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ABSTRACT: We assessed mortality risks associated with source-
specific fine particles (PM,5) in a pooled European cohort of
323,782 participants. Cox proportional hazard models were applied
to estimate mortality hazard ratios (HRs) for source-specific PM, g
identified through a source apportionment analysis. Exposure to
2010 annual average concentrations of source-specific PM, ¢
components was assessed at baseline residential addresses. The
source apportionment resulted in the identification of five sources:
traffic, residual oil combustion, soil, biomass and agriculture, and
industry. In single-source analysis, all identified sources were
significantly positively associated with increased natural mortality
risks. In multisource analysis, associations with all sources
attenuated but remained statistically significant with traffic, oil,

Hazard ratios and 95% confidence intervals per IQR increase in
source-specific PM, ; concentrations and natural mortality
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and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06;
95% CI: 1.04 and 1.08 per 2.86 ug/m? increase) across five identified sources. On a 1 g/m? basis, the residual oil-related PM, 5 had
the strongest association (HR: 1.13; 95% CI: 1.0S and 1.22), which was substantially higher than that for generic PM, 5 mass,
suggesting that past estimates using the generic PM, 5 exposure response function have underestimated the potential clean air health
benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with

findings of natural mortality.
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1. INTRODUCTION

Epidemiological studies around the world have generally
reported associations between fine particle mass (PM,s)
exposure and mortality and morbidity, with variations in the
magnitude of effect estimates.' Part of these effect size
fluctuations per unit mass may be related to the fact that the
composition of PM, ; mass varies in time and space, depending
on sources of emission and atmospheric chemistry, which may
in turn result in differences in toxicity and risk to health of
PM, 5 mass.””” Understanding which components of the PM
mixture are of greater health impact than others would help
inform targeted policies to control PM, from those sources
that contribute most of the toxic components in the PM
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mixture as well as allow more accurate assessments of source-
specific health impacts.

To date, many studies have reported associations between
adverse health outcomes and long-term exposure to a series of

PM, constituents, including secondary inorganic aerosols
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(sulfate, nitrate), black carbon (BC), metals, and organic
components, with no consistent evidence of a single
constituent being most strongly related to health effects.’”"
In our previous analyses within the Effects of Low-level Air
Pollution: A Study in Europe (ELAPSE), we found that
vanadium (V) within PM, ; was most consistently associated
with increased mortality risks in the pooled cohort of 323,782
participants from six European countries," whereas potassium
(K) and silicon (Si) were most robustly associated with natural
mortality in almost 27 million participants from six large
administrative cohorts."* However, analyses on a constituent
basis may be difficult to interpret because individual elements
can be linked to one or more specific sources (e.g., differing by
location-specific source mixtures) and thus have different
associated health effects, depending on what aerosol mixture
they travel with (i.e., which source group they are in), while
several covarying elemental markers may more reliably indicate
the same source.'”~"” For example, iron (Fe) may come from
wind-blown soil, a steel mill operation, or brake wear, but it is
associated with different elements, depending on which source
(e.g., with Si for soil, Mn for steel, and Cu for brake wear).'®
Looking at Fe in a source-specific tracer group can differentiate
the mixture situations. This factor may help explain uncertainty
as to which source/constituent is more strongly related to
health effects in past PM, ¢ constituent evaluations (e.g., US
EPA, 2021)."

Observed health associations with individual PM, g trace
elements are not necessarily causal but may rather indicate
associations with the source-specific mixture they are part of.
Furthermore, results from a model which includes multiple
elements emitted from the same source (e.g, V and Ni from
residual oil combustion) are difficult to interpret, as the model
could bias the effect estimates for individual elements.””*' To
avoid this possibility, assessing health effects of PM
components as a group (e.g, source-specific groupings of
tracers) may provide more consistent and interpretable results
across studies than trying to parse effects among individual
elements. Source-specific associations are also more readily
translatable into air quality policy than elemental associations.
For example, an analysis within the American Cancer Society
Cancer Prevention Study II (ACS CPS-II) suggested exposure
to coal combustion-related air pollution explained most
associations between PM,¢ mass and increased risk of
mortality from all causes, ischemic heart diseases (IHDs),
and lung cancer (LC) in the US.***® In the California
Teachers study, associations with IHD mortality were observed
for sources including gasoline- and diesel-fueled vehicles, meat
cooking, and high-sulfur fuel combustion.” The National
Particle Component Toxicity (NPACT) studies identified that
secondary sulfate and traffic sources were most consistently
associated with adverse health effects.””**

In the present study, we performed a further analysis within
the ELAPSE pooled cohort to consider the mortality risks
associated with long-term PM, 5 exposure on a source-specific
basis. By comparing these source-specific results with our
previous individual elemental analyses, we expected to have a
more complete understanding of the health effects of PM,
mixtures from different sources.

