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Malleable Robots: Reconfigurable Robotic Arms
with Continuum Links of Variable Stiffness

Angus B. Clark, Student Member, IEEE, and Nicolas Rojas, Member, IEEE

Abstract—Through the implementation of reconfigurability to
achieve flexibility and adaptation to tasks by morphology changes
rather than by increasing the number of joints, malleable robots
present advantages over traditional serial robot arms in regards
to reduced weight, size, and cost. While limited in degrees of
freedom (DOF), malleable robots still provide versatility across
operations typically served by systems using higher DOF than
required by the tasks. In this paper, we present the creation
of a 2-DOF malleable robot, detailing the design of joints
and malleable link, along with its modelling through forward
and inverse kinematics, and a reconfiguration methodology that
informs morphology changes based on end effector location—
determining how the user should reshape the robot to enable
a task previously unattainable. The recalibration and motion
planning for making robot motion possible after reconfiguration
are also discussed, and thorough experiments with the prototype
to evaluate accuracy and reliability of the system are presented.
Results validate the approach and pave the way for further
research in the area.

Index Terms—Malleable Robots, Reconfigurable Robots, Soft
Robots, Serial Robots, Robotic Manipulation

I. INTRODUCTION

RECONFIGURABLE robot systems provide several key
potential advantages over traditional robots, including

increased task versatility by adapting to better suit tasks,
and reduced robot cost due to a smaller total number of
modules, such as links and joints. As such, there has been
significant research into the development of reconfigurable
robots, with the most popular approach utilising modularity
as the method of reconfiguration, as this allows for the
interchangeability of parts, leading to self-repair [1], [2]. The
reconfigurability feature has specifically been of interest in
unstructured and unpredictable environments, characterised by
changing operating contexts, which take the most advantage
from robots that can adapt their shape and operating mode [3].
Furthermore, environments that have limited access provide
a strong argument for reconfigurable robots that can fold or
disassemble to squeeze through small holes, such as for the
inside of aircraft wings [4].

Regarding the structure of robots for reconfiguration, the
ModMan serial manipulator for instance utilises a modular
system with a variety of modules for links and joints [5]. A
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Fig. 1. A 2-DOF malleable robot visual description of capability, demon-
strating the possible topology types of the malleable robot.

similar design is also presented by Xu et al [6] and Strasser
et al [7], whereas robots like M-TRAN [8], PolyBot [9],
and ATRON [10] use a single modular component, reducing
the cost of production and increasing the range of abilities
of the robot (such as locomotion), albeit with a decrease in
the performance for a specific task compared to a specialised
robot. While the majority of reconfigurable robots are modular,
reconfiguration can also be achieved by locking aspects of
the robot. Examples include directly locking revolute joints to
reduce the DOF of the robot [11], and locking passive cylin-
drical joints carefully positioned to directly vary the Denavit-
Hartenberg (DH) parameters of a serial arm [12], [13]. Recon-
figurable robots are also not just limited to serial manipulators,
parallel reconfigurable robots have also been demonstrated,
also using a similar joint locking method to achieve alternative
configurations [14]. They have also been demonstrated using a
modular structure with variable-dimension rigid links [15]. In
the case of the Tricept-IV robot, a hybrid reconfigurable robot
is achieved through the combination of both serial and parallel
mechanisms, which exploits the advantages of both—namely,
the stiffness and accuracy of the parallel mechanism and the
workspace size of the serial mechanism [16].

An alternative approach for the application of reconfigurable
robot manipulators can be found in the industrial field of
serial manipulators. In the ideal case, a manipulator would
be designed with the exact number and configuration of joints
necessary for its expected set of tasks [17]. This is known as
task-based optimisation, and requires information to be known
about the robot structure [18], collections of working points
[19], or end effector regions [17]. However, knowledge of all
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tasks a robot might encounter in its lifetime can be difficult to
determine. Instead, serial manipulators with a higher degree
of freedom (DOF) are typically selected, ensuring dexterity
across tasks at the expense of an increased robot cost and
footprint.

