserted at position

k (and removed at its original position). Afterwards, the remaining columns are projected onto

the orthogonal complement of qk. In contrast to other implementations, e.g., [23], [54], all

multiplications are defined in such a way that the non-commutative behavior of quaternion-

valued numbers is taken into account. Hence, the procedure can be used for real, complex, or

quaternion-valued numbers.

2) Generalized LLL Reduction Criteria: In the initial publication on real-valued LLL (RLLL)

reduction, an LLL-reduced basis has been defined w.r.t. two conditions.

Definition 1 (Real-Valued LLL Reduction [6]). A real-valued generator matrix G ∈ RN×K with

its related Gram-Schmidt matrices QR = G is called LLL-reduced, if

1) R is size-reduced, i.e., if

|rl,k| ≤
1

2
, 1 ≤ l < k ≤ K , and if (37)

2) the Lovász condition

‖qk‖2 ≥ (δ − |rk−1,k|2) · ‖qk−1‖2 (38)

7The matrices Q and R often describe the QR decomposition of a matrix, in which Q is usually assumed to be a unitary

matrix (QHQ = I). Given the GSO (without normalization), the column norms of Q are then absorbed in R (non-unit main

diagonal). In this work, we assume that the matrix Q does not have to be unitary but that R is a matrix with unit main diagonal.
8To simplify the notation, we denote the selection of the elements with index k, . . . , l of a vector g by gk:l. Within a

matrix G, the selection of the rows k, . . . , l and the columns m, . . . , n is denoted as Gk:l,m:n.
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Algorithm 1 Gram–Schmidt Orthogonalization with Pivoting.
[Q,R,P ] = GSO(G)

1: Q = G, R = IK , P = IK

2: for k = 1, . . . ,K do

3: km = argminl=k,...,K ‖ql‖

4: if km 6= k then . pivoting

5: Q = [q1:k−1, qkm
, qk:km−1, qkm+1:K ]

6: P = [p1:k−1,pkm
,pk:km−1,pkm+1:K ]

7: In the upper k − 1 rows of R (index 1 : k − 1):

R = [r1:k−1, rkm
, rk:km−1, rkm+1:K ]

8: end if

9: for l = k + 1, . . . ,K do . orthogonalization

10: rk,l = q
H
kql · ‖qk‖−2

11: ql = ql − qkrk,l
12: end for

13: end for

is fulfilled, where δ denotes a quality parameter that defines a trade-off between the quality

of the reduction and the runtime of the algorithm. The Lovász condition can be checked if

rk−1,k is size-reduced and if 0 < (δ− |rk−1,k|2) ≤ 1. Hence, as |rk−1,k|2 ≤ 1
4
, a parameter

δ ∈ (1
4
, 1] leads to a valid result [6], [55]. Often, the parameter δ = 3

4
is chosen (standard

parameter).

The LLL algorithm as proposed in [6] can be interpreted to form some kind of Euclidean

algorithm for matrices. In particular, the size reduction is performed by a modulo reduction

according to (13), i.e., by a (Euclidean) division as defined in (11) with the divisor v = 1, where

the resulting remainder rl,k = ρ is a small remainder since |rl,k| ≤ 1
2
< |v| = 1.

In [51], the possibility to extend the concept of LLL reduction to Euclidean rings other than

Z, particularly to G, E , and H, was mentioned first. More precisely, since the Lovász condition

only incorporates norms of vectors, it is generally valid for Euclidean rings. In contrast, the size-

reduction condition has to be adapted to the particular ring. In [51], it was set to |rk−1,k| ≤ α,

with α = 1
2

for Gaussian, α = 1
3

for Eisenstein, and α = 1
2

for Hurwitz integers, by analogy to

the “standard parameter” δ = 3
4

for RLLL reduction. In [23] it was found out that this condition
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is actually too unspecific. Here, for complex LLL (CLLL) reduction over G,

|Re{rl,k}| ≤
1

2
∩ |Im{rl,k}| ≤

1

2
(39)

was postulated, i.e., |rl,k| ≤ 1√
2
, and, thus, δ ∈ (1

2
, 1].

Taking advantage of the particular interpretation of the size-reduction operation to form a

Euclidean algorithm for matrices, generalized LLL reduction criteria can be defined.

Definition 2 (Generalized LLL Reduction). A generator matrix G with Gram-Schmidt matrices

QR = G that spans a lattice over the Euclidean integer ring I is LLL-reduced over I, if

1) R is size-reduced according to

QI{rl,k} = 0 , 1 ≤ l < k ≤ K , and if (40)

2) the respective Lovász condition

‖qk‖2 ≥ (δ − |rk−1,k|2) · ‖qk−1‖2 (41)

is fulfilled. The quality parameter can be chosen from the range

δ ∈ (ε2I , 1] . (42)

Remark. Since, after size reduction, QI{rl,k} = 0 is valid, rl,k forms the remainder ρ of the

division with the divisor v = 1 as defined in (11). If I is a Euclidean ring, |rl,k| ≤ εI <

|v| = 1, i.e., a small remainder is present. Hence, the Lovász condition becomes operative if

0 < (δ − ε2I ) ≤ 1, i.e., if δ ∈ (ε2I , 1].

A generalization of the size-reduction operation from [6], [23] is provided in Algorithm 2—

given the (reduced) basis Gred, its related matrix R, the transformation matrix T , the indices

l and k, and the integer ring I as input variables. For lattices over Z and G, the operations

are equivalent to the ones defined in the RLLL algorithm [6] and the CLLL algorithm [23],

respectively. However, the generalized definition also enables an LLL reduction over E and H

(and other Euclidean rings).

Given the generalized size-reduction condition from Definition 2, the particular ranges for the

choice of δ can be defined. For the Eisenstein integers, δ ∈ (1
3
, 1] is valid since ε2E = 1

3
, cf. [2].

For the Hurwitz integers, δ ∈ (1
2
, 1], as ε2H = 1

2
. Since the Lipschitz integers do not form a

Euclidean ring, an LLL reduction over L can—in general—not be defined. This can be seen if
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Algorithm 2 Generalized Size Reduction.
[Gred,R,T ] = SIZERED(Gred,R,T , l, k, I)

1: rq = QI{rl,k}

2: if rq 6= 0 then

3: gred,k = gred,k − gred,l rq
4: tk = tk − tl rq
5: In the upper l rows of R (index 1 : l):

rk = rk − rl rq
6: end if

the squared maximum quantization error ε2L is inserted into the Lovász condition: even when

δ = 1, δ − |rk−1,k|2 = 0 if |rk−1,k| = 1, i.e., the reduction may become inoperative.

Given complex and quaternion-valued matrices, the reduction can alternatively be performed

w.r.t. their equivalent real- and real-/complex-valued matrix representations, as defined in (3), (8),

and (7). Then, the reduction has to be done with real-valued and/or complex-valued algorithms.

However, during the GSO, the particular structure of these matrices (and the isomorphism) is

destroyed, i.e., the resulting reduced basis and the related integer matrix cannot be reconverted

into equivalent complex/quaternion-valued representations, see also [2]. Consequently, the quality

of the reduction will not necessarily be the same in the different representations. More details

will be given in Sec. IV.

3) Generalized LLL Reduction Algorithm: In Algorithm 3, a generalized variant of the LLL

algorithm is provided. In contrast to other implementations, e.g., in [23], all multiplications are

performed in the right order to account for non-commutative behavior. In particular, in the first

line, a GSO with pivoting is calculated. The pivoting is not necessarily required, but it is well-

known that sorted Gram-Schmidt vectors may speed up the following reduction process [56]. In

the loop, the size reduction for the element rk−1,k (over the particular ring I) is done first. Then,

the respective Lovász condition can be checked. If it is not fulfilled, the columns k−1 and k are

swapped in Gred and the (unimodular) transformation matrix T . As a consequence, the matrices

Q and R have to be updated. This can either be done by a complete recalculation of the GSO,

or by the procedure in Algorithm 4 that restricts the recalculation to all elements which have

to be updated. It is an adapted variant of the procedure in [23], additionally taking the right

order of all multiplications into account. If the check of the Lovász condition is successful, the
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Algorithm 3 Generalized LLL Reduction.
[Gred,Q,R,T ] = LLL(Gred, δ, I)

1: [Q,R,T ] = GSO(G) . initial GSO with pivoting

2: k = 2

3: while k ≤ K do

4: [Gred,R,T ] = SIZERED(Gred,R,T , k − 1, k, I)

5: if ‖qk‖2 < (δ − |rk−1,k|2) · ‖qk−1‖2 then . swap

6: Gred = [gred,1:k−2, gred,k, gred,k−1, gred,k+1:K ]

7: T = [t1:k−2, tk, tk−1, tk+1:K ]

8: [Q,R] = UPDATEQR(Q,R, k)

9: k = max(2, k − 1)

10: else . Lovász condition fulfilled

11: for l = k − 2, k − 3, . . . , 1 do

12: [Gred,R,T ] = SIZERED(Gred,R,T , l, k, I)

13: end for

14: k = k + 1

15: end if

16: end while

elements rl,k, l = k − 2, k − 3, . . . , 1, are finally reduced and the algorithm continues with the

next reduction step until k = K.

4) Pseudo-QLLL Reduction: Even though an LLL reduction over the Lipschitz integers can—

due to the non-existent Euclidean property—not be defined in general, a pseudo-QLLL reduction

can be defined instead. In particular, the reduction only becomes inoperative if |rk−1,k| = 1.

Hence, choosing δ = 1, the LLL algorithm can be applied if the probability that |rk−1,k| = 1

tends to zero.

Such a case is, e.g., present if the elements of the generator matrix are drawn i.i.d.ly from

a continuous distribution (e.g., an i.i.d. Gaussian one). Then, if the quantization in the size-

reduction steps is performed w.r.t. I = L and if additionally the parameter δ = 1 is chosen, a

pseudo-QLLL-reduced basis obtained. Obviously, no general performance guarantees or bounds

can be derived in that case—however, it is at least ensured that the Lovász condition is still

operative and that, thus, some kind of “optimized” basis is produced.
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Algorithm 4 GSO update if columns k and k − 1 are swapped.
[Q,R] = UPDATEQR(Q,R, k)

1: q̃k−1 = qk−1, q̃k = qk, R̃ = R . temporal variables

2: qk−1 = qk + qk−1rk−1,k

3: rk−1,k = r∗k−1,k · ‖q̃k−1‖2 · ‖qk‖−2

4: qk = q̃k−1 − qk−1rk−1,k
5: for l = k + 1, . . . ,K do

6: rk−1,l = rk−1,krk−1,l + rk,l · ‖q̃k‖2 · ‖qk−1‖−2

7: rk,l = r̃k−1,l − r̃k−1,krk,l
8: end for

9: for l = 1, . . . , k − 2 do

10: rl,k−1 = rl,k

11: rl,k = r̃l,k−1

12: end for

B. Shortest Independent Vectors in Lattices

Another important lattice problem is the determination of the shortest linearly independent

vectors in lattices. They are related to the so-called successive minima. In particular, the kth

successive minimum of a lattice with N ×K generator matrix G, k = 1, . . . , K, is defined as

[5], [57]

µk = inf{µ | dim{span{Λ(G) ∩ BN(µ)}} = k} , (43)

where BN(µ) denotes the N -dimensional ball with hyperradius µ centered at the origin. In words,

µk denotes the smallest radius in which K linearly independent vectors can be found within the

hyperball. The related lattice points with

µk = ‖λm,k‖ , k = 1, . . . , K , (44)

form the K linearly independent vectors with the shortest (Euclidean) norms.

Closely related to the successive minima problem (SMP)—the determination of the shortest

vectors in a lattice—is the shortest independent vector problem (SIVP). Here, only the maximum

of the norms has to be short as possible, cf. the SBP in (35). Hence, the (generalized) SIVP is

a weakened variant of the successive minima problem and defined as

T = argmin
T∈IK×K

rank(T )=K

max
k=1,...,K

‖Gtk‖2 . (45)
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Obviously, every optimal solution for the successive minima problem is also optimal w.r.t. the

SIVP [28], [58].

As becomes apparent from (45), the K independent lattice vectors do not necessarily form a

basis of the lattice spanned by G. In particular, if the K integer vectors tk are combined into

the integer transformation matrix T =
[
t1, . . . , tK

]
, the transformed generator matrix Gtra =

GT may only define a sublattice of the original one: the integer vectors tk are only required

to be linearly independent, but they do not have form a unimodular transformation matrix in

combination. Hence, T may only have full rank, resulting in a “thinned” lattice when multiplied

by G, depending on the particular determinant det(T ). Further details can be, e.g., be found in

[2], [19]. Consequently, the successive minima can be used as lower bounds for the norms of the

basis vectors of any (alternative) basis for a lattice spanned by a particular generator matrix G.