2. MATERIALS AND METHODS

2.1. Study Population. The ELAPSE pooled cohort
consists of 14 subcohorts across six European countries.
Detailed information on individual subcohorts has been

extensively reported.'”*>*° The included subcohorts are: the
Cardiovascular Effects of Air Pollution and Noise in Stockholm
(CEANS) cohort in Sweden, which in turn includes the
Stockholm Diabetes Prevention Program (SDPP),”” the
Stockholm Cohort of 60-year-olds (SIXTY),”® Stockholm
Screening Across the Lifespan Twin study (SALT),” and
Swedish National Study on Aging and Care in Kungsholmen
(SNAC-K); the Diet, Cancer, and Health cohort (DCH)>'
in Denmark; the Danish Nurse Cohort (DNC)*? in Denmark,
consisting at baseline of two surveys conducted in 1993 and
1999; the European Prospective Investigation into Cancer and
Nutrition-Netherlands (EPIC-NL) cohort in the Netherlands,
including the Monitoring Project on Risk Factors and Chronic
Diseases in the Netherlands (MORGEN) and Prospect;*” the
Heinz Nixdorf Recall study (HNR) in Germany;’" the Etude
Epidémiologique aupres de femmes de la Mutuelle Générale
de 'Education Nationale (E3N) in France;** the Cooperative
Health Research in the Region of Augsburg (KORA) in
Germany, consisting at baseline of two cross-sectional
population-representative surveys conducted in 1994—1995
(S3) and 1999—2001 (S4); and the Vorarlberg Health
Monitoring and Prevention Programme (VHM&PP) in
Austria.’® Most cohorts covered a large city and its
surrounding areas as study areas. The French E3N cohort
and the Danish DNC cohort are national cohorts. All included
cohort studies were approved by the medical ethics
committees in their respective countries.

2.2. Source Apportionment and Exposure Assess-
ment. Air pollution measurements for PM, ¢ mass, NO,, BC,
and PM,; elemental composition were derived from the
ESCAPE monitoring campaign conducted in 19 study areas
across Europe. Sampling and analysis methods have been
described before.'®?” Briefly, measurements were made at 20
sites in each study area (40 in the large Catalunya and
Netherlands/Belgium areas) for three 2 week periods in a 1
year period between October 2008 and April 2011. Monitoring
sites were selected using a common sampling protocol to
represent pollution levels at regional background, urban
background, and street locations, with a focus on urban areas
and in streets with only several re§ional background sites
located outside of major urban areas.'® Eight components were
a priori selected in the ESCAPE study: copper (Cu), Fe, K,
nickel (Ni), sulfur (S), Si, V, and zinc (Zn).'*** Annual
average concentrations were calculated based on the measure-
ments spread over the seasons (warm, cold, and intermediate)
with temporal adjustment from a reference background site in
each study area. Table D1, Supporting Information documents
the distribution of air pollution measurements.

The 2010 annual average concentrations of air pollution
from 397 sites were analyzed to estimate source apportioned
PM, s mass exposures using absolute principal component
analysis (APCA).* The method involved the following: (a)
applying PCA to the pollution data; (b) identifying source-
related components based on key tracers in each component;
(c) adjusting PC scores into absolute PC scores; and (d)
regressing PM, ; mass on the source-related components (i.e.,
the absolute PC scores), providing apportionments of PM, g
mass to each identified source-related component. PM,
concentrations not attributable to the identified source
components were incorporated into the model intercept. The
APCA approach is further elaborated in Section A, Supporting
Information. A five-factor PCA using Promax rotation (a type
of oblique rotation)** was chosen as the optimal solution. This
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decision was based on the goal to keep PCs having factor
eigenvalues (i.e., the data variance explained by the identified
component) greater than 1.0 after rotation, and the cumulative
percentage of variance explained larger than 80%, as
recommended by Hopke,*' as well as an examination of the
source-related interpretability of the factors. We first tried a
five-factor Varimax rotated approach (a type of orthogonal
rotation) that resulted in 28.7% negative contributions
estimated for the third component, indicating a non-optimal
rotation of the PCs, which is likely due to the forcing of
orthogonality (i.e., varimax rotation) when sources are actually
correlated with each other in real world. We therefore instead
applied an oblique rotation approach (i.e., Promax rotation) to
allow the identified source components to be intercorrelated
with one another, which is more realistic in real-world settings.
The process to derive the optimal APCA solution is
documented in Section B, Supporting Information.

Particulate K is an element enriched in biomass burning
emissions but can also be in soil dust."* In order to facilitate
the interpretation of source-specific components, we attempted
to obtain a more specific metric for K by looking at the non-
soil K separately. We therefore adjusted the K concentrations
with the tracer of crustal soil dust (i.e., Si) to exclude that K
component before the source identification PCA. The adjusted
K index was calculated by subtracting the soil dust-associated
K from the total K concentration values (K,, = K — 0.42 X Si).
The coefficient was calculated by regressing the K against Si
concentrations for those samples with the lowest 10th
percentile K/Si ratio samples.”” PM, s S was not included in
the initial source identification analysis because S is considered
as a general marker for fossil fuel sources and may complicate
the separation of fine mass to specific sources.”’ Also,
excluding tracers of secondary formation (i.e., S) from the
source apportionment analysis allows a clearer discrimination
of the original primary sources of PM,.** S was then
apportioned among the sources by regressing it against the
identified sources to calculate the “unexplained” secondary
mass prior to the PM,; mass apportionment regression
models.** Based on the APCA, source-specific compositional
profiles were assessed by regressing each pollutant against the
mass contributions for all sources together in a linear model.
Source profiles of S were similarly assessed, though S was not
included in the PCA.