Malleable robots, which are reduced DOF serial robot arms
with changeable geometry, provide a solution to the task
versatility problem through variable relative positioning of
the revolute joints [20]. An example of the reconfiguration
capability of a 2-DOF malleable robot can be seen in Fig. 1.
A method for achieving this capability is through continuously
bending variable stiffness links, which have been demonstrated
using vacuum-activated layer jamming [20]–[22] and granular
jamming [23], and LMPAs (low melting point alloys) [18]. It
is worth highlighting that many other mechanisms exist for
achieving variable stiffness, as demonstrated by Blanc et al.
[24] in the medical robotics field, however the larger size of
robotic links needed for other applications limits the possible
technologies usable [23].

Malleable robots follow a similar process of reconfiguration
to modular reconfigurable robots, in that their reconfiguration
alters the relative positioning of the active joints of the robot.
However, unlike modular reconfigurable robots which achieve
this by disassembling and reassembling (in an alternative con-
figuration) the modules of the robot, malleable robots achieve
this by transitioning between reconfigurable and rigid modes.
Once in a reconfigurable mode, the robot can either reconfig-
ure itself using additional drive systems (intrinsic malleable
robots), or it can be manually reconfigured by an external
system, such as a user (extrinsic malleable robots) as discussed
in [20], where the design of such robots was firstly explored.
Open questions regarding the modelling and optimisation of
the topology of malleable robots are particularly addressed
herein, presenting alongside improvements in their design.

Multiple methods for solving the reconfiguration planning
problem, that is, determining the ideal configuration of a robot
based on a course of actions [2], have been presented for
modular reconfigurable robots. One method developed is the
optimisation to minimise joint torques based on point masses
of the modules [25]. It has been shown that the control of
modular reconfigurable robots based on joint torque sensing
is robust in that modules can be added or removed without
the need to adjust control parameters [6], [26]. Due to the
complex nature of determining an ideal reconfiguration, one
solution presented is the use of a digital twin, a set of virtual
information constructs that fully describe the reconfigurable
machine, which can be used to simulate reconfigurations to
determine an optimum configuration [27].

For a modular reconfigurable robot composed of rigid links
and joints, a genetic algorithm has been proposed based on
the Jacobian matrix that finds a near-optimal solution for link
lengths, having determined the DOF of the robot based on the
task specification [28]. Using simple cubic and tri-prism mod-
ules, a similar approach whereby reconfiguration is determined
based on a single tool position for each configuration has
also been presented [29]. A genetic algorithm is additionally
presented for determining the passive/active joint configuration
of a modular reconfigurable robot [30]. Herrero et al. present

Fig. 2. The developed two-degree-of-freedom (DOF) malleable robot arm,
showing various topology configurations it can achieve. A PUMA-like con-
figuration is shown in foreground.

a grasp point optimisation method that determines the best
configuration of a 6 DOF parallel manipulator, determined
by the size and regularity of the resulting workspace, that
considers multiple end-effector locations [31]. A spherical area
is generated from the desired grasp points, which is then used
to find an optimal workspace based on the geometric and
actuator restrictions of the robot.

Modelling the resulting new geometric topology of re-
configurable robot manipulators, i.e. determining the forward
kinematics (FK) and inverse kinematics (IK), is additionally
a challenge. Determining the resulting workspace of such
robots can then either be performed using the calculated FK
(for a discrete solution), or it can present another challenge
to overcome for a continuous solution. For example, Chen
et al. presents a recursive Newton-Euler algorithm that con-
structs the equations of motion of a tree-structured modular
reconfigurable robot described using simplified vertices and
edges [32]. For developed reconfigurable robot manipulators,
direct internal measurement of their reconfiguration can be
challenging. The use of external motion tracking cameras is a
popular mechanism for aiding modelling of the robot, and has
been utilised in autonomously identifying the kinematic model
(that is, determining the robot kinematic structure, followed by
an estimation of the forward kinematics) of a robot where no
prior knowledge of the robot geometry is assumed [33].