1) Generalized Successive Minima: Even though the successive minima have initially been

considered for real-valued lattices over Z, e.g., in [5], [57], it is quite obvious that they can

also be determined if other integer rings I are present. The only condition is that the shortest

K linearly independent lattice vectors are found—no additional constraints as, e.g., a Euclidean

property of the particular ring are imposed. Hence, the successive minima can be given for all

real-, complex-, or quaternion-valued rings that were considered in Sec. II.

In contrast to LLL reduction, the isomorphism of a complex matrixG (over G) and its 2N×2K

real-valued representation Gr according to (3) holds for the successive minima, cf. [28]. The

same is valid for quaternion-valued matrices (over L) and their equivalent representations Gc

and Gr, respectively.

Theorem 1 (Successive Minima of Complex and Quaternionic Lattices over G and L). Given a

generator matrix G ∈ CN×K for which the successive minima over I = G are given as

µG =
[
µ1, µ2, . . . , µK ] ∈ RK , (46)

the 2K successive minima of Gr (over I = Z) read

µr,Z =
[
µ1, µ1, µ2, µ2, . . . , µK , µK

]
. (47)

Given a generator matrix G ∈ HN×K for which the successive minima over I = L are given

as

µL =
[
µ1, µ2, . . . , µK ] , (48)
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the 2K successive minima of Gc (over I = G) are given as

µc,G =
[
µ1, µ1, µ2, µ2, . . . , µK , µK

]
(49)

and the 4K successive minima of Gr (over I = Z) read

µr,Z =
[
µ1, µ1, µ1, µ1, . . . , µK , µK , µK , µK

]
. (50)

Proof. Given the equivalent real-valued representation of complex matrices Gr according to (3),

pairs of orthogonal (and, thus, linearly independent) column vectors occur at the indices l and

l + K, which additionally posses the same norm ‖gr,k‖ = ‖gr,k+K‖ = ‖gk‖, k = 1, . . . , K.

Hence, each lattice vector in Λ(Gr) has an orthogonal counterpart with the same length; both

of them isomorphically represent one lattice vector of Λ(G) over G (with the same norm). As a

consequence, for Gr, pairs of linearly independent lattice vectors λm,k and λm,k+1 are obtained

that yield successive minima with the same value, i.e., µk = µk+1, k = 1, 3, . . . , 2K − 1.

For quaternion-valued matrices (over L) similar relations hold: In the equivalent complex-

valued representation (7), pairs of orthogonal column vectors are present, for which ‖gc,k‖ =

‖gc,k+K‖ = ‖gk‖, k = 1 . . . , K, is valid. In the equivalent real-valued representation (8), we have

orthogonal vectors with ‖gr,k‖ = ‖gr,k+K‖ = ‖gr,k+2K‖ = ‖gr,k+3K‖ = ‖gk‖. Hence, for the

former, we obtain µk = µk+1, k = 1, 3, . . . , 2K−1, and for the latter, µk = µk+1 = µk+2 = µk+3,

k = 1, 5, . . . , 4K − 3, is valid.

For complex and quaternion-valued lattices over G and L, respectively, the successive minima

and the related lattice points and integer vectors are isomorphically obtained by solving the

problem via their real-valued and/or complex-valued representations. Hence, a permutation of

the real or complex integer vectors can be found such that an integer transformation matrix T r or

T c is formed that possesses the particular structure defined in (3), (7), or (8). Then, this matrix

can be reconverted to a complex or quaternion-valued representation, see also [2, Example 4.3].

Both the “direct” determination of the successive minima over C or H, and their “indirect”

determination over R or C, finally lead to the same result.

For complex-valued lattices defined over the Eisenstein integers (I = E), an equivalent real-

valued representation can be formed according to (31). The successive minima problem can then

be solved over Z—given these results, a reconversion can be conducted in order to solve the

problem over E . The same holds for quaternion-valued lattices over I = H, where the successive
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minima problem can equivalently be solved over Z via the representation (32). The reconversion

process will be described below (and, additionally, in Appendix A).

C. Generalized Determination of the Successive Minima

For the determination of the successive minima, a special K-dimensional variant of the

shortest vector problem has to be solved. It is well-known that already the classical shortest

vector problem is NP-hard, i.e., that the computational complexity grows exponentially with the

dimension K. Nevertheless, at least for small dimensions, algorithms have been proposed which

can efficiently solve the shortest vector problem. The most prominent one is the so-called sphere

decoder [13].

To solve the successive minima problem, several algorithms have been proposed within the

last few years [28]–[30]. One possible strategy applied in [28] is to solve the shortest vector

problem K times. Another strategy employed in [29], [30] is to solve an adapted variant thereof

once in the beginning, afterwards only operating on the initial result.

In this work, we address the list-based approach initially proposed in [29] which has been

shown to perform well w.r.t. runtime behavior if moderate dimensions are present (K < 20

in the real-valued case), see also the comparison in [30]. In particular, in that approach, the

sphere decoder [13] is initially applied to generate a list that contains all lattice points within

a hyperball of a predefined search radius. Then, among those candidates, the shortest linearly

independent ones are selected. In the following, this concept is generalized to the real-, complex-,

or quaternion-valued integer rings from Sec. II.

The generalized concept is provided in Algorithm 5. As mentioned above, a list-based variant

of the sphere decoder is initially applied. As the sphere decoder [13] in combination with

Schnorr–Euchner enumeration [8] only operates over real-valued numbers, the generator matrix

G has to be converted to its equivalent real-valued representation (given the integer ring I). This

is done with the procedure RINGTOZ which is listed in Algorithm 6 in Appendix A. For the

list sphere decoder, an initial search radius has to be provided. The naive approach would be

to use the maximum (squared) column norm of Gr as the (squared) radius, since the (squared)

solution to the successive minima problem can never be worse than that value. However, the

search radius (and the related complexity) can significantly be decreased by applying a reduced

basis via the LLL algorithm (Line 2) instead, using the quality parameter δ = 1. Since this call

has a low complexity [55], it is negligible in comparison to the call of the list sphere decoder,
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Algorithm 5 List-Based Determination of Successive Minima.
[Gtra,T ] = SMP(G, I)

1: Gr = RINGTOZ(G, I) . real-valued representation

2:
[
Gred,T LLL

]
= LLL(Gr, 1,Z) . reduced basis

3: Ct = LISTSPHEREDECODER(Gred,maxk ‖gred,k‖2)

4: C = T LLLCt . convert to original basis

5: Cu = ZTORING(C, I) . go back to ring I

6: Cs = SORT(Cu,GCu) . sort w.r.t. norm

7: i = ROWECHELON(Cs) . indices of row-echelon form

8: T =
[
ci1 , . . . , ciK

]
. shortest independent vectors

9: Gtra = GT . transformed generator matrix

which is subsequently applied [13, Algorithm ALLCLOSESTPOINTS]. It results in a matrix of

integer candidate vectors C ∈ ZK×Nc , where Nc denotes the list size. A list of respective

candidate vectors w.r.t. the unreduced basis Gr is subsequently calculated by multiplication with

T LLL (Line 4). The integer candidate vectors over the original ring I are finally obtained by

the procedure ZTORING which is listed in Algorithm 6 in Appendix A. In particular, in that

procedure, the original complex or quaternion-valued representations are reconstructed from the

real-valued ones. In Line 6 of Algorithm 5, the candidate vectors are then sorted in ascending

order w.r.t. their norms. This can be done by a standard sorting algorithm [54]. In the procedure

ROWECHELON, which is listed in Appendix A (Algorithm 7), the matrix of sorted candidate

vectors is transformed to row-echelon form. At the particular indices i =
[
i1, . . . , iK

]
where

a new dimension is established (“steps” in the row-echelon form), the vector resulting in the

kth successive minimum is found as it leads to the shortest vector that is independent from the

previous k−1 ones. The related transformation matrix T is formed in Line 8, and the respective

transformed generator matrix Gtra finally in Line 9.

The reconversion to the original ring I (as performed in Line 5 in Algorithm 5) can alternatively

be performed after the calculation of the matrices T and Gtra (defined over Z and R) takes place.

However, then, for complex and quaternion-valued lattices, the calculation of the row-echelon

form has to be performed over real numbers with the equivalent 2K × 2Nc and 4K × 4Nc

representation of C, respectively.
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IV. GENERALIZED QUALITY BOUNDS AND ASYMPTOTIC COMPUTATIONAL COMPLEXITY

Based on the generalized criteria and algorithms discussed previously, quality bounds are derived

and compared to each other in this section. In addition, the asymptotic complexity of both above-

mentioned (generalized) algorithms is evaluated.

A. Bounds on the Norms

The norms of the basis vectors are suited quantities to assess the quality of a lattice basis.

Since the respective successive minima are given as the norms of the shortest independent

vectors in the particular lattice, they serve as lower bounds on the norms resulting from any

lattice-basis-reduction scheme.

To solve the SIVP (45) and the SBP (35), respectively, it is required that the maximum of

the K norms has to be as small as possible. However, as stated in [59, p. 35], it is generally

not possible to derive bounds for the K th successive minimum and any other of them except

from the first. In particular, µ2, . . . , µK can become arbitrarily large in comparison to the lattice

volume. It is quite obvious that the same holds for the norms of the basis vectors g2, . . . , gK .

Nevertheless, for the first successive minimum µ1 and the related basis vector g1, bounds can

in general be given.

1) First Successive Minimum: Given a real-valued lattice (I = Z) with generator matrix

G ∈ RN×K , the squared first successive minimum is bounded according to Minkowski’s first

theorem [3], [9], [59]

µ2
1,Z ≤ ηK vol

2
K (Λ(G)) , (51)

where the factor ηK , which depends on the particular dimension, is called Hermite’s constant.

It is only known for dimensions up to K = 8 as well as K = 24, cf. [59, Table on p. 33].

However, it has been shown that Hermite’s constant can be upper-bounded by the term [60]

ηK ≤
2

π
Γ

(
2 +

K

2

) 2
K

, (52)

where Γ(x) = (x− 1)! denotes the Gamma function.

For complex and quaternion-valued lattices over G and L, respectively, (51) can straightfor-

wardly be generalized.
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Theorem 2 (Generalized Bounds on the First Successive Minimum for Lattices over G and L).

For complex-valued lattices over I = G with generator matrix G ∈ CN×K , the first successive

minimum is bounded by

µ2
1,G ≤ η2K vol

2
K (Λ(G)) . (53)

For quaternion-valued lattices over I = L with generator matrix G ∈ HN×K , it is bounded

by

µ2
1,L ≤ η4K vol

2
K (Λ(G)) . (54)

Proof. IfG ∈ CN×K , we have µ2
1,G = µ2

1,r,Z, where µ2
1,r,Z denotes the first successive minimum of

the equivalent 2N×2K real-valued representation Gr according to (3), cf. Theorem 1. Moreover,

according to (4) and (30), vol
2

2K (Λ(Gr)) = vol
2
K (Λ(G)).

If G ∈ HN×K , µ2
1,L = µ2

1,r,Z, where µ2
1,r,Z denotes the first successive minimum of the

equivalent 4N × 4K real-valued representation Gr according to (8). Moreover, according to (9),

vol
2

4K (Λ(Gr)) = vol
2
K (Λ(G)).

For lattices over the Eisenstein integers E and the Hurwitz integers H, even better bounds can

be derived.

Theorem 3 (Generalized Bounds on the First Successive Minimum for Lattices over E and H).

For complex lattices defined over the Eisenstein integers E with generator matrix G ∈ CN×K ,

the first successive minimum is bounded as

µ2
1,E ≤

√
3

2
η2K vol

2
K (Λ(G)) . (55)

For quaternion-valued lattices defined over the Hurwitz integers H with generator matrix

G ∈ HN×K , it is bounded by

µ2
1,H ≤

1√
2
η4K vol

2
K (Λ(G)) . (56)

Proof. We can take advantage of the property that for the determinant of the matrix GE in (31),

det(GE) =

(
−
√

3

2

)K

(57)
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is valid. Hence, we obtain

µ2
1,E ≤ η2K vol

2
2K (Λ(Gr,E))

= η2K det
1

2K (GT
r,EGr,E)

= η2K det
1

2K (GT
EG

T
r GrGE)

= | det(GE)|
1
K η2K det

1
2K (GT

r Gr)

(57)
=

√
3

2
η2K vol

2
K (Λ(G)) .

(58)

For lattices over the Hurwitz integers, we have

det(GH) =

(
1

2

)K
, (59)

cf. (32). Consequently, the bound reads

µ2
1,H ≤ η4K vol

2
4K (Λ(Gr,H))

= η4K det
1

4K (GT
r,HGr,H)

= η4K det
1

4K (GT
HG

T
r GrGH)

= | det(GH)|
1

2K η4K det
1

4K (GT
r Gr)

(59)
=

1√
2
η4K vol

2
K (Λ(G)) .

(60)

For lattices over E , the bound (55) is lower than the one for lattices over G in (53) since
√

3
2
≈

0.866. Hence, in general, the first successive minimum is expected to be smaller. Noteworthy,

(55) is a special variant of the bound for lattices over imaginary quadratic fields [61]. Given

quaternion-valued lattices, the bound for H is lowered by a factor of 1√
2
≈ 0.707 in comparison

to the bound for L.