To evaluate the robustness of our source apportionment to
the approach chosen, we performed sensitivity analyses,
including: (1) fivefold robustness evaluation; (2) adding S
into the source identification PCA; and (3) including total K
concentrations in the PCA (i.e., without removing the dust
soil-associated K component). In the fivefold robustness
evaluation, the full set of measurements was randomly divided
into five groups (20% each), stratified by site type (street, rural,
and urban background) and region (north, west, central, and
south). Five additional APCA analyses were performed, each
based on a randomly selected 80% of the monitoring sites. We
note that there is 60% overlap between any two training sets of
the sites.

The APCA results were then applied to exposure estimates
of NO,, BC, and individual elemental components to assess
source-specific PM, 5 exposures. This involved first converting
individual exposures to the absolute PC scores for all identified
source components and then multiplied by the regression
slopes derived from the PM, mass measurement apportion-
ment. Individual exposure to 2010 annual mean concentrations

of PM, 5 mass, NO,, BC, and PM, 5 elemental composition was
assessed at participants’ baseline residential addresses based on
Europe-wide land use regression model estimates.**® The
models were previously built on ground-based measurements
with satellite-derived and chemical transport modeled air
pollutant estimates, land use, road, and population data as
predictors. The models explained a moderate to large fraction
of the measured concentration variation at the European scale
(ie., 66% for PM, g, 58% for NO,, 51% for BC, and 41 to 79%
across elemental components).

2.3. Mortality Outcome Definition. Identification of
outcomes was based upon linkage to mortality registries within
each cohort. Based on the underlying cause of death recorded
on death certificates according to the International Classi-
fication of Diseases, Ninth Revision (ICD-9)*" and the
International Statistical Classification of Diseases and Related
Health Problems, Tenth Revision (ICD-10),** we defined
mortality from natural causes (ICD-9: 001-779, ICD-10: A0O-
R99), cardiovascular diseases (CVDs) (ICD-9: 400—440,
ICD-10: 110—170), non-malignant respiratory diseases (ICD-
9: 460—519, ICD-10: J00—]99), and LC (ICD-9: 162, ICD-
10: C34).

2.4. Statistical Analyses. Cox proportional hazard
regression models were applied to evaluate associations of
identified PM, sources with natural and cause-specific
mortality, following the general ELAPSE analytical framework
applied in our previous paper of elemental exposures.'>*%*
Death from other causes, emigration, loss to follow-up for
other reasons, or withdrawn alive at the end of follow-up were
considered censoring events. The Cox models were stratified
by subcohorts to account for differences in baseline hazards
between the subcohorts unexplained by the available covariates
and to relax the proportional hazards assumption. The decision
to account for between subcohort heterogeneity with strata
implies that we mostly evaluate within-cohort exposure
contrasts. Three confounder models were a priori specified
with increasing adjustment for individual and area-level
covariates: model 1 adjusted for age (as the time axis),
subcohort (as strata), sex (as strata), and year of enrollment;
model 2 further added individual-level covariates including
marital status (married/cohabiting, divorced/separated, single,
and widowed), smoking status (never, former, and current),
smoking duration (years of smoking) for current smokers,
smoking intensity (cigarettes/day) for current smokers,
squared smoking intensity, body mass index (BMI) categories
(<18.5, 18.5-24.9, 25—29.9, and >30 kg/m’), and employ-
ment status (employed vs unemployed); and model 3 further
adjusted for area-level mean income in 2001. Model 3 was
considered as the main model. Participants with missing
exposure or incomplete information on model 3 covariates
were excluded from all main analyses to allow comparison
between models with increasing covariate control.

Individual PM, 5 sources were included as linear functions in
the Cox models as a reasonable summary of the association as
well as to facilitate comparisons with previous studies. Besides
the single-source analysis (where one PM,; source was
evaluated at a time), multisource analyses were also performed
with all identified PM,; sources included in the model
simultaneously for comparison. Cumulative risks of all
identified sources were estimated assuming additive effects of
combined source exposures on mortality. Cumulative risk
index (CRI) was defined as
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P
CRI = exp Z /éxp
p=1

where ' = (B, .. ﬁp) are the log-hazard ratio (HR) for the P
source exposures estimated at x, concentrations in a Cox
model consisting of all P sources together.”” HRs and 95%
confidence intervals (CIs) for interquartile range (IQR)
increases in the estimated concentrations of each source
were reported. In addition, HRs associated with per 1 pg/m?
increase are presented.

To evaluate the potential selection bias introduced by
excluding participants with incomplete information on model 3
covariates, we compared model 1 HRs derived from analyses
conducted in the model 3 population (ie, with complete
covariate information) and the model 1 population (i.e., with
missing covariate information). To assess the impact of
temporal misalignment of the exposure assessment, we
performed sensitivity analyses starting the follow-up from
2000, 2005, 2008, and 2010, as per the previous analyses in the
same cohort.”” To assess the uncertainty of source estimation
effects on source-specific mortality results, we applied APCA
results derived from the fivefold robustness evaluation analysis
described above, in addition to the APCA results derived from
the chosen optimal approach.