In this paper, we introduce a topology optimisation method
for malleable robots based on distance geometry, which is ca-
pable of determining feasible robot geometric topologies (con-
figurations of the robot joints defined by interpoint-distances)
based on a desired end effector point. The developed robot
is shown in Fig. 2. A single vector defining the end effector
location and orientation is required for the feasible topologies,
and once determined the malleable robot can be extrinsically
reshaped using real-time motion tracking feedback to aid
alignment to the desired topology.

This paper is an evolved paper from a previous article that
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Fig. 3. Exploded CAD of the two revolute joints, (a) joint 1 and (b) joint 2, of the malleable robot, showing highlighted cable and vacuum pass-through.

Fig. 4. Comparison of the layer jamming termination methods: (a) A typical termination performed by trimming the layers to the desired length, (b) the
proposed layer termination method with added passive layers, (c) cross-sectional view of the malleable link showing the layer jamming area of interest, and
(d) a plot of overlapped layers against distance from link end, comparing the typical termination (red) and the proposed termination with added passive layers
(blue). In the typical design a decrease in layers towards the link end is shown, as well as the misalignment of layers resulting in the oscillation between
10–11 overlapped layers far from the link end.

presented a preliminary design of a 2-DOF malleable robot,
along with its workspace definition [20]. This paper improves
and refines this design, and introduces the computation of
the forward and inverse kinematics as well as the topology
reconfiguration of the robot.

The rest of this paper is organised as follows. In section
II, the improved design of a malleable robot is explored and
the developed malleable robot is described. In section III and
IV, the distance-based parameters and main set of formulae
defining the malleable robot workspace are identified, and
then the symbolic equation of the workspace surface traced
by the end effector of a 2-DOF malleable robot is obtained,
along with a presentation of its workspace categories. In
section V, we compute the forward and inverse kinematics
of the malleable robot based on trilateration. In section VI
we describe the developed topology optimisation methodology
and subsequent robot joint calibration. In sections VII and
VIII, we evaluate and comment on the performance of the
developed kinematics and topology optimisation. Finally, we

conclude in section IX.

II. MALLEABLE ROBOT DESIGN

A 2-DOF malleable robot, formed from two revolute joints,
a malleable link, and a rigid link, was developed following
our previous work [20]. Joint 1, positioned at the base of the
robot, provides rotation in the z-axis. Joint 2 was positioned
at the end of the malleable link, providing rotation in the
axis perpendicular to the termination end. Both joints were
constructed from a Dynamixel MX-64 servo motor, with a 3D
printed ABS housing, and a thrust ball bearing (size 51106)
providing force distribution of the motor torque to the output
side of the joint. The malleable link is a variable stiffness
link that uses Mylar-based layer jamming to transition between
rigid and flexible modes, with a maximum length of 700 mm
and a minimum length of 550 mm. The rigid link attached to
the secondary joint has a length of 370 mm (actual distance
of 450 mm between joint axis and end effector). The link
was composed of a 42 mm � polypropylene tube, and was
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Fig. 5. Partially constructed malleable link highlighting the design of the
variable stiffness components.

attached to the robot using 3D printed ABS link ends similar
to those used on the malleable link. The dimensions of the
distal link were selected to be like that of the malleable link,
with the shorter length chosen to prevent frequent collisions
with the floor plane. Details of the joints and malleable link
are discussed next.