2) First Basis Vector of an LLL Basis: In the initial publication on LLL reduction over I = Z

[6], it has been shown that the squared norm of the first basis vector can be bounded by

µ2
1,Z ≤ ‖g1,Z‖2 ≤ vol

2
K (Λ(G)) ·

(
1

δ − 1/4︸︷︷︸
ε2Z

)K−1
2

. (61)

It is quite clear that the (squared) first successive minimum serves as a lower bound on the

(squared) length of the vector. In the upper bound, the Lovász condition (38) is incorporated, in
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particular the part within the braces. Thereby, the squared maximum quantization error ε2Z = 1
4

serves as an upper bound for the particular value of rl,k (cf. Sec. II and Sec. III).

Theorem 4 (Generalized Bound on the First Basis Vector of an LLL Basis). Given a lattice

with N × K generator matrix G which is LLL-reduced over the particular Euclidean integer

ring I, the first basis vector is bounded as

µ2
1,I ≤ ‖g1,I‖2 ≤ vol

2
K (Λ(G)) ·

(
1

δ − ε2I

)K−1
2

. (62)

Proof. The lower bound is quite obvious, since µ1,I is the norm of the shortest (non-zero) vector

in the lattice. The upper bound is, by analogy with the derivation of the original bound (61) in

[6], derived as follows: Due to the Lovász condition (41),

‖qk‖2 ≤ 1

δ − ε2I
‖qk+1‖2 . (63)

Hence, since in the (unsorted) GSO, q1 = g1,

‖g1,I‖2 ≤
(

1

δ − ε2I

)l−1

‖ql‖2

≤
(

1

δ − ε2I

)K−1

‖ql‖2 , l = 2 . . . , K .

(64)

In addition, as ‖g1,I‖ = ‖q1‖ ≤ ‖ql‖,

‖g1,I‖K ≤
(

1

δ − ε2I

)K(K−1)
2

K∏
k=1

‖qk‖2 (65)

and, since, as stated, e.g., in [6],
∏K

k=1 ‖qk‖2 = vol2(Λ(G)),

‖g1,I‖ ≤
(

1

δ − ε2I

)K−1
2

vol
2
K (Λ(G)) . (66)

3) Comparison of the Bounds: The above upper bounds on the first successive minimum and

the first basis vector of an LLL basis are—normalized to the volume of the lattice—illustrated

in Fig. 3. In particular, in the upper plot, the complex case is considered. In the bottom plot,

quaternion-valued matrices are regarded. To this end, the exact value for Hermite’s constant has

been chosen for all dimensions where it is exactly known; otherwise, the approximation (52)

has been used. For LLL reduction, the (optimal) parameter δ = 1 is assumed.

Considering the first successive minimum, the superiority of lattices over E and H, in com-

parison to lattices over G and L, or their isomorphic real- and complex-valued representations



30

over Z and G, respectively, is clearly visible. For N × 2 matrices, in both the complex and

quaternion-valued case, the LLL-reduced first basis vectors are identical to the respective first

successive minima. This is not a surprise since an LLL reduction with δ = 1 is equivalent to a

Gaussian reduction, cf. [14], [23]. It is quite obvious that this relation does not hold any more

if the LLL reduction is applied to the equivalent 2N × 4 or 4N × 8 isomorphic representations.

When increasing the dimensions, the loss of the LLL approach in comparison to the successive

minima becomes more and more apparent. Among all variants of LLL reduction, given δ = 1,

the QLLL one (I = H) performs the best, followed by the ELLL one (I = E). The RLLL

approach (I = Z) already shows a significant gap, and the CLLL one (I= G) performs the worst.

In Fig. 3, the quality parameter δ = 1 is considered. Still the question remains which type of

LLL reduction is—depending on δ—the best performing one in an asymptotic manner. Given

complex lattices, in [23], it has been shown that independently from the dimension K and the

parameter δ, the RLLL approach performs better than the CLLL one—except for the case when

δ = 3
4
; then, both perform the same. For the sake of completeness, the derivation is provided

in Appendix B and subsequently generalized to the other variants of the LLL algorithm. In

particular, given complex matrices and comparing the bound in (62) for the ELLL approach and

the CLLL one, it becomes apparent that—independently from K, the ELLL approach performs

better as δ − 1
3
> δ − 1

2
. It is shown in Appendix B that if 3/4 − 1/

√
6 < δ ≤ 1, where

3/4 − 1/
√

6 ≈ 1
3
, the ELLL algorithm also leads to a lowered bound when compared with

the RLLL one (independently from K). Hence, in contrast to the CLLL algorithm, the ELLL

approach generally performs better, except from a small range where the quality parameter

asymptotically approaches its lower bound δ = 1
3
.

Given quaternion-valued lattices and comparing the upper bound in (62) with the one for

the CLLL algorithm using the equivalent 2N × 2K complex-valued representation (7), it can

be stated that the QLLL approach performs better as (δ − 1/2)−
K−1

2 < (δ − 1/2)−
2K−1

2 for

K ∈ N. In Appendix B, the comparison is also given with respect to ELLL reduction. Then, the

QLLL strategy generally performs better except from a small range where δ ≈ 1
2
. The QLLL

approach even surpasses the performance of the RLLL one using the equivalent real-valued

representation—here, the superiority holds again for all quality parameters except from δ ≈ 1
2
.



31

2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

3.5

4

4.5

5

G ∈ CN×K

‖g
1
‖/

v
o
l(
G

)
−→

SMP, G (Z)
SMP, E
LLL, G
LLL, E
LLL, Z (2K)

2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

G ∈ HN×K

K −→

‖g
1
‖/

v
o
l(
G

)
−→

SMP, L (G, Z)
SMP, H
SMP, E
LLL, H
LLL, G (2K)
LLL, E (2K)
LLL, Z (4K)

Fig. 3. Upper bounds on the normalized first successive minimum (solid lines) and the normalized first basis vector of an LLL-

reduced basis with parameter δ = 1 (dashed lines) over the dimension K. Top: complex-valued lattices. Bottom: quaternion-

valued lattices.
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B. Bounds on the Product of the Norms

Even though the bounds listed above are restricted to the first vectors, it is possible to gain

some indirect knowledge on the norms of the other vectors. In particular, the product of the

norms can be bounded.

1) Product of the Successive Minima: According to Minkowski’s second theorem [59], [62],

for any L = 1, . . . , K, the product of the first L (squared) successive minima can be bounded

by ∏L

l=1
µ2
l,Z ≤ ηLK vol

2L
K (Λ(G)) . (67)

Since, for L = K, ∏K

k=1
µ2
k,Z ≤ ηKK vol2(Λ(G)) , (68)

a bound for the orthogonality defect (29) of the transformed matrix Gtra,Z = GT Z containing

the shortest independent lattice vectors (cf. Sec. III) is readily obtained.

Theorem 5 (Bound on the Orthogonality Defect of the Shortest Independent Vectors in a

Real-Valued Lattice). The orthogonality defect of the transformed matrix Gtra is upper bounded

by

Ω(Gtra,Z) ≤ η
K
2
K . (69)

Proof. If T Z is unimodular, (69) directly follows from (68) since Λ(Gtra,Z) = Λ(G) is valid. If

T Z is non-unimodular, Λ(Gtra,Z) 6= Λ(G). However, since, then,
√

det(T H
ZT Z) > 1, we have

vol(Λ(Gtra,Z)) > vol(Λ(G)). Consequently,

Ω2(Gtra,Z) =

∏L
l=1 µ

2
l,Z

vol2(Λ(Gtra,Z))
<

∏L
l=1 µ

2
l,Z

vol2(Λ(G))
, (70)

i.e., (69) still follows from (68).

The above bounds can straightforwardly be generalized to complex and quaternionic lattices

over G and L, respectively.

Theorem 6 (Generalized Bounds on the Product of the Successive Minima and the Related

Orthogonality Defect for Lattices over G and L). The generalized bound on the product of the

successive minima for complex lattices over G reads∏L

l=1
µ2
l,G ≤ ηL2K vol

2L
K (Λ(G)) (71)
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and the related orthogonality defect is bounded by

Ω(Gtra,G) ≤ η
K
2

2K . (72)

Generalizing Minkowski’s second theorem to quaternion-valued lattices over L, the bound∏L

l=1
µ2
l,L ≤ ηL4K vol

2L
K (Λ(G)) (73)

is obtained and the bound on the orthogonality defect reads

Ω(Gtra,L) ≤ η
K
2

4K . (74)

Proof. The argumentation can be done equivalently to the ones which are given in the proofs

for Theorem 2 and Theorem 5.

For lattices over E and H, respective bounds are readily obtained by the incorporation of the

particular properties of the matrices defined in (31) and (32), respectively.

Theorem 7 (Generalized Bounds on the Product of the Successive Minima and the Related

Orthogonality Defect for Lattices over E and H). For complex-valued lattices defined over the

Eisenstein integers, the product of the successive minima is bounded by∏L

l=1
µ2
l,E ≤

(√
3

2

)L

ηL2K vol
2L
K (Λ(G)) (75)

and the orthogonality defect by

Ω(Gtra,E) ≤
(

3

4

)K
4

η
K
2

2K . (76)

For quaternion-valued lattices which are defined over the Hurwitz integers,∏L

l=1
µ2
l,H ≤

(
1√
2

)L
ηL4K vol

2L
K (Λ(G)) (77)

is obtained. Here, the orthogonality defect is bounded by

Ω(Gtra,H) =

(
1

4

)K
4

η
K
2

4K . (78)

Proof. Again, the argumentation is performed in an equivalent way to the ones which are given

in the proofs for Theorem 3 and Theorem 5.

When employing complex lattices over E , the upper bound on the orthogonality defect shrinks

by a factor of (3/4)
K
4 in comparison to lattices over G. Thereby, in contrast to the bound on

the first vector in (55), the expected gain grows with the dimension K. For quaternion-valued

lattices over I = H, the gap to the bound over I = L grows by a factor of (1/4)
K
4 over the

dimension K.
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2) Product of the Basis Vectors of an LLL Basis: Bounds for the product of the norms of an

LLL-reduced basis can be derived in a similar way. In particular, it is known that at least the

product over all basis vectors is bounded as [6], [59]

K∏
k=1

µ2
k,Z ≤

K∏
k=1

‖gk,Z‖2 ≤ vol2(Λ(G)) ·
(

1

δ − 1/4

)K(K−1)
2

︸ ︷︷ ︸
≥Ω2(Gred,Z)

. (79)

where the rightmost term represents the squared orthogonality defect of the reduced basis

Gred,Z = GT Z.

By analogy with the generalized bounds for the first basis vector from Sec. IV-A2, generalized

bounds on the product of the norms and the related orthogonality defect can be derived.

Theorem 8 (Generalized Bounds on the Product of the Norms of an LLL-Reduced Basis and its

Related Orthogonality Defect). Given a lattice Λ(G) spanned by the N ×K generator matrix

G, the product of the norms of the basis vectors of an equivalent LLL-reduced matrix Gred,I

obtained over the integer ring I w.r.t. the quality parameter δ is bounded as

K∏
k=1

µ2
k,I ≤

K∏
k=1

‖gk,I‖2 ≤ vol2(Λ(G)) ·
(

1

δ − ε2I

)K(K−1)
2

︸ ︷︷ ︸
≥Ω2(Gred,I)

. (80)

Thereby, the rightmost term defines an upper bound on the squared orthogonality defect of Gred,I.

Proof. The lower bound is readily obtained since µk,I represent the norms of the shortest (non-

zero) vectors in the particular lattice. The upper bound is, similar to the proof for the original

bound (79) in [6], given as follows: After LLL reduction, the kth basis vector can be written as

‖gk,I‖2 = ‖qk‖2 +
k−1∑
l=1

|rk,l|2‖ql‖2

≤ ‖qk‖2 +
k−1∑
l=1

ε2I

(
1

δ − ε2I

)k−l
‖qk‖2

=

(
1 + ε2I

k−1∑
l=1

(
1

δ − ε2I

)k−l)
· ‖qk‖2

≤
(

1

δ − ε2I

)k−1

· ‖qk‖2 .

(81)
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Forming the product over all basis vectors, we obtain

K∏
k=1

‖gk,I‖2 ≤
(

1

δ − ε2I

)K(K−1)
2

K∏
k=1

‖qk‖2

︸ ︷︷ ︸
vol2(Λ(G))

.
(82)

3) Comparison of the Bounds: In Fig. 4, the different bounds on the orthogonality defect

are depicted (Top: complex lattices, Bottom: quaternionic lattices). Again, Hermite’s constant

has been chosen exactly if it is known for the particular dimension; otherwise, it has been

approximated by (52). The quality parameter δ = 1 is assumed for LLL reduction.