All analyses were performed in R version 3.4.0 using
packages: survival, coxme, Matrix, foreach, multcomp, survey,
splines, Hmisc, mfp, VIM, ggplot2, frailtySurv, survsim, eha,
stamod, and psych. Statistical significance was based on a 95%
CI of effect estimate not including unity.

exp(B'x')

3. RESULTS AND DISCUSSION

3.1. Source Apportionment Results. Table 1 provides
the correlations between the identified source components and

Table 1. Factor Loadings for the Five-Factor Promax
Rotated Principal Component Analysis Solution (Kappa =
1.6) [*S and PM, ¢ Not Included in Factor Analysis]”

biomass and

traffic oil soil agriculture industry
NO, 0.97 0.10 —-0.09 —-0.11 0.00
BC 0.88 0.03 0.00 0.22 0.10
Cu 0.86 —-0.02 0.22 0.06 0.04
Fe 0.71 0.02 0.46 —-0.06 0.09
K, 0.02 —0.02 0.00 0.99 0.03
Ni 0.10 0.91 0.10 —0.01 0.03
Si 0.10 0.20 0.89 0.01 0.00
\% —0.01 0.95 0.06 —0.01 0.02
Zn 0.15 0.06 0.01 0.03 0.93
*S —0.01 0.43 0.38 0.27 0.20
*PM, 5 0.44 0.04 0.17 0.46 0.25
eigenvalue 3.01 1.80 1.07 1.04 0.88
cumulative 33.5% 53.4% 65.3% 76.9% 86.7%

var

“K,, is soil-adjusted K.

the individual air pollutants (i.e., factor loadings). PM, 5 mass
and S were not included in the PCA, but their correlations with
the identified factors were calculated to aid in the
interpretation of the source components. Overall, the source
apportionment resulted in a plausible identification of source
contributions, with the possible exception of a biomass source,
where we did not have access to a more specific marker, such

as levoglucosan. The first factor was identified as traffic-related
particles because of its high loadings on NO,, BC, Cu, and Fe.
The principle sources of NO, and BC include the combustion
processes from motorized traffic and off-road machinery,®**
whereas Cu and Fe are both considered as markers of brake
wear.'>'® The interpretation of the first factor predominantly
reflecting traffic is supported by the documentation of clearly
higher concentrations of NO,, BC, Cu, and Fe at traffic
locations compared to urban background locations of the
monitoring database.'®®” The second factor was identified as
particles from residual fuel oil combustion, based on its high
loadings on both Ni and V, two elements known to be
enriched in heavier fuel oils."” Residual fuel oil, often burned
by marine shipping, industry, and electric power plants, is the
oil that remains after the removal of more valuable (and usually
cleaner burning) distillates, such as gasoline, from petroleum.
Ni and V have been mainly linked to shipping emissions in
Europe.'” In the monitoring database, high concentrations of V
and Ni were primarily measured in port cities including
Rotterdam, Athens, Barcelona, and cities with significant
industrial activities such as Turin and the German Ruhr
area,'® suggesting marine shipping is likely a dominant source
for this factor. The third factor was identifiable as crustal/soil
particles because of its high loading on Si and moderate
loading on Fe. Si is a specific tracer for the crustal material and
Fe is also abundant in the crustal dust.’” The fourth
component was first identified as particles from biomass
burning because of its high loading on K, which is the most
common element used to trace biomass burning.'® The
identification of the fourth factor is rather uncertain, however,
because of the high explained variance by S in the source
profile (Figure 1), and the fact that there is no S in wood. We
speculated that this factor may possibly also include wind-
blown soil containing agricultural fertilizers because both K
and S are in fertilizers widely used in Europe.”® We therefore
identified the fourth factor as particles from biomass and
agriculture. The last factor was identified as associated with
industrial emissions because of its high loading on Zn. Even
though Zn was selected as a tracer for non-tailpipe traffic
emitted particles in ESCAPE,'® it was not found to correlate
with other traffic tracers in this analysis (e.g, NO,, BC, and
Cu). However, Zn is also a tracer for industrial emitted
particles, as also supported by our Europe-wide models, where
predictors representing industrial emitted Zn explained a
predominant part of the variation in Zn measurements."
Correlations at the monitoring sites between identified source-
specific PM, 5 were low to moderate (Table D2, Supporting
Information).

The source compositional profiles show that S explained a
large fraction of all the identified source-related mass, except
for traffic-related particles (Figure 1). Again, S was not
included in the initial source identification analysis and was
therefore distributed over the identified sources. Sulfate is a
secondary pollutant formed through a series of atmospheric
reactions. Its precursor sulfur dioxide (SO,) is emitted by the
burning of liquid and solid fuels that contain S. The estimation
of trace elements associated with each source component aids
in the identification of the source and provides perspective on
the mass estimates.