A. Joints

In order to provide robust motion tracking of the manipu-
lator geometry, modular tracking mounts were added to both
revolute joints along the axis of rotation. On these, mounts
with 3 reflective markers were placed equidistant around the
revolute axes, allowing for the creation of a rigid body with a
central point located on the axis for each mount. For joint
1, this required markers to surround the joint, due to the
positioning limitations imposed by the fixation to a base and
malleable link. For joint 2, this was straightforward due to
the free space either side of the aligned input-output joint.
The design of the malleable robot also necessitated a ’clean’
implementation, with any pass-through elements, such as wires
for controlling an end effector, passing through the axis of
the joints rather than as an external system routed along the
robot topology. This was done to prevent any change in length
of such systems experienced under certain configurations,
which would result in limitations being placed on the topology
reconfiguration of the robot. A similar issue regarding tendon
lengths in a reconfigurable gripper was addressed by Lu et
al. [34]. For joint 1, this also required partially enlarging and
reinforcing the design to accommodate the vacuum tube used
to control the stiffness of the malleable link. The modular
tracking mounts, along with the cable and vacuum pass-
through design, can be seen in Fig. 3.

B. Malleable Link

For the malleable link, layer jamming using conically
wrapped overlapping sheets of Mylar R© (0.18 mm) (polyethy-
lene terephthalate), first presented as a medical manipulator
by Kim et al. [35], and later enlarged for a malleable link
in our previous research [23] was used. The laser cut flap
pattern, detailed in Fig. 6, contained 12 flaps spanning the
circumference of the link, with a minimum of 10 overlapping
layers always in contact. Flap parameters used were flap

Fig. 6. Double-sided flap pattern specifications for layer jamming sheath with
guide holes and slots.

length L = 45mm, flap width W = 13mm, mid length
h = 16mm, guide hole distance d = 9.5mm, and inclination
angle ϕ = 12.75◦. The flap pattern was then wrapped conically
and contained within two cylinder membranes of latex sheet
(0.25 mm), and sealed with link termination ends 3D printed
from Vero Clear on a Stratasys Objet 500, which also provided
mounting points for an internal structural spine to prevent
excessive deformation under extreme bending of the link, as
well as mounting points to attach the other components of the
robot. The internal spine, developed in our previous work [22],
was 3D printed from Acrylonitrile Butadiene Styrene (ABS),
with flexible couplings connecting the spinal segments printed
from Ninjaflex material. By changing the pressure inside the
sealed latex membranes using a vacuum pump (BACOENG
220V/50Hz BA-1 Standard), the Mylar layers compress to-
gether, and the cumulative friction causes a significant increase
in rigidity, proportional to the negative pressure applied. The
components of the implemented malleable link can be seen in
Fig. 5. The 700 mm length of the malleable link was selected
based on the minimum bending radius of the link, such that
an equivalent bending performance to a 3-segment continuum
robot was achieved, where each segment is capable of 90◦

bending. As the malleable link is a single structure, a bend
capability of 270◦ was implemented.

While layer jamming provides a high level of stiffness when
a vacuum is applied between the encapsulating membranes,
the point at which the layer jamming fixes to the rigid joints
of the robot (which we call ’layer termination’) presents a
significant reduction in that stiffness. In typical layer jamming,
due to the conical design, a fixture point is not obvious.
Therefore, the typical solution is to cut the tubular structure
to form a flat face, which can then be adhered to. This
is shown in Fig. 4(a). As the flap pattern is fixed at the
middle strap, this cut results in the removal of ∼half of the
overlapped layers at the termination point, which is reached
by a progressive decrease in overlapped layers from ∼45 mm
from the termination point. This decrease is shown in Fig. 4(d).
To correct this, we introduce passive layers as a separate
system to the layer jamming, which fill the position of the
removed layers. These are fixed to the link end, at the position
in red shown in Fig. 4(c), and do not extend/compress with
the layer jamming–however they mitigate the described loss
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of stiffness and allow bending when stiffness is deactivated.
The added passive layers are shown in Fig. 4(b) in blue,
and the resulting increase in overlapped layers is shown in
Fig. 4(d). The transition as an outer flap finishes and an inner
flap begins also results in a variation of the overlapped layers,
shown in Fig. 4(d) at distances greater than ∼45 mm. This
was additionally corrected by slightly increasing the length of
the flaps by 2 mm.