Considering the orthogonality defect of the transformed matrix Gtra,I formed by the shortest

vectors in the lattice, the superiority of lattices over E (Fig. 4 Top) and H (Fig. 4 Bottom) in

comparison to lattices defined over L and G, respectively, is clearly visible. In the quaternion-

valued case, the QLLL reduction approaches the orthogonality defect of Gtra,H quite well. In

general, the QLLL reduction shows the best reduction quality, followed by the ELLL one.

Interestingly, the CLLL approach (I = G) performs better than the RLLL one (I = Z) with

doubled dimensions. This is contrary to the behavior for the bounds on the first vector depicted

in Fig. 3, for which the RLLL reduction performed better.

Given a particular quality parameter δ, the asymptotic behavior of the different types of LLL

reduction still has to be analyzed. This is done with the help of Appendix C, where the respective

(long) derivations are provided. In particular, in the complex-valued case, the bound for CLLL

reduction is compared to the bound for RLLL reduction employing the equivalent 2N × 2K

representationGr. It becomes apparent that, independently from K, the CLLL approach performs

better than the RLLL one; the CLLL one only performs worse if δ asymptotically approaches

its lower limit, i.e., if δ ≈ 1
2
. Please note that this behavior is contrary to the one for the norm

of the first vector as stated above, where the RLLL performed better except from δ = 3
4
. Hence,

the CLLL algorithm achieves a lowered bound on the orthogonality defect, which has not been

stated in the original CLLL paper [23]. It is also quite obvious that the ELLL approach performs

better than the RLLL one for most δ except from δ ≈ 1
3
. Besides, the ELLL approach generally

performs better than the QLLL one since in (80), δ − 1
3
> δ − 1

2
.

Given quaternion-valued lattices, the QLLL reduction is more powerful than the CLLL one

applied to the 2N×2K complex representation Gc since (δ − 1/2)−
K2−K

2 < (δ − 1/2)−
2(2K2−K)

2 .
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Fig. 4. Upper bounds on the orthogonality defect of the transformed matrix Gtra,I formed by the shortest independent vectors

of the lattice (solid lines) and on the orthogonality defect of the LLL-reduced basis Gred,I with parameter δ = 1 (dashed lines)

over the dimension K. Top: complex-valued lattices. Bottom: quaternion-valued lattices.
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Moreover, as shown in Appendix C, independently from K it performs better than the ELLL

reduction on Gc and also better than the RLLL reduction applied to the equivalent 4N × 4K

real-valued representation Gr, except from a small range where δ ≈ 1
2
.

C. Asymptotic Computational Complexity

The asymptotic computational complexity is studied next. This includes a general discussion

on the complexity as well a comparison of the different variants, i.e., of the complexity if different

types of integer rings are applied.

1) Complexity of List-Based Determination of the Successive Minima: In Algorithm 5, three

main steps can be identified: i) the call of the (real-valued) LLL algorithm to find short initial

basis vectors, ii) the call of the list sphere decoder that provides all points within a hypersphere

where the maximum norm of the basis defines the radius, and iii) the calculation of the row-

echelon form.

Even if δ = 1, the LLL algorithm has a polynomial complexity given a particular dimension

[55]; hence, it can efficiently be performed, see also the discussion below. Moreover, the trans-

formation to row-echelon form (Algorithm 7) that applies a simple Gaussian elimination has a

polynomial complexity over K as well as the list size Nc. In particular, its asymptotic complexity

reads O(K2Nc), since (less than) K rows of C have to be updated K times, particularly each

time when an independent vector was found.

Hence, the crucial point in the algorithm algorithm is the call of the sphere decoder [13],

which is known to have an exponential complexity (over K). In [29], it has been stated that

the number of candidates, i.e., the number of points within a real-valued hypersphere, can be

approximated by

Nc,Z ≈
(πψ2)K/2

K
2

! vol(Λ(G))
, (83)

for the real-valued generator matrix G ∈ RN×K , see also [25], where ψ2 denotes the squared

search radius which is defined as ψ2 = maxk ‖gLLL,k‖2. Since the maximum norm of an LLL-

reduced basis (as well as the K th successive minimum) cannot be bounded, the list size cannot

be bounded, too.

Given complex-valued lattices over G with generator matrix G ∈ CN×K , the estimated list

size is obtained as

Nc,G ≈
(πψ2)K

K! vol(Λ(Gr))
=

(πψ2)K

K! vol2(Λ(G))
, (84)
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since the search is actually performed with the 2N × 2K representation Gr with vol(Gr) =

vol2(G), cf. Sec.II. However, for lattices over Eisenstein integers, the search is actually performed

with Gr,E from (31). In that case, using an equivalent derivation as in (57) and (58), we obtain

Nc,E ≈
(πψ2)K

K! (
√

3
2

)Kvol2(Λ(G))
, (85)

i.e., the number of candidates is increased in comparison to a search for lattices over Gaussian

integers. This is quite obvious as the Eisenstein integers constitute a denser packing—within the

same hypervolume, more points are located. However, please note that the initial RLLL reduction

is then performed with Gr,E . Thereby, lower search radii may be obtained, counteracting the

increase in list size.

If quaternion-valued lattices over L are present, the approximated list size reads

Nc,L ≈
(πψ2)2K

(2K)! vol(Λ(Gr))
=

(πψ2)2K

(2K)! vol4(Λ(G))
. (86)

For lattices over Hurwitz integers, (59) and the derivation in (60) can be used to form the adapted

list size

Nc,H ≈
(πψ2)2K

(2K)! (1
2
)Kvol4(Λ(G))

. (87)

Again, the estimated number of candidates is increased since the Hurwitz integers are more

densely packed than the Lipschitz integers (doubled number of points). However, the initial

search radius obtained by RLLL reduction of Gr,H reduction may be different (lowered) again.

2) Complexity of LLL Reduction: The computational complexities of the different LLL ap-

proaches are finally assessed and compared to each other. The complexity is assessed w.r.t. the

number of real-valued multiplications since, in hardware implementation, multiplications are

usually much more costly than additions. To this end, please note that for the straightforward

multiplication of complex numbers according to (2), four real-valued multiplications are required.

For the quaternion-valued multiplication as defined in (6), 16 real-valued multiplications are

necessary. If not stated otherwise, we restrict to these naive implementations. Hence, for the

moment, we denote the number of real-valued multiplications by Nr, i.e., we have Nr,Z = 1 for

real-valued, Nr,G = 4 or Nr,E = 4 for complex-valued, and Nr,H = 16 for quaternion-valued

arithmetic.

It has been shown in the literature that an upper bound on the number of iterations in the LLL

algorithm, i.e., on the number of runs of the code lines within the while-loop in Algorithm 3,

can be given [53], [63]. To this end, the elements of the generator matrix have to be assumed
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to be drawn from a real-valued unit-variance uniform [53] or Gaussian [63] distribution. Then,

the asymptotic number of iterations reads O(K log 1
δ
(K)), where the base of the logarithm is the

inverse of the quality parameter δ. It has been derived in [63] that the same behavior holds for

the complex case if a circular-symmetric unit-variance Gaussian distribution is present. Adapting

the derivation in [63] to the quaternion-valued case, it can straightforwardly been shown that

a circular-symmetric unit-variance quaternion-valued Gaussian distribution leads to the same

result.

It is well-known that the complexity inside the while loop of the LLL algorithm—assuming

an efficient implementation of the Gram-Schmidt update—is dominated by the for-loop for size

reduction (Line 11–13 in Algorithm 3), which has an asymptotic complexity of O(NK), cf.,

e.g., [23]. Hence, in total,9 this leads to the famous result that the LLL reduction as implemented

in Algorithm 3 has the asymptotic complexity

O(K3N log 1
δ
(K)) . (88)

Noteworthy, this complexity analysis holds for all types of LLL reduction described in this

work—under the assumption that the operations are performed in the particular real-, complex-,

or quaternion-valued arithmetic.

Given complex or quaternionic lattices, a complexity comparison of different LLL reduction

strategies w.r.t the number of totally required real-valued multiplications, denoted as Mr, is of

interest. In [23], such a comparison was given for complex matrices and CLLL versus RLLL

reduction. This comparison is briefly reviewed and extended to all integer rings considered

previously.

The ratio between the number of real-valued multiplications in the CLLL algorithm and the

respective number in the RLLL one using the equivalent 2N×2K representation of the generator

matrix can be expressed as

Mr,G

Mr,Z
= Nr,G ·

K3N log 1
δ
(K)

(2K)32N log 1
δ
(2K)

· ξG,Z

= 4 ·
log 1

δ
(K)

16 log 1
δ
(2K)

· 2 ≈ 1

2
.

(89)

9The initial GSO (with pivoting) according to Algorithm 1 is not relevant in the analysis of the asymptotic behavior of the

LLL algorithm as it only has a complexity of O(NK) required once in the beginning. Besides, even if a naive update of the

GSO is performed within the while-loop, the total asymptotic complexity of one iteration still reads O(NK).
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The middle part represents the particular asymptotic complexity according to (88). In addition,

it has to be taken into account that the size reduction only has to be performed if QI{rl,k} 6= 0,

cf. Algorithm 2. To describe the ratio between the probabilities that the reduction is required,

the variable

ξG,Z =
Pr{QG{rl,k} 6= 0}
Pr{QZ{rl,k} 6= 0}

(90)

is used. In the real-valued case, the size reduction is necessary if |rl,k| > 1
2
. Thereby, in the

equivalent real-valued 2N × 2K representation, the particular value rk,l describes either a real

part or an imaginary part of the complex-valued matrix. In the original N ×K complex-valued

representation, size reduction for rk,l = r
(1)
k,l +r

(2)
k,l is required if |r(1)

l,k | > 1
2
∪|r(2)

l,k | > 1
2
, i.e., if it is

located within a square over the complex plane. Both components are statistically independent

due to the above-mentioned radial-symmetrical stochastic model. Since, as stated in [64], the

real value |rl,k| and the complex-valued components |r(1)
l,k | and |r(2)

l,k | have quite similar statistics,

Pr{QG{rl,k} 6= 0} ≈ 2 Pr{QZ{rl,k} 6= 0}. Since

lim
K→∞

log 1
δ
(K)

log 1
δ
(2K)

= 1 , (91)

the approximation in (89) reveals that the number of required real-valued multiplications is

halved when the CLLL instead of the RLLL is used.

Considering ELLL reduction for complex-valued matrices, one significant difference to CLLL

reduction can be observed: in the size-reduction step, the quantization is not performed w.r.t.

a square Voronoi cell but a hexagonal one is present instead. A Voronoi cell of the hexagonal

lattice covers less space (vol(E) = vol(A2) =
√

3
2

, cf. (57)) than the one of the two-dimensional

integer lattice (vol(G) = vol(Z2) = 1). However, the hexagonal cell is more similar to a two-

dimensional hypersphere, i.e., a circle, than the square one. Hence, it covers a circular-symmetric

(Gaussian) distribution more precisely. It can be expected that both effects roughly compensate

each other. Thus, ξE,G ≈ 1 can be assumed, and we obtain the asymptotic complexity estimations
Mr,E
Mr,G
≈ 1, and Mr,E

Mr,Z
≈ 1

2
.

When comparing the computational complexity of the QLLL algorithm to the particular

complexities of the CLLL and the RLLL algorithm for quaternion-valued lattices, we can use the

same strategy as in (89). In particular, four statistically independent components r(1)
l,k , r(2)

l,k , r(3)
l,k ,

and r(4)
l,k can be assumed. However, here it has to be taken into account that the Voronoi cell of

H forms a 24-cell as mentioned in Sec. II, which covers less volume (vol(H) = 1
2
, cf. (59)) than
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a four-dimensional hypercube (vol(L) = vol(Z4) = 1). Hence, by analogy with the Eisenstein

integers, we can assume that ξH,L ≈ 1 and, as a consequence, that ξH,G ≈ 2 and ξH,Z ≈ 4. On

that basis, the complexity ratio with respect to RLLL reduction can be estimated as

Mr,H

Mr,Z
= Nr ·

K3N log 1
δ
(K)

(4K)34N log 1
δ
(4K)

· ξH,Z

= 16 ·
log 1

δ
(K)

256 log 1
δ
(4K)

· 4· ≈ 1

4

(92)

i.e., using the QLLL reduction, the complexity can be reduced to roughly one fourth. If the

complexity of the QLLL algorithm is compared to the one of the CLLL one,

Mr,H

Mr,G
=
Nr,H

Nr,G
·

K3N log 1
δ
(K)

(2K)32N log 1
δ
(2K)

· ξH,G

= 4 ·
log 1

δ
(K)

16 log 1
δ
(2K)

· 2· ≈ 1

2

(93)

is obtained. Hence, about one half of the multiplications can be saved. For the comparison

between QLLL and ELLL, ξH,E ≈ 2 can be assumed. Consequently, Mr,H
Mr,E

≈ 1
2

is obtained

accordingly.