Sensitivity analyses supported our main source apportion-
ment approach (Section C, Supporting Information). The five
additional APCA each based on 80% of the monitoring sites
showed similar results to the main analysis, that is the same
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Figure 1. Estimated fractional elemental source profiles of identified source-specific PM, .

sources with similar loadings of individual elements were found
(Tables C1 and C2, Figure Cl1, Supporting Information),
suggesting our main results are robust. Including S in the PCA
resulted in similar separation of source components to the
main PCA approach (Table C3 and Figure C2, Supporting
Information). We expected including S in the PCA would
undermine the clear separation of the fossil fuel combustion
sources (e.g, residual oil and traffic on one component)
because particulate S results from transformation of sulfur
dioxide emitted from many fossil fuel combustion sources and
thus it is not unique to any one source. It is reassuring to see
similar separation of source components using both
approaches and it can be considered more a philosophical
choice whether to include S in the PCA analysis or not.
Including total K without adjusting for soil dust-associated K
resulted in similar factor loadings but higher contributions in
soil component from K (Table C4 and Figure C3,Supporting
Information).

3.2. Population Characteristics and Source-Specific
PM,;s Exposure Estimation. Of the total population of
381,036 study participants, 323,782 (85%) had complete
information on model 3 covariates and were included in the
main analyses (Table 2). The participants were followed up for
an average of 19.5 years, contributing to 6,317,235 person-
years of follow-up. Most of the study cohorts started from mid-
1990 and were followed-up till 2011—201S. The average age at
baseline ranged from 42 to 73. Four subcohorts included only
female participants, and the pooled cohort comprised 66%
females. Differences across the cohorts were also observed for
the population size, average years of follow-up, socioeconomic
status (SES), and lifestyle factors, supporting our decision to
account for difference in baseline hazards between subcohorts.
Detailed baseline characteristics of study population in
individual subcohorts can be found elsewhere.'**>°

Figure 2 and Table D3,Supporting Information show the
exposure distribution of the identified source-specific PM, g
concentrations estimated for the study population in the
individual subcohorts and the pooled cohort. Exposure
concentrations generally showed a North—South increasing
trend for PM,  from traffic and biomass and agriculture and

the generic PM, 5 mass. The within-cohort exposure variability
was large for PM,; from traffic, soil, and biomass and
agriculture. PM, 5 exposures from residual oil burning and
industrial sources were low in all subcohorts with relatively
small within-cohort exposure contrasts, mainly because of the
lack of sources in the study areas. An exception was observed
for a small number of subjects within the Dutch EPIC-NL-
Morgen cohort with high exposures in PM,; from both
residual oil burning and industrial sources, likely related to
shipping emissions from port cities and emissions from steel
industries.”* Soil-related PM,s exposures ranged similarly
across subcohorts, except the relatively high exposures
observed for participants within the SNACK cohort located
in Kungsholmen, Stockholm, which could be related to winter
sanding of streets and road abrasion from studded tires. We
estimated relatively low PM, concentrations from soil, and
relatively high PM,  concentrations from biomass and
agriculture. This suggested that we may not be able to
completely disentangle biomass burning-associated K from soil
dust-associated K, even with the adjustment of K concen-
trations. However, the high estimate for biomass contribution
was comparable with a PM, source apportionment study
previously conducted in Europe.”> Moreover, the windblown
soil contribution to PM is predominately in the coarse fraction,
and the traffic-associated soil mass from road dust may have
been picked up by (ie., attributed to) the traffic component
and thus resulted in the low contribution of this non-traffic soil
component.

Correlations between source-specific PM,; exposures at
residential addresses were moderate to low (Table D4,
Supporting Information), allowing proper interpretation of
the multisource analyses. We reported the median of cohort-
specific correlations, as it is most relevant for our
interpretations because analyses were stratified by subcohort.
Correlations between sources varied across subcohorts. The
values were not directly comparable to the correlations
between identified sources at the monitoring sites presented
in Table D2, Supporting Information as the correlations at
monitoring sites were assessed at the European scale.
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Table 2. Population Characteristics

mean area-level income,
*1000€ (mean + SD)

employed
(%)

y

married or livin;
with partner (%

current
smokers (%)

female
(%)

age at baseline
(mean + SD)
48.7 + 134
47.1 £ 49
60.0 + 0.0
57.8 + 10.6
729 + 104
56.7 + 4.4
562 + 8.4
479 + 42
429 £ 113

follow-up
577 £ 6.1

average years of

follow-up

baseline
period

model 3 [N (%)]

population in main

size (N)“

population

cohort

20.1 £ 5.8
243 £ 42
247 £ 6.9
25.3 £ 6.6
287 £2.2
20.1 + 3.4
192 £ 2.6
19.0 = 2.4
122 + 1.6
131 + 14
252 £ 82
112 £ 3.0
36.7 + 4.4
38.0 £ 7.3

229 + 1.7

70
91

72

24
26
21

66
61

19.5

323,782 (85.0)
7716 (98.5)
3965 (94.9)
6174 (91.8)
2830 (87.1)

381,036
7835

pooled cohort

84
74
68

15.9

2011

1992—-1998

CEANS-SDPP

68

52
SS
62

15.5

2014

1997—-1999

4180
6724
3248

CEANS-SIXTY

CEANS-SALT

64
23
78
70

95

21

10.4

2011

1998-2003
2001-2004

46
71

14
36
37

7.4
18.2

2011

CEANS-SNACK

DCH

S3
100
100

2015

1993—-1997
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170,250

3.3. Mortality Risks Associated with Source-Specific
PM,s. During the follow-up, we observed 46,640 (14.4%),
15,492 (4.8%), 2846 (0.9%), and 3776 (1.2%) deaths from
natural causes, CVDs, non-malignant respiratory diseases, and
LC respectively. Figure 3 and Table DS, Supporting
Information show the associations between source-specific
PM, s and natural and cause-specific mortality.