III. OVERVIEW OF DISTANCE GEOMETRY

Distance geometry, first defined by Leonard Blumenthal in
first half of the 20th century [36], is a relatively new branch of
mathematics that focuses on the study of geometries through
the use of their metrics – i.e. their distances. It avoids the need
to define arbitrary reference frames, and the combination of
representations of rotations and translations in the generation
of equations [37], as it occurs in a kinematic modelling
using Denavit-Hartenburg (D-H) parameters. In this paper,
distance geometry is used as an alternative to other methods
for computing the kinematics and topology reconfiguration,
particularly D-H parameters, as it avoids further hardware and
software complexities. For example, it may be challenging to
directly obtain the relative joint positions and angles using
internal sensors in the malleable robot for D-H modeling,
which is an ongoing area of research in continuum robots
for instance [38]. In contrast, distance geometry only requires
the localisation of points distributed along the robot, which
can simply be achieved with external motion tracking. This is
especially key for the computation of workspaces of malleable
robots as D-H parameterization [39], [40], cannot be directly
employed since both link dimensions and the relative orienta-
tion of the joints can change. Suitable approaches to perform
the workspace analysis are screw theory [41], [42] or distance
geometry [37] since the parameterisation does not depend on
relative angles and distances between joint reference frames.
We make use of a distance-geometry-based method herein as
the technique has been shown to simplify the computation of
the workspace equation of complex mechanisms [43], [44].

A. Notation

In what follows, we denote a point in E3 as Pi, pi,j =
−−→
PiPj

denotes the vector from Pi to Pj , pi,j,k = pi,j × pi,k
denotes the cross product between vectors pi,j and pi,k, and
si,j = ‖pi,j‖2 = d2i,j denotes the squared distance between Pi
and Pj , with vector coordinates arranged as column vectors.
The vectors pi,j , pi,k, and pi,j,k in general represent a non-
orthogonal reference frame that is denoted by the column
vector of nine components qi,j,k = (pTi,j ,p

T
i,k,p

T
i,j,k)T .

The tetrahedron defined by points Pi, Pj , Pk, and Pl is
denoted as i,j,k,l, with its origin located at Pi, its base given
by the triangle i,j,k with area Ai,j,k, base vectors pi,j and
pi,k, and output vectors pi,l, pj,l, and pk,l. This notation is
shown in Fig. 7 [45], [46].

B. Cayley-Menger Determinants

The Cayley-Menger bideterminant of two sequences of n
points, [Pi,1, ..., Pi,n] and [Pj,1, ..., Pj,n], is defined as [37]

Fig. 7. A dihedral angle φ of the tetrahedron i,j,k,l defined by the two
triangles i,j,k and i,k,l. Base vectors pi,j and pi,k and output vectors
pi,l, pj,l, and pk,l are shown. In this case, Vi,j,k,l > 0.

D(i1, ..., in; j1, ..., jn) = 2

(
−1

2

)n

∣∣∣∣∣∣∣∣
0 1 · · · 1
1 si1,j1 · · · si1,jn
...

...
. . .

...
1 sin,j1 · · · sin,jn

∣∣∣∣∣∣∣∣ .
When the two point sequences are the same,

D(i1, ..., in; i1, ..., in), this is abbreviated as D(i1, ..., in),
known as the Cayley-Menger determinant. For example, for
the 5 points D(P1, . . . , P5) this is

D(1, 2, 3, 4, 5) = − 1

16

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 s1,2 s1,3 s1,4 s1,5
1 s1,2 0 s2,3 s2,4 s2,5
1 s1,3 s2,3 0 s3,4 s3,5
1 s1,4 s2,4 s3,4 0 s4,5
1 s1,5 s2,5 s3,5 s4,5 0

∣∣∣∣∣∣∣∣∣∣∣
.