Finally, we briefly consider the complexity ratios for the case when “advanced” multiplication

schemes are applied. As mentioned in Sec. II, a complex-valued multiplication can be imple-

mented by only Nr = 3 real-valued multiplications, and a quaternion-valued multiplication by

only Nr = 8 ones. Hence, for complex- versus real-valued processing, the ratios Mr,G
Mr,Z
≈ Mr,E

Mr,Z
≈ 3

8

are obtained. For quaternion-valued versus complex-valued processing, the complexity ratios are

given as Mr,H
Mr,G
≈ Mr,H

Mr,E
≈ 1

3
, and for quaternion-valued versus real-valued processing, the number

of required multiplications is reduced to Mr,H
Mr,Z
≈ 1

8
. Please note that these decreased numbers of

multiplications are accompanied by increased numbers of required additions. Hence, the best-

performing strategy largely depends on the particular hardware architecture.

D. Numerical Evaluation and Comparison

To complement the theoretical derivations provided in this section, numerical simulations have

been performed. In particular, for both the complex and the quaternion-valued case, 106 i.i.d.

unit-variance complex or quaternionic Gaussian random matrices have been considered. Since

we are interested in upper bounds on the quality and complexity, the assessment is performed by

evaluating the 0.99-quantiles of the particular quantities, i.e., the values which are surpassed by
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exactly 1 % of the observed realizations. Again, for LLL reduction, the optimal quality parameter

δ = 1 is assumed.

1) Norms of the Vectors: In Fig. 5, the 0.99-quantiles of the normalized norms are illustrated,

cf. Fig. 3 (Top: complex matrices, Bottom: quaternionic matrices). In addition to the norms

of the first vectors, their maximum values are shown. The maximum among the vector norms,

which can only be evaluated numerically (see above), is the relevant quantity for the SBP (35)

and the SIVP (45).

Restricting the considerations to the norms of the first vectors in Fig. 5, the conclusions follow

the ones that were drawn for the theoretical upper bounds in Fig. 3: Lattices over E andH possess

lower first successive minima than lattices over G and L, respectively. The LLL reductions over

E and H show the best quality; their respective quantiles may even fall below the ones of the

successive minima over G and L for small dimensions. Among the “genuine” LLL approaches,

the reduction over G performs the worst. In the quaternion-valued case, only the curve for

pseudo-QLLL reduction (over L) possesses higher quantiles. However, for statistical models

like the i.i.d. Gaussian one at hand, its application still results in a reasonable performance,

though alternative approaches may be more appropriate if the first vector is relevant.

For the maximum of the vector norms in Fig. 5, similar conclusions can be drawn—except

for two important observations: First, in contrast to the first vector and similar to the theoretical

bounds on the orthogonality defect in Fig. 4, the CLLL reduction performs better than the RLLL

reduction. Second, in the quaternion-valued case, the pseudo-QLLL reduction even possesses

lower quantiles than the CLLL or RLLL reduction. Hence, concerning an approximate solution

for the SBP and the SIVP, respectively, the application of the pseudo-QLLL reduction over L

may even be beneficial in practice, if and only if the “genuine” QLLL reduction over H is not

desired.

2) Orthogonality Defect: In Fig. 6, the 0.99-quantile of the orthogonality defect is plotted as

the statistical quantity. Again, the complex case is shown at the top; the quaternionic case at the

bottom.

The shapes of the curves correspond to the behavior that can be expected when the theoretical

bounds from Fig. 4 are regarded. For the complex case, the orthogonality defect of the matrix

formed by the shortest independent vectors over E is the lowest one, whereas the application of

the RLLL algorithm results in the worst quality.

For quaternion-valued lattices, the successive minima over H as well as the related LLL re-
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Fig. 5. 0.99-quantiles for the normalized first successive minimum (solid lines) and the normalized first basis vector of an

LLL-reduced basis with parameter δ = 1 (dashed lines) as well as the related maximum values among all vectors over the

dimensions K ×K obtained from numerical simulations. Top: complex-valued lattices. Bottom: quaternion-valued lattices.
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Fig. 6. 0.99-quantiles for the orthogonality defect of the matrix formed by the shortest independent vectors of the lattice (solid

lines) as well as the related basis vectors of an LLL-reduced basis with parameter δ = 1 (dashed lines) over the dimensions

K ×K obtained from numerical simulations. Top: complex-valued lattices. Bottom: quaternion-valued lattices.
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Fig. 7. 0.99-quantiles of the list sizes for the determination of the successive minima according to Algorithm 5 over different

integer rings I obtained by numerical simulations. Dashed curves: complex-valued lattices with generator matrix G ∈ CK×K .

Solid curves: quaternion-valued lattices with generator matrix G ∈ HK×K .

duction are accompanied by the lowest orthogonality defects. Again, the classical LLL reduction

over Z shows the worst quality. Surprisingly, at least w.r.t. the orthogonality defect, the pseudo-

QLLL reduction over L results in quite a good performance. In particular, the orthogonality

defect falls significantly below the one of any equivalent complex or real-valued strategy.

3) List Sizes of the Successive-Minima Algorithm: Fig. 7 depicts the 0.99-quantiles of the

list sizes for the list-based determination of the successive minima of a lattice as described in

Sec. III-B. Both the complex-valued (G ∈ CK×K) and the quaternion-valued case (G ∈ HK×K)

are considered.

With regard to complex lattices, the determination of the successive minima over E is accom-

panied by a slightly increased list size in comparison to G. As explained in Sec. IV-C1, this

increase in complexity is caused by an increased number of lattice points within a given search

radius due to the denser packing. Obviously, even though the initial search radius obtained by

real-valued LLL reduction may be lowered a little bit for lattices over Eisenstein integers, the
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denser packing seems to be the more dominating point.

The same holds for the quaternion-valued case: here, lattices over L result in the lowest

quantiles for the list size, whereas lattices over H are—due to the densest packing in four

dimensions—accompanied by the largest quantities. If the successive minima w.r.t. E are cal-

culated for the equivalent complex-valued representation, the list size is located in between the

one of I = L and I = H, as the packing is denser than the one of G2, but sparser than the one

of H.

4) Multiplications within the LLL Algorithm: Finally, we assess the 0.99-quantiles of the

numbers of real-valued multiplications Mr that are required to run the (generalized) LLL reduc-

tion as defined in Algorithm 3. To this end, the numbers are shown in Fig. 8 (Top: complex

lattices, Bottom: quaternionic lattices). Both the standard multiplication approaches (2) and (6),

respectively, with Nr = 4 and Nr = 16 real-valued multiplications (solid lines), and the reduced-

complexity variants with Nr = 3 and Nr = 8 multiplications (dashed-dotted lines), are evaluated.

Given the complex case in Fig. 8 (Top), it is clearly visible that the CLLL and the ELLL

algorithm roughly possess the same number of multiplications, which are halved in comparison

to the RLLL approach if the standard multiplication strategy is applied, cf. Sec. IV-C2. If the

advanced complex multiplication with Nr = 3 is used instead, these ratios are reduced to about
3
8

like predicted by the asymptotic assessment of the complexity.

For the quaternion-valued case in Fig. 8 (Bottom), the following conclusions can be drawn:

Pseudo-QLLL reduction over L and QLLL reduction over H possess about the same number of

real-valued multiplications. The same is valid for the CLLL and the ELLL algorithm, using the

equivalent complex-valued representation. Restricting to the standard quaternion-valued multi-

plication approach, the number of multiplications can roughly be halved in comparison to the

CLLL and the ELLL approach, and roughly be reduced to one fourth in comparison to the RLLL

approach, if the reduction is performed over L or H. When using the advanced multiplication

scheme for quaternionic numbers, these ratios can further be reduced to one third and one eight,

respectively, as already derived in the theoretical analysis in Sec. IV-C2.

V. APPLICATION TO MIMO TRANSMISSION

In this section, it is studied in which ways the the generalized algorithms derived and analyzed

in the previous sections can be applied to the field of MIMO communications. To this end,

the system model of complex MIMO transmission is reviewed and extended to the quaternion-
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Fig. 8. 0.99-quantiles for the number of real-valued multiplications Mr within the generalized LLL reduction approach as stated

in Algorithm 3 obtained by numerical simulations. Over each integer ring, the quality parameter δ = 1 was used. Solid lines

indicate the naive implementation of the complex or quaternion-valued multiplication operations, dashed-dotted ones ones the

implementation with reduced numbers of real-valued multiplications. Top: complex-valued lattices. Bottom: quaternion-valued

lattices.
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valued case. Particular scenarios for the use of quaternion-valued arithmetic are identified. In

addition, the concepts of lattice-reduction-aided and the closely-related integer-forcing (linear)

MIMO equalization are discussed and adapted to the situation at hand.

A. SISO Fading Channel

In wireless transmission, the fading model is quite popular to represent non-line-of-sight

connections. In the simplest case, only one transmit and receive antenna is used, i.e., a single-

input/single-output (SISO) fading channel is present. It can be modeled by the system equation10

y = h · x+ n . (94)

Thereby, x is a transmit symbol taken from the finite set of symbols A (signal constellation), h

denotes the fading coefficient (multiplicative distortion), n represents Gaussian noise (additive

distortion), and y is the disturbed receive symbol.

1) Complex-Valued Transmission: Most often, (94) is considered to be a complex-valued

equation that models radio-frequency transmission in the equivalent complex baseband [22],

[65]. Then, a (zero-mean) quadrature-amplitude modulation (QAM) constellation A ⊂ C with

the variance σ2
x,c and the cardinality Mc = |A| is most commonly applied. These constellations

form (shifted) subsets of the Gaussian integers [19], [29]. Alternatively, constellations based on

the Eisenstein integers can be employed [2], [19], [31], [33]. In accordance, the fading coefficient

is complex (Rayleigh fading [66], usually normalized to σ2
h,c = 1), and we have to deal with

(radial-symmetric) complex Gaussian noise with some variance σ2
n,c.

Taking advantage of (3), the SISO Rayleigh fading channel can equivalently be modeled by

a real-valued system with the system equation11y(1)

y(2)

 =

h(1) −h(2)

h(2) h(1)

x(1)

x(2)

+

n(1)

n(2)

 , (95)

where the noise components n(1) and n(2) have the variance σ2
n,r = 1

2
σ2
n,c and the variances of the

constellation’s components read σ2
x,r = 1

2
σ2
x,c if the components are independent (e.g., in QAM).

10In order to simplify the notation, the time index is omitted in all system equations, i.e., one particular time step (modulation

step) is considered.
11For x and n, only the left column of the equivalent real-valued representation (3) is employed, as the right column is

completely redundant and not required to obtain the final result (left column) of y.
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2) Quaternion-Valued Transmission: On the basis of (94), a quaternion-valued SISO fading

channel model can be defined. Then, the transmit symbols are consistently drawn from a

quaternion-valued system constellation A ⊂ H with the (4D) cardinality Mq = |A|. The signal

points can, e.g., be chosen as a subset of the Lipschitz or the Hurwitz integers [1], [67]. The

related variance reads σ2
x,q. The fading coefficient is given as

h = (h(1) + h(2) i︸ ︷︷ ︸
h{1}

) + (h(3) + h(4) i︸ ︷︷ ︸
h{2}

) j , (96)

i.e., it consists of four independent real-valued or two independent complex-valued ones, respec-

tively. Since two independent unit-variance Rayleigh-fading coefficients are present, the variance

reads σ2
h,q = 2σ2

h,c = 4σ2
h,r = 2. In the same way, the noise is represented by

n = (n(1) + n(2) i︸ ︷︷ ︸
n{1}

) + (n(3) + n(4) i︸ ︷︷ ︸
n{2}

) j , (97)

where σ2
n,q = 2σ2

n,c = 4σ2
n,r. A disturbed receive symbol y ∈ H is finally obtained.

Benefiting from (7), the quaternion-valued SISO fading channel is equivalently expressed by

the complex-valued 2× 2 system equation y{1}

(y{2})∗

 =

 h{1} −h{2}

(h{2})∗ (h{1})∗

 x{1}

(x{2})∗

+

 n{1}

(n{2})∗

 . (98)

This complex 2×2 system equation and its quaternion-valued (scalar) representation, respectively,

are well-suited to model particular transmission scenarios:

1) Transmission with dual-polarized antennas: as illustrated in Fig. 9, (98) models the (SISO)

transmission with one dual-polarized antenna at both the transmitter and the receiver side.

In particular, both horizontal and vertical polarization of the electromagnetic wave are then

used for the orthogonal transmission of two complex-valued symbols at the same time and

on the same frequency band. Thereby, the first complex fading factor h{1} describes the

direct gain within the same polarization plane, whereas h{2} represents the cross-polar

gain, i.e., the crosstalk to the other polarization plane. Moreover, the noise samples n{1}

and n{2} describe the additive noise which is present at the vertically and horizontally

polarized receive antenna, respectively. Further details can be found in [1], [40], [41].