We observed significantly positive associations with traffic-
related PM, s for all assessed mortality endpoints in single-
source models. In multisource models, associations decreased
slightly for mortality from natural causes, CVDs and LC, and
remained stable for respiratory mortality with slightly wider
CIs. The HRs associated with a per IQR increase in source-
specific PM, g concentrations were the highest for the traffic
component for all assessed endpoints except LC mortality
(HR: 1.06; 95% CI: 1.04 and 1.08 for natural mortality per
2.86 ug/m’ increase in traffic-related PM,;). Consistent
findings were reported by the ACS CPS-II and the California
Teachers Study for strong associations between excess
mortality and traffic-related exposures.”*® In the previous
elemental analyses within the ELAPSE pooled cohort, we
observed significantly positive associations for mortality with
Cu and Fe in single-pollutant models."> The associations
attenuated substantially in models with further adjustment for
NO,, likely reflecting the common traffic source of these
pollutants. Similar to this study, positive associations with
mortality were reported in past studies analyzing individual
tracers of traffic emissions, which became less stable after
adjusting for other traffic-related components such as NO, or
organic carbon.”¥"*

A majority of the traffic-related PM, 5 was explained by BC
(25.2%) in our study (Figure 1). There is mounting evidence
on associations between long-term exposure to BC and adverse
health outcomes.”””® In the ELAPSE pooled cohort, we
previously found significantly positive associations for BC
exposure with mortality and incidence of stroke, asthma, and
COPD.>>*°7°! Health effects of BC were, however, difficult to
disentangle from NO, because of their high correlation in
concentrations, reflecting conditions in developed countries,
where an important source of both pollutants is diesel-powered
vehicles. The source apportionment analysis conducted in the
present study allowed us to consider the multiple air pollutants
from the same source as a group and thus derived more
interpretable results.

The oil combustion source component was significantly
positively associated with all assessed mortality endpoints in
single-source models. HRs reduced moderately and remained
statistically significant (borderline significant for CVD mortal-
ity) in multisource models. This is consistent with our previous
findings that V was most robustly associated with increased
mortality risks.'”> When considered on a per 1 ug/m?
comparable basis, the source-labeled residual oil combustion
PM, 5 had the highest associations with all assessed mortality
endpoints (HRs and 95% Cls 1.269 (1.189, 1.354) in the
single-source model and 1.128 (1.047, 1.215) in the multi-
source model for natural mortality) (Table D6,Supporting
Information). This suggests that the natural mortality risk
estimate for residual oil PM,s may be about S times higher
(2.3 if based on the lower and 7.2 based on the upper 95% CI
limit) than that for PM, mass in general. Previous findings
have been mixed on mortality risks associated with residual oil
component and its trace elements,”**>®* likely because of the
small exposure contrasts combined with low concentrations of

https://doi.org/10.1021/acs.est.2c01912
Environ. Sci. Technol. XXXX, XXX, XXX=XXX



Environmental Science & Technology

pubs.acs.org/est

CEANS-SDPP (11—
CEANS-SIXTY — T 3——
CEANS-SALT —— T 1+—

CEANS-SNACK —{13—
DCH Sy S——
DNC-1993 —{ 1T }—
DNC-1999 —[— 1T —3}+—
EPIC-NL-Morgen =
EPIC-NL-Prospect  ——
HNR ——
E3N —_— Tt —
KORA-53 -}
KORA-S4 —TD0—
VHMAPP Ry T —
POOLED COHORT R ——
0.0 25 5.0 75 10.0 125
Traffic (ua/m’)
CEANS-SDPP 13—
CEANS-SIXTY }—
CEANS-SALT }—
CEANS-SNACK
ocH (T 1—
DNC-1993 —( 1T J}—
DNC-1999 —{C 1T 33—
EPIC-NL-Morgen — L
EPIC-NL-Prospect T
HNR -
E3N —
KORA-S3 — 1
KORA-S4 — -
VHM&PP —_— T —

POOLED COMORT ————— T}

a 2

Biomass + Agriculture (pg/m”)

CEANS-SDPP
CEANS-SIXTY
CEANS-SALT
CEANS-SNACK
DCH

DNC-1993
DNC-1999
EPIC-NL-Morgen
EPIC-NL-Prospact
HNR

E3N

KORA-53
KORA-54
VHMEPP

POOLED COHORT

CEANS-SDPP
CEANS-SIXTY
CEANS-SALT
CEANS-SNACK
DCH

DNC-1993
DNC-1999
EPIC-NL-Morgen
EPIC-NL-Prospect
HNR

E3N

KORA-S3
KORA-54
VHMEPP

POOLED COHORT

0.2s 0.50 0.75 1.00

Oil (wg/m")

25 5.0 75
Industry (pg/m’)