(1)

For the general point sequence P1, P2,. . .,Pn, the Cayley-
Menger determinant gives (n− 1)!2 times the squared hyper-
volume of the simplex spanned by the points in En−1 [47].
Hence, D(1, 2, 3, 4, 5) = 0 in E3. Similarly, for n = 3, we
have [48],

D(i, j, k) = 4A2
i,j,k = ‖(Pj − Pi)× (Pk − Pi)‖2, (2)

which is the Heron’s formula relating the area Ai,j,k of
triangle i,j,k. This can also be expressed purely in interpoint
distances as:

Ai,j,k = (pi,j,k(pi,j,k −
∥∥pi,j

∥∥)

(pi,j,k −
∥∥pi,k

∥∥)(pi,j,k −
∥∥pj,k

∥∥))
1
2 , (3)

where pi,j,k is half the perimeter of the triangle i,j,k defined
as

pi,j,k =
1

2

(∥∥pi,j
∥∥+

∥∥pi,k
∥∥+

∥∥pj,k
∥∥) . (4)

For n = 4 we obtain the orientated volume Vi,j,k,l of the
tetrahedron i,j,k,l as

D(i, j, k, l) = 36V 2
i,j,k,l. (5)
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It is defined as positive if |pi,j ,pi,k,pi,l| > 0, and negative
otherwise [45]. For Cayley-Menger bideterminants, for n = 3
we have

D(i, j, k; i, k, l) = 4Ai,j,kAi,k,l · cos (φi,j,k,l)

= ((Pi − Pk)× (Pj − Pk))·
((Pi − Pl)× (Pk − Pl)), (6)

where φi,j,k,l is the dihedral angle between the two planes
defined by the triangles i,j,k and i,k,l. This can be seen in
Fig. 7.

C. Trilateration

Trilateration is a method for computing the location of an
unknown point using known distances of the point from 3
different known sites. For example, given a tetrahedron i,j,k,l

(Fig. 7), we can compute the output vector pi,l as [45]

pi,l = Wi,j,k,lqi,j,k, (7)

where

WT
i,j,k,l =

1

4A2
i,j,k

 −D(i, j, k; i, k, l)I
D(i, j, k; i, j, l)I

6Vi,j,k,lI

 , (8)

with I being the 3× 3 identity matrix.

IV. WORKSPACE DEFINITION

Our 2-DOF malleable robot is defined by two joints and a
malleable link: a vertical revolute joint at the base, a malleable
link connected co-linearly to this joint output, and a second
revolute joint connected perpendicularly to the other end of
the malleable link. Attached to this second joint is a rigid
link, also attached perpendicularly, which then terminates at
an end effector. We can model an arbitrary link connecting
two skew revolute axes (in this case the malleable link) as
a tetrahedron by selecting two points along each of the joint
axes and connecting them all with edges, and we can model
the rigid link connected to the secondary revolute axis as a
triangle by connecting the two joint axis points and a single
point at the end effector similarly [43]. We can then model the
developed 2-DOF malleable robot using distance geometry as
a bar-and-joint framework of 6 points and 12 edges, shown
in Fig. 8, with P5 corresponding to the end-effector, and P1

corresponding to the robot origin. The axes of the revolute
joints are defined by the points P1 and P2 for joint 1, and
P3 and P4 for joint 2. An additional fixed point P0 is defined
offset from the origin at P1, which is necessary for the forward
and inverse kinematics, but not for the workspace definition or
topology reconfiguration. The interpoint distances can further
be categorised as:

1) Distances with constant length, that do not change with
variation in robot topology and positioning (p0,1, p0,2,
p1,2, p3,4, p3,5, p4,5).

2) Distances that vary with changes in robot topology, but
not robot positioning (p1,3, p1,4, p2,3, p2,4).