2) Transmission with Alamouti (space-time) coding: the system equation (98) directly cor-

responds to the one of the Alamouti (space-time) coding scheme as a diversity technique

[38]. Then, the complex symbols x{1} and x{2} may actually be radiated at different time
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Fig. 9. Transmission with dual-polarized antennas over the SISO fading channel according to (98). At the transmitter and

receiver, antenna pairs are present that transmit and receive electromagnetic waves which carry information in both the vertical

polarization plane (top) and the horizontal polarization plane (bottom). In the quaternion-valued fading factor h = h{1}+h{2}j,

both the direct gain h{1}and the cross-polar gain h{2} are contained.

steps (or, e.g., frequencies), but are processed jointly. Diversity is obtained if the channel

gains h{1} and h{2} (representing the two time steps, frequencies, . . . ) differ from each

other. The quaternion-valued SISO fading model can be seen as an alternative (scalar)

representation of the 2 × 2 space-time coding scheme. For further details and a deeper

comparison of dual-polarized transmission and Alamouti coding, see [68].

B. MIMO Fading Channel (Uplink Transmission)

The complex- or quaternion-valued SISO fading models can be generalized to respective

MIMO ones. In this work, MIMO uplink transmission—aka MIMO multiple-access channel—is

treated in an exemplary way.

K uncoordinated single-antenna user devices transmit their data—at the same time and on the

same frequency—to one central receiver which is equipped with N ≥ K antennas. The related

system equation is given as

y = H · x+ n . (99)

Here, x = [x1, . . . , xK ]T denotes the vector of transmit symbols sent by the users, H the N×K

MIMO channel matrix, n = [n1, . . . , nN ]T a vector with N noise samples, and y = [y1, . . . , yN ]T

the vector of N symbols which are received at the central unit.

1) Complex-Valued Transmission: Most often, a complex-valued MIMO channel is consid-

ered. A popular model is that the channel matrix

H =
[
hn,k

]
n=1,...,N
k=1,...,K

∈ CN×K (100)
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contains i.i.d. complex Gaussian, unit-variance channel gains hn,k ∈ C that describe (in equivalent

complex baseband representation) the links between the user k and the receive antenna n. At

each receive antenna, complex Gaussian noise with the (same) variance σ2
n,c is assumed.

Given the assumption that the transmit symbols x1, . . . , xK are drawn from a complex-valued

integer ring I, i.e., xk ∈ G or xk ∈ E , k = 1, . . . , K, and neglecting the noise, the receive

symbols are drawn from (a subset of) a complex-valued lattice as defined in (26). Thereby, the

generator matrix is given as G = H .

The complex-valued system equation is equivalently expressed by the real-valued equationy(1)

y(2)


︸ ︷︷ ︸

yr

=

H(1) −H(2)

H(2) H(1)


︸ ︷︷ ︸

Hr

x(1)

x(2)


︸ ︷︷ ︸

xr

+

n(1)

n(2)


︸ ︷︷ ︸

nr

. (101)

Consequently, given the case that x ∈ GK , an equivalent 2N × 2K real-valued lattice (over

I = Z) with the generator matrix H r is spanned, where xr ∈ Z2K . Lattices over I = E can be

expressed according to (31).

2) Quaternion-Valued Transmission: It is possible to extend the complex-valued MIMO uplink

model to the quaternion-valued case. Then, the channel matrix is represented as

H =
[
hn,k

]
n=1,...,N
k=1,...,K

∈ HN×K , (102)

i.e., it contains i.i.d. quaternion-valued Gaussian channel gains hn,k ∈ H (Gaussian distribution

in each component) with the total variance σ2
h,q = 2σ2

h,c = 2, i.e., unit-variance channel gains

per complex component as often considered in MIMO communications. Under the assumption

that the transmit symbols x1, . . . , xK are now chosen from a quaternion-valued integer ring I,

i.e., xk ∈ L or xk ∈ H, k = 1, . . . , K, and neglecting the noise, the receive symbols form a

subset of a quaternion-valued lattice according to (26) with G = H .

Given the scenario of MIMO uplink transmission via dual-polarized antennas as depicted in

Fig. 10, the quaternion-valued channel gains describe the links between the transmit-antenna

pairs k, k = 1, . . . , K, and the receive-antenna pairs n, n = 1, . . . , N . At each receive-antenna

pair, quaternion-valued noise samples with the (total) variance σ2
n,q are assumed that contain the

noise of both polarization planes. When using the quaternionic model for the representation of

the Alamouti coding scheme, the horizontally polarized antennas can be replaced by “virtual”

antennas that represent the transmission at another time step or in another frequency band instead.
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Fig. 10. Quaternion-valued MIMO uplink transmission (MIMO multiple-access channel) with dual-polarized antennas. K

uncoordinated pairs of transmit antennas (in each TX, one for vertical and one for horizontal polarization) radiate the users’

data symbols to the N pairs of receive antennas. The quaternion-valued receive symbols y1, . . . , yK are processed jointly in a

central receive unit (RX) in order to obtain estimates of the transmit symbols x1, . . . , xK .

As becomes apparent from Fig. 10, the quaternion-valued transmission is actually realized by

the equivalent 2N × 2K complex-valued system model y{1}

(y{2})∗


︸ ︷︷ ︸

yc

=

 H{1} −H{2}

(H{2})∗ (H{1})∗


︸ ︷︷ ︸

Hc

 x{1}

(x{2})∗


︸ ︷︷ ︸

xc

+

 n{1}

(n{2})∗


︸ ︷︷ ︸

nc

. (103)

Hence, if x ∈ LK , the quaternion-valued lattice Λ(H) is isomorphically represented by a

complex lattice (I = G) with the generator matrix G = Hc. In the same way, on the basis of (8),

an equivalent real-valued lattice (I = Z) can be defined. A quaternion-valued transmission with

symbols drawn from I = H can be represented by equivalent lattices over I = Z and I = G

according to (32) and (33), respectively.

C. Lattice-Reduction-Aided and Integer-Forcing Equalization

In the MIMO (uplink) scenario, handling the (multiuser) interference is a crucial point. It

is well-known that (purely) linear channel equalization according to the zero-forcing (ZF) or

the minimum mean-square error (MMSE) criterion does not achieve a satisfactory performance

since it does not exploit the MIMO channel’s (spatial) diversity, see, e.g., [12], [69].

In contrast, the concepts of lattice-reduction-aided (LRA) linear equalization [14], [15], [18]

and the closely related integer-forcing (IF) linear equalization [21] are suited in order to achieve

the receive diversity of the MIMO channel [20], see also the discussion below. In the following,
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Fig. 11. Receiver structure for LRA and IF linear equalization [19]. In both concepts, the receive symbols y are linearly

equalized via the filter matrix F before channel decoding is applied (DEC). Then, in the LRA receiver (blue variables), the

decoder reconstructs the original linear combinations x̄ ∈ IK . They are resolved via Z−1 ∈ IK×K and the estimated transmit

symbols x̂ are obtained. In the IF receiver (red variables), the decoder provides estimated finite-field symbols x̄ ∈ FKp which

are isomorphic to the signal points of the constellation A ' Fp. The integer interference is resolved using the inverse of the

finite-field representation of the matrix Z, denoted as Z−1. The resulting finite-field symbols x̂ represent the estimated symbols

x̂ ∈ AK .

a universal description of both the LRA and IF receiver concept is provided that enables a

lattice-based channel equalization over all above-mentioned integer rings I.

1) Generalized Concept: In both LRA and IF equalization, the transmit symbols x1, . . . , xK

are chosen from a subset A of the integer ring I. Then, as illustrated in Fig. 11, the channel

matrix H is not directly equalized by its pseudoinverse12 H+. Instead, a transformed channel

Htran is first handled via the K × N filter matrix F =
[
fH

1 , . . . ,f
H
K

]H, where the respective

rows read f 1, . . . ,fK . Assuming the ZF criterion,13 the filter matrix is obtained as14 [19], [20]

F H = H+H
tran = H+H ZH︸︷︷︸

T

, (104)

where the transformation is expressed by the integer matrix T ∈ IK×K . In particular, the matrix

F shapes the interference in such a way that only integer interference is left before decoding—

this integer interference is particularly expressed by the integer matrix Z = T H ∈ IK×K and—in

the LRA receiver structure—finally reversed via the matrix

Z−1 = T−H , (105)

as illustrated in Fig. 11.

12The K ×N (left) pseudoinverse of an N ×K matrix G is calculated as G+ = (GHG)−1GH. If N = K, G+ = G−1.

The Hermitian of G+ is denoted as G+H = (G+)H, and as G−H if G is a square matrix.
13Integer-forcing linear equalization according to the ZF criterion is usually called exact integer forcing, cf. [21].
14The lattice spanned by G = H+H is the lattice which is dual to the one spanned by G = H , cf. [19], [25], [64].
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In (104), the transformation matrix T (and, thus, Z) should be chosen in a way that the row

norms of F are minimized. In the presence of additive white Gaussian noise with the variance

σ2
n, they determine the noise variances

σ2
n,k = ‖fk‖2 · σ2

n , k = 1, . . . , K , (106)

and, thus, the individual SNRs and the related mean-square errors (MSEs) before decoding. In

order to minimize the MSEs, the ZF criterion applied in (104) is not the optimum strategy. They

can be lowered by employing the MMSE criterion. To this end, the matrices in (104) can be

replaced by their augmented ones [17], [70] according to [19], [29]

FH = H+H
tran = H+H ZH︸︷︷︸

T

, (107)

where

H =

 H

σn
σx
IK

 (108)

denotes the (N +K)×K augmented channel matrix, in which the (square root of the) inverse

SNR is incorporated in the lower part.15 The filter matrix F for MMSE linear equalization is

then given as the K×N left part of the K× (N +K) augmented filter matrix F , and the noise

variances in (106) are determined by the (complete) rows of F instead of F [2].

In both LRA and IF equalization, the crucial performance criterion is usually the worst-link

SNR, i.e., the lowest SNR among the K data streams before decoding. It dominates the error

curves in case of uncoded transmission—from which the spatial diversity order of the MIMO

system becomes apparent [12]—as well as the coded performance expressed in achievable bit

rates according to Shannon [21]. Considering the worst-link SNR as the performance criterion

and applying the MMSE criterion according to (107), the classical optimization problem for the

integer matrix reads

Z︸︷︷︸
T H

= argmin
Z∈IK×K

det(ZZH)=1

max
k=1,...,K

{
‖H+H︸ ︷︷ ︸

G

zHk ‖2
}
, (109)

where the rows of Z correspond to the columns of its Hermitian matrix ZH = [zH1 , . . . ,z
H
K ].

Hence, given the generator matrix G = H+H, the unimodular integer transformation matrix

15Instead of using the augmented matrix H, often the Cholesky square root LH of LLH = (HHH + σ2
n/σ

2
x) is applied to

calculate the MMSE variant of the channel transformation in (104). Both approaches are equivalent since H is an alternative

square-root of LLH [2], [19].
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T = ZH in the lattice basis reduction according to (27) has to be solved in such a way that the

maximum squared column norm of Gred = FH is minimized. This problem corresponds to the

SBP as defined in (35).

In the literature on LRA equalization, (109) has been solved by lattice-basis-reduction al-

gorithms, e.g., in [9], [15], [18], [23], most often employing the LLL algorithm due to its

polynomial complexity. Consequently, a more suited basis for equalization according to (27) has

been calculated for the particular generator matrix G = H+H, where T describes a unimodular

transformation. In particular, G = FH spans the same lattice as G = H+H, and the lattice-basis

reduction is finally inverted by the unimodular integer inverse Z−1 ∈ IK×K .

However, in the meantime, this unimodularity constraint could be relaxed [19], [21]: if the

transformation matrix T , and thus Z, describes a full-rank integer linear combination of the

transmit symbols, i.e., if the constraint rank(T ) = K is imposed, G = FH may only define

a sublattice of G = H+H, cf. Sec. II-C. Hence, after linear equalization via F , the vector

of linear combinations of the transmit symbols, Zx, may be drawn from a subspace of IK .

Nevertheless, only valid lattice points are obtained. Using a suited lattice-decoding strategy, the

linear combinations can still successfully be reconstructed, and the non-unimodular relaxation

does not impair the equalization approach. The optimization problem is then expressed as

Z︸︷︷︸
T H

= argmin
Z∈IK×K

rank(Z)=K

max
k=1,...,K

{
‖H+H︸ ︷︷ ︸

G

zHk ‖2
}
, (110)

i.e., the SIVP (45) has to be solved w.r.t. the generator matrixG = H+H. As discussed in Sec. III,

the SIVP is optimally solved by the calculation of the successive minima of the particular lattice.

2) LRA and IF Equalization: We briefly discuss and compare the (generalized) handling of

the integer interference in the LRA and IF receiver concepts, cf. Fig. 11. A profound insight

into the topic is provided in [19], see also [19, Fig. 3.1].