CEANS-SDPP
CEANS-SIXTY
CEANS-SALT
CEANS-SNACK

—{10—

s m—
s S m—
—_— T

e ey — —
DNC-1993 CT—)——
DNC-1990 T—}———
EPIC-NL-Morgen —_1T_}——

EPIC-NL-Prospect ———_1T__}——

e — —
KORA-S3 g I —
KORA-54 s I ——
VHMePP —CIT

POOLED COHORT ——[— T __}——

0 1 2 4
Soil (ug/m’)
CEANS-SDPP —I-
CEANS-SIXTY —I
CEANS-SALT !
CEANS-SNACK —-
DCH —10—
DNC-1993 -0
DNC-1999 —_
EPIC-NL-Morgen —)-
EPIC-NL-Prospect I~
HNR o
E3N —_—
KORA-S3 —{I-
KORA-S4 —I
VHM&PP e — -
POOLED COHORT —
5 10 15 20
PM; 5 (ug/m’)

Figure 2. Exposure distribution of source-specific PM, s concentrations at participants’ baseline residential addresses. Subcohorts are shown from
North to South; the boundary of the box closest to zero indicates P2S; the boundary of the box furthest from zero, P75; the bold vertical line inside
the box, P50; and the whiskers, PS and P95. Exposure distribution for the pooled cohort is shown in Table D3,Supporting Information.
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Figure 3. Associations of source-specific PM, s with mortality from natural-cause (NAT), CVDs, non-malignant respiratory diseases (RESP), and
LC. HRs and 95% Cls are presented for the increment of the IQR for each exposure in the pooled cohort: traffic 2.86, ug/m?; oil, 0.25 ug/m?; soil,
0.95 pg/m?; biomass and agriculture, 4.32 pg/m?; industry, 1.09 pg/m?; and PM, mass, 4.49 ug/m?® (Table D3,Supporting Information). See
Table DS, Supporting Information for the corresponding numeric data. Total number of observations = 323,782; person-years at risk = 6,317,235;
deaths from natural mortality = 46,640; deaths from cardiovascular mortality = 15,492; deaths from non-malignant respiratory mortality = 2846;
and deaths from LC mortality = 3776. The main model adjusted for subcohort identification, age, sex, year of enrollment, smoking (status,
duration, intensity, and intensityz), BMI categories, marital status, employment status, and 2001 area-level mean income.

CRI = cumulative risk index

residual oil-related particles. In quite a few study areas, residual
oil is a less ubiquitous source than motorized traffic. The large
population included in the current analysis likely allowed us to
detect the potential associations better.

The soil component was positively associated with all
assessed mortality endpoints in single-source models. How-
ever, these associations reduced to basically unity in multi-

source models. Crustal materials are often abundant in coarse
particles. Our finding of null association is consistent with
most previous studies showing little evidence for an association

between long-term coarse PM exposure and adverse health

coarse

effects.””** The 2019 Integrated Science Assessment (ISA)
rated the association between PM,
cause mortality as “suggestive”.> A recent analysis conducted

exposure and natural-
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in the Medicare enrollees reported significantly positive, but
much smaller, association with all-cause mortality for the soil
component than for combustion-related components.”® The
ACS CPS-II found no association with mortality for soil and its
elemental tracers (calcium and Si).>° Si is a specific tracer for
crustal material that is a major component of soil and
resuspended road dust. However, a distinction between soil
and road dust is often difficult because of the overlapping
source profiles."> The California Teachers Study reported
adverse cardiovascular associations with long-term exposure to
Si, yet the authors interpreted the Si exposure as a proxy either
for toxic constituents found in road dust or for exposures to
traffic-related pollutants.” The relatively low concentrations of
soil component observed in our study suggest that the traffic-
associated soil mass from road dust may have been picked up
by the traffic component, especially given the large percentage
of elemental Si and Fe in the traffic PM, ; profile in Figure 1.
Nevertheless, the good practice statements recently provided
by the WHO about particles originating from sand and dust
storms were to continue monitoring programs and source
apportionment activities, health effect analyses, and reduction
of exposure.®”

For the biomass and agriculture component, we observed
significantly positive associations with mortality from natural
causes, CVDs and LC, and non-significantly negative
association with respiratory mortality in single-source models.
In multisource models, HRs decreased but remained
significantly positive for mortality from natural causes and
CVDs, and remained stable for LC mortality. Different from
other identified source components, HRs for biomass and
agriculture increased from the crude model (model 1) to the
model with further adjustment for individual level potential
confounders (model 2) (Table D7,Supporting Information).
The increase in HR is attributed to the negative correlations
between the biomass and agriculture source component and
the individual level covariates, indicating population with
higher SES or healthier lifestyle tend to be exposed more to
PM, 5 from biomass and agriculture. We identified the biomass
and agriculture component because of its high loading on K
(Table 1). However, K is not a unique indicator of wood
combustion but can also derive from meat cookjn§, refuse
incineration, and agriculture waste combustion.'”** The
California Teachers Study reported positive association
between K and IHD mortality,” whereas null association
with mortality for K and biomass combustion source cate§ory
was found in the ACS CPS-II and the Medicare cohort.>>**

The industry PM,; component was positively associated
with all assessed mortality outcomes in single source models,
but HRs were reduced to unity in multisource models. The
observed null associations may be related to the low exposure
level and small exposure contrasts exploited in our analyses.
Consistently, no association between steel industry-related
PM, s and mortality was found in the Medicare cohort.®” The
ACS CPS-II reported positive but weak associations with IHD
mortality for metal industrial combustion PM, ¢ (tracers Pb
and Zn).>?