Fig. 8. The 2-DOF malleable robot arm can be modelled as a bar-and-joint
framework formed by connecting 5 points: P1 and P2, which define the first
axis; P3 and P4, which define the second axis; and P5, which corresponds to
the centre of the end effector. An additional offset point P0 is added, which
is used to define the angle of the first axis. The distances between points can
then be categorised as constant distances that do not change (black), distances
that vary based on the topology configuration of the robot (red), and distances
that vary based on the joint positioning of the robot (blue).

3) Distances that vary with changes in robot positioning,
but not robot topology (p1,5, p2,5).

For defining the workspace, we can represent this as a
Cayley-Menger determinant of 5 points (not including P0),
shown in Eq. 1. As D(1, 2, 3, 4, 5) = D(4, 3, 2, 1, 5) = 0, we
can use the properties of the determinant of block matrices
[49] to show that this condition can be compactly expressed
using 3× 3 matrices as

D(1, 2, 3, 4, 5) = 2 s1,2 s1,5 s2,5 det
(
A−BCBT

)
= 0, (9)

where

A =

 0 1 1
1 0 s3,4
1 s3,4 0

 , B =

 1 1 1
s2,4 s1,4 s4,5
s2,3 s1,3 s3,5

 , and

C =
1

2

 −
s1,5

s1,2 s2,5
1
s1,2

1
s2,5

1
s1,2

− s2,5
s1,2 s1,5

1
s1,5

1
s2,5

1
s1,5

− s1,2
s1,5 s2,5

 .
Using the notation described in Fig. 8, we observe that in

E3 (where a 2-DOF malleable robot can physically exist),
equation (9) is solely satisfied. We can exploit this fact to
compute the Cartesian equation of the robot workspace, say
Γ(x, y, z), by deriving the locus of point P5 (the end effector),
whose coordinates are p5 = (x, y, z) in a particular reference
frame. This computation can then be simplified by assuming,
without loss of generality, that P1 is equal to the origin
of the global reference frame and that P2 is located in the
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Fig. 9. Generated theoretical example workspaces of a 2-DOF malleable robot for each of the robot topology types, using the equations defined in section
IV which do not take into account joint limits. (a) Spherical, (b) PUMA-like, (c) SCARA, and (d) General Articulated.

positive side of the z-axis, such that p1 = (0, 0, 0) and
p2 = (0, 0, d1,2). Consequently,

s1,5 = x2 + y2 + z2

s2,5 = x2 + y2 + z2 − 2d1,2z + s1,2.
(10)

Substituting equation (10) into equation (9) and fully ex-
panding the result and rearranging terms, we obtain

Γ(x, y, z)
def
= q0 (x2 + y2 + z2)2 + q1 d1,2 z (x2 + y2 + z2)

q2 x
2 + q2 y

2 + q3 z
2 + q4 d1,2 z + q5, (11)

where qi, i = 0, . . . , 5 are polynomials in s1,2 = d21,2, s1,3,
s1,4, s2,3, s2,4, s3,4, s3,5, and s4,5. Γ(x, y, z) is a degree 4
(quartic) algebraic surface that corresponds to the workspace
surface traced by the end effector (point P5) of a 2-DOF
malleable robot. The full expressions of the polynomials qi
cannot be included here due to space limitations; however
these polynomials can be easily reproduced using a computer
algebra system following the above steps.

Additionally, we can define certain workspace categories
belonging to specific robot configurations (topologies), by
providing further constraints to the two revolute axes of the
malleable robot. Malleable robots are designed to be general
purpose serial robot manipulators, and so follow a similar
approach where the task workspace defines the configuration.
The robot configurations defined herein are Spherical, PUMA-
like, SCARA, and General Articulated, with the constraint
definitions of each discussed next.

A. Spherical (or variable radius) case

For the spherical robot configuration, the two revolute axes
of the robot coincide at the base (in this case, the origin),
such that, according to the notation of Fig. 8, points P1 and
P3 are coincident. Thus, s1,3 = 0, s2,3 = s1,2, and s3,4 = s1,4.
Substituting into (11) we get

ΓA(x, y, z)
def
= x2 + y2 + z2 − s3,5 = 0, (12)

which corresponds to the equation of a sphere of radius d3,5
centred around P1. Note that in this case the radius d3,5 is not
constant, and can be adjusted according to desired task. An
example of this workspace can be seen in Fig. 9(a).