In the LRA concept (blue variables in Fig. 11), a lattice decoder has to be employed that

reconstructs the (original) linear combinations Zx ∈ IK . The integer interference is finally

resolved over the integer ring I; hence, the estimated transmit symbols x̂ = Z−1DEC{Zx} are

obtained. If the matrix Z is non-unimodular, its inverse Z−1 may contain non-integer elements.

These elements ensure that the transformation to a subspace of IK can be inverted—and that the

original signal space IK (or its subset AK) can be reconstructed.

In contrast, in the IF concept (red variables in Fig. 11), the decoder provides symbols drawn

from the finite field Fp, p prime, in which the channel coding has been performed in. To this
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end, a strong relation between the channel code and the signal constellation A is required; in

particular, p-ary algebraic signal constellations have to be used that establish an isomorphism

A ' Fp to the particular finite field. The linear combinations are then actually represented via

modulo-congruent points drawn from the algebraic constellation A, or, more specifically, via

their equivalent elements from Fp. In the IF receiver, the integer interference is represented via

the finite-field integer matrix Z ∈ FK×Kp , an isomorphic representation of a modulo-reduced

variant of Z. Hence, an additional constraint is imposed: the finite-field inverse Z−1 ∈ FK×Kp

only exists if Z has full rank over the finite field Fp. In an asymptotic manner (|A| → ∞), this

condition is always fulfilled [21], but it may be relevant if a constellation with small cardinality

is applied [2].

Algebraic signal constellations over complex numbers, particularly over the Gaussian and the

Eisenstein integers, are known for quite some time [2], [24], [31], [33], [71]. For the quaternion-

valued case, some initial results on algebraic Hurwitz constellations have already been given in

the literature [72], [73].

D. Diversity Orders and Asymptotic Rates

The diversity order describes the slope of the symbol or bit error curve of uncoded transmission

if the average over all possible channel realizations and users is considered. Hence, no additional

(temporal/space-time) diversity/coding technique is assumed. Given the symbol error ratio (SER)

over the SNR represented by σ2
x/σ

2
n, it is defined as [12]

∆ = − lim
σ2x
σ2n
→∞

log10 SER(σ
2
x

σ2
n
)

log10(σ
2
x

σ2
n
)

. (111)

In words, in an asymptotic manner, the SER drops by ∆ decades per 10 dB increase in SNR.

It has been proven in [20] that LRA equalization is suited to achieve the MIMO channel’s

receive diversity—which, for the complex fading channel, is simply given by the number of

receive antennas N . This receive diversity is even obtained if the SBP is approximately solved

by (real-valued) LLL reduction. Briefly spoken, the condition for diversity-achieving reduction

is that the product of the norms of the basis vectors can be bounded with respect to the volume

according to (79)—for all (generalized) variants of the LLL reduction, this can also be done

as stated in Theorem 8. Since the successive minima form lower bounds on the lengths of any

basis vectors, it is quite obvious that the respective integer transformation matrix achieves the

maximum diversity behavior, too.
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In the complex MIMO fading scenario, the (maximum) receive diversity is given as the number

of receive antennas ∆ = N , as mentioned above. Assuming that only a real-valued channel is

present, i.e., that the channel gains in (100) are purely real i.i.d. Gaussian random variables—the

number of random variables is halved—hence, the MIMO receive diversity shrinks to ∆ = N/2,

cf. [74]. If, in turn, the quaternion-valued setting with N antenna-pairs is present, the number of

random variables is doubled in comparison to the complex case. Hence, it is quite evident that

the diversity order is doubled to ∆ = 2N [68]. This can also be seen from the point of view

that the equivalent complex-valued MIMO representation (103) actually forms an Alamouti code

over the polarization planes as discussed before—if the complex channel gains are independent

in both planes, the diversity in the Alamouti scheme is doubled [38], see also [68]. Summarizing

the above considerations, the achievable receive diversity in LRA/IF equalization can universally

expressed by

∆LRA/IF =
D

2
N , (112)

where D denotes the number of (real-valued) Gaussian random variables per channel gain—

D = 1 for real, D = 2 for complex, and D = 4 for quaternionic transmission.

In the literature on IF equalization, e.g., [9], the asymptotic (bit) rate often serves as a quantity

for quality assessment in coded transmission. It describes the (same) maximum bit rate for each

user16 k = 1, . . . , K and, in contrast to the diversity order, one particular channel realization. It

is given as the Shannon capacity for the worst-link SNR, given an infinite-dimensional modulo

channel [75]. In the particular setting at hand, the asymptotic bit rate can universally be expressed

as

R =
D

2
max

k=1,...,K
log2

(
σ2
x

‖fk‖2 · σ2
n

)
, (113)

where D denotes the number of orthogonal components of the data symbols—again, they read

D = 1, for real D = 2 for complex, and D = 4 for quaternionic transmission.

E. Numerical Evaluation and Comparison

The performance of the generalized lattice algorithms in the MIMO uplink scenario is finally

assessed by means of numerical simulations. To this end, 106 i.i.d. complex and quaternionic

16In IF equalization, all users are assumed to employ the same channel code and the same signal constellation [21]. Hence,

the users also share the same (maximum) rates.
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Gaussian channel matrices have been generated according to (100) and (102), respectively. Please

note that—in contrast to the numerical evaluations in Sec. IV-D—those matrices do not directly

form the generator matrices of the lattices to be considered. Instead, since we assume that the

MMSE criterion is applied and that the feedforward matrix is calculated as defined in (107), the

generator matrices are given by the pseudo-inverses of the respective augmented channel matrices

(MMSE dual-lattice approach, cf. [19]). Hence, the statistical distributions may differ from the

straightforward evaluation of i.i.d. Gaussian matrices. The channel equalization is performed

using the LRA/IF receiver as explained in Sec. V-C. For all kinds of LLL reduction, the optimal

quality parameter δ = 1 is assumed once again.

1) Symbol Error Ratios in Uncoded Transmission: We start with the assessment of the

different SERs which are obtained in case of uncoded transmission. These curves are not only

relevant in terms of the quality of the different lattice algorithms, but are also suited the evaluate

the different diversity behavior, cf. Sec. V-D. In order to simulate a block-fading environment,

bursty transmissions with 103 symbols/noise samples per channel matrix have been performed.

Due to uncoded transmission, the decoders in Fig. 11 are replaced by quantization operations

w.r.t. the particular integer rings. The data symbols are finally estimated by an ML decision

based on the signal constellation A.

First, we restrict to the complex-valued case. For lattices defined over the Gaussian integers,

the zero-mean 4-ary QAM constellation AG = {±1 ± i} ⊂ G with variance σ2
x = 2 has been

employed. Since its components are independent, they can individually be processed using the

equivalent real-valued representation according to (3), i.e., if algorithms over Z are considered.17

Unfortunately, AG 6⊂ E . Hence, for lattices over E , the alternative zero-mean signal constellation

AE = {1,−1,
√

3 i,−
√

3 i}, with σ2
x = 2, has been used. Since both signal constellation possess

the same variance, a fair comparison is enabled. However, please note that signal constellations

defined over E are usually beneficial in comparison to constellations over G, since, due their

hexagonal shape, they enable a packing and a shaping gain, cf., e.g., [2], [31], [32].

In Fig. 12 (Top), the SER is plotted over the SNR for complex transmission and two scenarios

with N = K = 4 and N = K = 8, respectively. First, the expected diversity orders ∆ = 4 and

∆ = 8 are clearly visible. If N = K = 4, all curves are still quite similar. However, in the high-

17Please note that, in this work, one symbol error is always defined w.r.t. the original complex (or quaternion-valued) signal

constellation A.
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Fig. 12. Symbol error ratio over the SNR in dB for K × K uncoded MIMO uplink transmission and LRA/IF equalization

(MMSE criterion) over different integer rings and algorithms obtained by numerical simulations. For LLL reduction, the optimal

parameter δ = 1 is assumed. Top: complex-valued transmission with the signal constellations AG = {±1 ± i} and AE =

{1,−1,
√

3 i,−
√

3 i}. Bottom: quaternion-valued transmission with the constellation AL = {±1± i± j± k}.
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SNR regime, the use of the Eisenstein lattice may even be disadvantageous. This is due to the

fact that, even if the application of the particular algorithms results in the same (maximum) noise

enhancement over G and E , the “uncoded” decoding over E (i.e., the quantization, cf. Fig. 11)

may result in higher error rates since this lattice is denser packed. In contrast, for N = K = 8,

the decreased maximum noise enhancement for E has a positive impact such that a horizontal

(SNR) gain is achieved if the ELLL algorithm is applied or if the respective successive-minima

vectors are calculated.

Next, we consider the case of quaternion-valued transmission. To this end, the 16-ary con-

stellation AL = {±1 ± i ± j ± k} (4QAM per complex component) with σ2
x = 4 has been

employed for which AL ⊂ L ' G2 ' Z4 as well as AL ⊂ H are valid, since L ⊂ H. Hence,

this constellation can be used in combination with lattices over L, H, G, and Z. The related

SER curves are illustrated in Fig. 12 (Bottom) for two particular scenarios with N = K = 2

and N = K = 4. First, we see that, in accordance with (112), the diversity orders are the same

as in Fig. 12 (Top), even though the dimensions K are halved. For N = K = 2, the curves are

again quite the same. Moreover, we also have the effect that the quantization to H may be more

erroneous than the one to L due to the denser packing of the lattice. In contrast, for N = K = 4,

the Hurwitz lattice achieves a significant gain over L, or its complex and real-valued equivalents,

which perform nearly the same if applied in combination with LLL reduction. The pseudo-LLL

reduction shows the worst performance. However—even though respective theoretical bounds

cannot be derived—it still seems to approach the same diversity behavior in practice.

2) Bit Rates in Coded Transmission: Finally, the performance is assessed w.r.t. coded trans-

mission, for which the rate according to (113)—depending on the particular noise enhancement

(maximum squared norm) and the SNR—is the relevant quantity. In Fig. 13, both the expectations

and the 0.01-quantiles of the achievable rates are illustrated, assuming σ2
x/σ

2
n =̂ 20 dB (MMSE

criterion). In particular, the latter represent the rates for which an outage of 1 % can be expected.

In the complex-valued case (Fig. 13 (Top)), it is visible that the use of lattices over Eisenstein

integers enables a slight gain w.r.t the achievable rate, which increases with the dimension. Just

like in the numerical analysis of the maximum norms in Fig. 5 for i.i.d. Gaussian matrices, the

RLLL algorithm performs the worst.

In quaternion-valued transmission (Fig. 13 (Bottom)), lattices over Hurwitz integers signifi-

cantly enhance the achievable rates. The QLLL reduction over H approximates the solutions the

SMP quite well. Moreover, it is quite interesting that—by analogy with the curves in Fig. 5—,
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Fig. 13. Achievable rates for IF linear equalization according to (113) in coded transmission (σ2
x/σ

2
n =̂ 20 dB, MMSE

criterion) over the K ×K MIMO channel for different integer rings and algorithms obtained by numerical simulations. Both

the expectations and the 0.01-quantiles are shown. Top: complex-valued transmission. Bottom: quaternion-valued transmission.
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the pseudo-QLLL reduction over L performs substantially better than its complex or real-valued

“genuine” counterparts. Hence, in practice, its usage may be taken into account—even though

no theoretical performance guarantees can be given.

VI. SUMMARY AND OUTLOOK

In this paper, algorithms and bounds known from the field of real-valued lattice problems

have been generalized and adapted to operate over complex and quaternion-valued numbers.

To this end, a review of the particular arithmetic and the properties of these number sets has

been given first. Then, generalized variants of the LLL reduction and a list-based algorithm

to determine the successive minima of a lattice have been given. In addition to lattices over

the set of (real-valued) integers Z, they can operate over the Gaussian (complex integers) as

well as the Eisenstein integers for the complex case, and the Lipschitz as well as the Hurwitz

integers for the quaternion-valued case. For all of these integers sets, bounds for the lengths of

the first basis vector obtained from LLL reduction as well as for the first successive minimum

have been derived. These bounds were complemented by bounds for the particular orthogonality

defects, incorporating all basis or successive-minima vectors. The provided results indicate that

lattices over the Eisenstein integers (instead of the Gaussian integers) may be beneficial in the

complex-valued case, and that lattices over the Hurwitz integers (instead of the Lipschitz integers)

may be of advantage in the quaternion-valued case. When running the presented successive-

minima algorithm over these rings, the expected complexity is only increased a little bit in

comparison to their counterparts. Moreover, when the LLL reduction is applied over these

complex or quaternion-valued integer rings, the expected complexity is significantly decreased in

comparison to an equivalent real-valued reduction. Finally, particular application scenarios have

been identified. These considerations included their use in the field of MIMO communications, in

particular in lattice-reduction-aided or integer-forcing equalization for the MIMO uplink channel,

where equalization gains can be expected by the use of the Eisenstein integers and the Hurwitz

integers, respectively.