Opverall, the present source-specific analysis and the previous
individual elemental analysis revealed that particles from
residual oil burning (tracers Ni and V) and traffic-related
emissions (tracers NO,, BC, Cu, and Fe) were most
consistently associated with mortality,"> agreeing with an
analysis in the Netherlands based on dispersion model
calculated particle source contributions.”®

Cumulatively, we found significantly positive associations by
air pollution with mortality from natural causes, CVDs and LC.
Association with non-malignant respiratory mortality was
positive though non-significant. The strongest cumulative risk
estimate was for LC mortality (HR: 1.23; 95% CI: 1.10 and
1.38). The cumulative risk estimates were larger than any of
the individual source-specific PM, 5 HRs resulting from single-
source models, supporting that particles from multiple sources
were associated with mortality. The cumulative risk was
smaller than the sum of HRs, likely attributable to the
correlations between PM, s components.

Sensitivity analyses confirmed the robustness of our findings.
Model 1 HRs were almost identical for model 1 and model 3
populations, indicating little selection bias was introduced
(Table D8,Supporting Information). When restricting analyses
to the follow-up period starting from year 2000 (69% of total
person-years at risk, 84% of total deaths), year 2005 (46% of
total person-years at risk, 64% of total deaths), year 2008 (32%
of total person-years at risk, 47% of total deaths), and year
2010 (23% of total person-years at risk, 33% of total deaths),
we observed statistically significant associations between
natural mortality and source-specific PM,, except for PM, 5
from biomass and agriculture emissions, which attenuated to
unity (Table D9,Supporting Information). When restricting to
follow-up starting in 2010, generally smaller HRs with wider
CIs were found, likely related to the large reduction in follow-
up time and the associated number of events. Applying APCA
results derived from the fivefold robustness evaluation analysis
resulted in similar source-specific PM,; associations with
natural mortality (Table D10,Supporting Information).

3.4. Strengths and Limitations. One strength is the
unique and standardized measurement data for PM,
elemental composition collected from 19 study areas across
Europe used for source apportionment analysis. The number
of studies on PM component-specific health effects has been
small, partly because of the scarcity of measurements relative to
regulated pollutants such as PM, 5 and NO,. Another strength
is the large population included in this study, with detailed
information on individual and area-level covariates. The
pooling of 14 subcohorts and the harmonization of variables
across cohorts allowed enhanced statistical power to detect
source-specific associations with mortality, especially for source
components that have small exposure contrasts. The source
apportionment analysis allowed us to assess health effects of
PM components in the group context and provided more
interpretable results that are more readily translatable into
generalizable air quality policy. The correct interpretation of
results relies heavily on the reliability of the source apportion-
ment approach. Although the APCA method applied does not
quantitatively assess the uncertainties in the mass apportion-
ments, our sensitivity analyses showed robustness of our main
APCA approach. Furthermore, an intercomparison among
several source apportionment methods has shown that the
APCA source apportionment results are consistent across the
various methods.”® Moreover, an assessment of the contribu-
tion by source apportionment to the variability in health effects
is a relatively small portion (about 15%) of the uncertainty in
the resulting epidemiological health effects estimates.”

While it is clear from our findings that source-specific PM, 5
differ in their associations with mortality, additional source-
specific tracers are needed to be more definitive. We were able
to include only nine pollutants in the PCA, whereas source
apportionment analyses usually include more tracers. We
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cannot rule out health risks associated with sources that were
not identified by our source apportionment analysis. For
example, we could not identify coal burning source, likely
because there was not arsenic (As) or selenium (Se) data
available to consider in the PCA. Coal combustion PM, 5 was
found to be most strongly and robustly associated with IHD
mortality in the ACS CPS-II and the association between IHD
mortality was about five times higher than that for generic
PM, mass.”> Also, more (likely organic) tracers such as
levoglucosan need to be analyzed in future work to better
separate out the biomass contribution.”' We were not able to
incorporate organic carbon and heavy metals such as Pb, Cd,
and Hg in the analysis, which were reported to be associated
with increased mortality risks in a few studies.”**

We had limited ability to investigate the spatial and temporal
variability of source components. The air pollution data were
collected from 397 monitoring sites across Europe and were
clustered (20 or 40 sites per study area). Source of trace
elements and their compositions may vary spatially. However,
a sensitivity analysis by study area would be unstable and
uninformative for our study because of the small number of
monitoring sites within each area. Nevertheless, previous
source apportionment analyses suggested that the sources of
trace elements were relatively stable across European cities.'

Another limitation is that the exposure assessment was based
on air pollution data in 2010, whereas most included cohorts
started their follow-up from mid-1990. However, our
sensitivity analyses by restricting recruitment to start years of
2000, 2005, 2008, and 2010 showed robust results, supporting
our original analyses in the full cohort. We furthermore note
that, for major air pollutants including NO,, spatial stability of
exposure contrasts over a decade or more has been
demonstrated in Europe.”””’* While the same data do not
exist for source-specific PM, we suspect this holds as well
because the spatial distributions of the identified sources have
not changed substantially in the already highly developed
European urban areas we consider.
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