Future work could deal with the extension to the multi-dimensional, e.g., the eight-dimensional

case, in which several time steps or frequencies could be combined to one symbol. In addition,

the adaption of other criteria/algorithms for lattice basis reduction, e.g., HKZ [4] or Minkowski

[5] reduction, could be studied and related bounds could be derived for the complex and/or

quaternion-valued case. In addition, since algebraic signal constellations are required for the use
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of the integer-forcing concept, the initial work on four-dimensional algebraic constellations in

[72], [73] could be extended to derive algebraic constellations similar to the complex-valued

ones in [2], [24], [33].

APPENDIX A

HELPER FUNCTIONS FOR LIST-BASED DETERMINATION OF THE SUCCESSIVE MINIMA

In this appendix, some procedures are listed which are incorporated in Algorithm 5 (determination

of the successive minima).

Algorithm 6 Equivalent Real-Valued Representation over Z.
Gr = RINGTOZ(G)

1: switch I do

2: case Z

3: Gr = G

4: case G . (3)

5: Gr =

G(1) −G(2)

G(2) G(1)


6: case E . (31)

7: Gr =

G(1) −G(2)

G(2) G(1)

IK − 1
2IK

0K
−
√
3

2 IK


8: case L . (8)

9: Gr =


G(1) −G(2) −G(3) −G(4)

G(2) G(1) −G(4) G(3)

G(3) G(4) G(1) −G(2)

G(4) −G(3) G(2) G(1)


10: case H . (32)

11: Gr =


G(1) −G(2) −G(3) −G(4)

G(2) G(1) −G(4) G(3)

G(3) G(4) G(1) −G(2)

G(4) −G(3) G(2) G(1)

 ·
IK 0K 0K

1
2IK

0K IK 0K
1
2IK

0K 0K IK
1
2IK

0K 0K 0K
1
2IK


12: end switch
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Algorithm 7 Transformation to Row-Echelon Form.
i = ROWECHELON(C)

1: k = 1, l = 1, i = [0, . . . , 0]

2: while k ≤ K do

3: for m = k + 1, . . . ,K do

4: if cm,l 6= 0 then

5: ik = l . independent vector found

6: c̃ = Ck,1:Nc
. interchange rows

7: Ck,1:Nc
= Cm,1:Nc

8: Cm,1:Nc = c̃

9: Ck,1:Nc
= c−1k,l ·Ck,1:Nc

. normalize kth row

10: for n = k + 1, . . . ,K do . eliminate successors

11: Cn,1:Nc
= Cn,1:Nc

− cn,lCk,1:Nc

12: end for

13: k = k + 1

14: break

15: end if

16: end for

17: l = l + 1

18: end while

Algorithm 6 creates the equivalent real-valued representation of the generator matrix G

depending on the integer ring I. These representations have been derived in Sec. II.

In algorithm 7, the matrix of candidate vectors C is transformed to row-echelon form. To this

end, for each candidate with the index l, it is checked if a new dimension is established. This is

the case when one of the elements ck,l, . . . , cK,l is not zero; then, the vector does not depend on

the previous ones. Given that case, the particular row with the non-zero element is interchanged

with the row k. After normalization18 to ck,l = 1, all other elements ck+1,l, . . . , ck+1,l are set to

zero by subtracting cn,l times the row with index k. All multiplications are performed in such a

way that the skew-field property of quaternions is taken into account.

18Please note that linearly independent lattice vectors are required, i.e., independent vectors have to be present over R, C,

or H. Hence, when calculating the row-echelon form for the integer vectors, non-integer elements may occur. Nevertheless,

these non-integer elements are not relevant since only the “steps” within the row-echelon form are of interest. Alternatively, the

calculation of the row-echelon form can directly be performed with the related lattice vectors.
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Algorithm 8 Reconversion from Representation over Z.
Cu = ZTORING(C)

1: switch I do

2: case Z

3: Cu = C

4: case G

5: C(1)
u = C1:K,1:Nc

6: C(2)
u = CK+1:2K,1:Nc

7: case E

8: C̃ =

IK − 1
2IK

0K
−
√
3

2 IK

 ·C
9: C(1)

u = C̃1:K,1:Nc

10: C(2)
u = C̃K+1:2K,1:Nc

11: case L

12: C(1)
u = C1:K,1:Nc

13: C(2)
u = CK+1:2K,1:Nc

14: C(3)
u = C2K+1:3K,1:Nc

15: C(4)
u = C3K+1:4K,1:Nc

16: case H

17: C̃ =


IK 0K 0K

1
2IK

0K IK 0K
1
2IK

0K 0K IK
1
2IK

0K 0K 0K
1
2IK

 ·C
18: C(1)

u = C̃1:K,1:Nc

19: C(2)
u = C̃K+1:2K,1:Nc

20: C(3)
u = C̃2K+1:3K,1:Nc

21: C(4)
u = C̃3K+1:4K,1:Nc

22: end switch

In Algorithm 8, the candidate integer vectors are reconverted from the equivalent real-valued

representation to the representation in the particular ring I. To this end, for the Gaussian and the

Lipschitz integers, the components are simply stacked in the matrix C. For the Eisenstein and

the Hurwitz integers, the particular generator matrices according to (31) and (32), respectively,

have to be incorporated first.
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APPENDIX B

COMPARISON OF THE UPPER BOUNDS ON THE FIRST BASIS VECTOR OF DIFFERENT LLL

VARIANTS

In this appendix, the upper bounds on the squared lengths of the first basis vector in case of

LLL reduction, as described in Sec. IV-A2, are compared for different cases, i.e., integer rings.

Please note that vol
2

2K (Λ(Gr)) = vol
2
K (Λ(G)) holds for the 2N × 2K equivalent real-valued

representation of complex matrices. For quaternion-valued matrices we have vol
2

4K (Λ(Gr)) =

vol
2

2K (Λ(Gc)) = vol
2
K (Λ(G)) for the 4N × 4K real-valued and the 2N × 2K complex-valued

representations, respectively.

A. CLLL versus RLLL

The first comparison in this Appendix concerns complex matrices. In particular, the bound

using the CLLL algorithm is compared to the one using the equivalent real-valued representation.

This comparison has already been given in [23] and serves as an example for the other cases.

When comparing the bounds, only the rightmost part is relevant. The CLLL approach performs

better if (
1

δ − 1/2

)K−1
2

<

(
1

δ − 1/4

) 2K−1
2

(114)

which can be rewritten as

τ =

(
1

δ−1/2

)K−1
2

(
1

δ−1/4

) 2K−1
2

< 1 . (115)

Then, τ can be converted to

τ =

(
1

δ−1/2

)K−1
2

(
1

δ−1/4

) 2K−1
2

=

(
δ − 1/4√
δ − 1/2

)K

·
(
δ − 1/2

δ − 1/4

) 1
2

︸ ︷︷ ︸
<1

. (116)

Hence, the CLLL algorithm performs better if√
δ − 1/2 > δ − 1/4 . (117)

This condition is, however, never fulfilled for δ ∈ (1/2, 1], but at least equality can be achieved

if and only if δ = 3/4.
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B. ELLL versus RLLL

If the ELLL reduction is compared to the RLLL one, the term (116) has to be adapted to

τ =

(
1

δ−1/3

)K−1
2

(
1

δ−1/4

) 2K−1
2

=

(
δ − 1/4√
δ − 1/3

)K

·
(
δ − 1/3

δ − 1/4

) 1
2

︸ ︷︷ ︸
<1

. (118)

Then, the ELLL approach performs better if√
δ − 1/3 > δ − 1/4 . (119)

This condition is fulfilled if 3/4− 1/
√

6 ≈ 0.3418 < δ ≤ 1.

C. QLLL versus ELLL

Next, assuming quaternion-valued matrices, the bound of QLLL reduction is compared to the

one of ELLL reduction using the equivalent complex-valued representation. Here, the bounds

can be compared via

τ =

(
1

δ−1/2

)K−1
2

(
1

δ−1/3

) 2K−1
2

=

(
δ − 1/3√
δ − 1/2

)K

·
(
δ − 1/2

δ − 1/3

) 1
2

︸ ︷︷ ︸
<1

. (120)

The related condition reads √
δ − 1/2 > δ − 1/3 . (121)

It is fulfilled if 5/6− 1/(2
√

3) ≈ 0.5447 < δ ≤ 1.

D. QLLL versus RLLL

Finally, the QLLL reduction is compared with the RLLL one (using the equivalent real-valued

representation). Here, the term (116) is changed to

τ =

(
1

δ−1/2

)K−1
2

(
1

δ−1/4

) 4K−1
2

=

(
(δ − 1/4)2√
δ − 1/2

)K

·
(
δ − 1/2

δ − 1/4

) 1
2

︸ ︷︷ ︸
<1

, (122)

i.e., the condition √
δ − 1/2 > (δ − 1/4)2 (123)

has to be fulfilled. This is the case when 0.5042 < δ ≤ 1.
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APPENDIX C

COMPARISON OF THE UPPER BOUNDS ON THE PRODUCT OF THE BASIS VECTORS OF

DIFFERENT LLL VARIANTS

In this appendix, the upper bounds on the product of the basis vectors obtained from LLL

reduction, as described in Sec. IV-B2, are compared for different cases (integer rings).

A. CLLL versus RLLL

Again, we start with the comparison of the CLLL reduction and the RLLL reduction, the

latter using the equivalent 2N × 2K representation Gr of the complex-valued generator matrix

G. The CLLL approach has a lower bound on the product of the norms (and on the related

orthogonality defect), if (
1

δ − 1/2

)K2−K
2

<

(
1

δ − 1/4

) 4K2−2K
2

. (124)

This condition can be rewritten as

τ =

(
1

δ−1/2

)K2−K
2

(
1

δ−1/4

) 4K2−2K
2

< 1 . (125)

The ratio τ can further be decomposed into

τ =

(
1

δ−1/2

)K2−K
2

(
1

δ−1/4

) 4K2−2K
2

=

(
(δ − 1/4)2√
δ − 1/2

)K2

·

(√
δ − 1/2

δ − 1/4

)K

︸ ︷︷ ︸
≤1

, (126)

where the rightmost part is less than or equal to one, cf. (117). Hence, independently from K,

τ < 1 if √
δ − 1/2 > (δ − 1/4)2 . (127)

This inequality is fulfilled if 0.5042 < δ ≤ 1, cf. (123).

B. ELLL versus RLLL

If the ELLL algorithm is compared to the RLLL one, the ratio

τ =

(
1

δ−1/3

)K2−K
2

(
1

δ−1/4

) 4K2−2K
2

=

(
(δ − 1/4)2√
δ − 1/3

)K2

·

(√
δ − 1/3

δ − 1/4

)K

(128)
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has to be less than one. Then, the ELLL approach performs better if for the left part in (128),√
δ − 1/3 > (δ − 1/4)2 (129)

is valid. Additionally, since the right part is not necessarily less than one,
(δ − 1/4)2√
δ − 1/3

<
δ − 1/4√
δ − 1/3

(130)

has to hold; then, the product of both parts will be less than one if the same holds for the left

part. This condition is always fulfilled since δ − 1/4 < 1. Thus, (129) still has to be fulfilled.

This is the case when 0.3334 < δ ≤ 1.

C. QLLL versus ELLL

Next, the bound for QLLL reduction is compared to the one for ELLL reduction using the

equivalent 2N × 2K complex-valued representation Gc. In particular, the ratio reads

τ =

(
1

δ−1/2

)K2−K
2

(
1

δ−1/3

) 4K2−2K
2

=

(
(δ − 1/3)2√
δ − 1/2

)K2

·

(√
δ − 1/2

δ − 1/3

)K

. (131)

Then, the QLLL reduction performs better if√
δ − 1/2 > (δ − 1/3)2 (132)

and additionally, if

(δ − 1/3)2 < δ − 1/3 . (133)

The latter always holds since δ − 1/3 < 1. The condition (132) is fulfilled if 0.5008 < δ ≤ 1.

D. QLLL versus RLLL

Finally, the QLLL reduction is compared with the RLLL one, where the latter takes advantage

of the 4N × 4K real-valued representation Gr. In that case, the ratio is given as

τ =

(
1

δ−1/2

)K2−K
2

(
1

δ−1/4

) 16K2−4K
2

=

(
(δ − 1/4)8√
δ − 1/2

)K2

·

(√
δ − 1/2

(δ − 1/4)2

)K

, (134)

i.e., we obtain the conditions √
δ − 1/2 > (δ − 1/4)8 (135)

and

(δ − 1/4)8 < (δ − 1/4)2 . (136)

The latter is always fulfilled since δ − 1/4 < 1. The former is valid if 0.5000 < δ ≤ 1.
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[72] M. Güzeltepe, “Codes over Hurwitz integers,” Discrete Mathematics, vol. 313, no. 5, pp. 704–714, 2013.
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