B. PUMA-like (or variable centre and radius) case

For the PUMA-like robot configuration, the two revolute
axes of the robot are perpendicular and coincide at a point
located above the base (in the positive side of the z-axis), such

that points P2 and P4 are coincident, and the angle ∠P1P2P3

is π
2 . Thus, s2,4 = 0, s1,4 = s1,2, s3,4 = s2,3, and s1,3 =

s1,2 + s2,3. Substituting these values into (11), we obtain

ΓB(x, y, z)
def
= x2 + y2 + (z − d1,2)2 − s4,5 = 0, (13)

which corresponds to the equation of a sphere of radius d4,5
centred at P2. In this case, both the centre (0, 0, d1,2) and
radius d4,5 are not constant, they can be adjusted according to
the required task. Note that the same equation is obtained when
the perpendicularity of the two axes is relaxed. An example
of such a workspace can be seen in Fig. 9(b).

C. SCARA (or planar) case

For a SCARA robot configuration, the two revolute axes of
the robot are parallel, resulting in a planar workspace. Using
projective geometry arguments, this implies that there exist a
point in the second axis, say P3, such that the distance between
it and the xy-plane is δ, with δ > 0, δ →∞. Hence, d1,3 = δ,
d2,3 = d1,2 + δ, d3,4 = z4 + δ, d3,5 = z5 + δ, where zi is
the distance between Pi and the xy-plane. Substituting these
values into (11), we obtain an equation that can be arranged as
a quadratic polynomial in δ: Ω = k2(x, y, z)δ2+k1(x, y, z)δ+
k0(x, y, z) = 0. By factoring δ2 out of this polynomial, we
obtain Ω = δ2(k2(x, y, z) + k1(x,y,z)

δ + k0(x,y,z)
δ ) = 0. Since

δ →∞, then Ω = k2(x, y, z) = 0.
As the two revolute axes of the robot are parallel, it is neces-

sary to include additional constraints in Ω = k2(x, y, z) = 0,
that is, P2=P4=P∞. This implies that s2,4 = 0 and d1,4 =
d1,2. Substituting these values into Ω = k2(x, y, z) = 0, we
get (z4 − d1,2) s1,2 Φ(x, y, z) = Φ(x, y, z) = 0. Finally, we
can include the constraint z4 = d1,2 (as P2=P4) in the result
(Φ(x, y, z)), yielding,

(z − z5 )
(
x2 + y2 + z2 − 2 d1,2z + d1,2

2 − s4,5
)

= 0.

We can then follow a similar procedure to that for δ, but
instead for d1,2 (d1,2 → ∞ since P2 = P4 = P∞), and
finally we obtain

ΓC(x, y, z)
def
= (z − z5 ) = 0, (14)

which corresponds to the equation of a plane parallel to the xy-
plane. Observe that z5, the distance between the end effector
and the xy-plane, is not constant and can be adjusted according
to need. An example of this workspace can be seen in Fig. 9(c).
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D. General articulated

Finally, we define the general articulated robot configuration
as any robot configuration that does not satisfy any of the
constraints of the 3 previously defined robot configurations.
Thus, the structure of this workspace surface is Γ(x, y, z) = 0
(equation (11)). An example of this workspace, corresponding
to a torus, can be seen in Fig. 9(d).

V. FORWARD AND INVERSE KINEMATICS

A. Forward Kinematics

In computing the forward kinematics of the malleable robot,
we specify the joint angles (in this case, the dihedral angles–
use of the physical joint values is addressed later), and obtain
the new position of P5.

We assume the robot is in a fixed topology, and that
the current point positions (and therefore their interpoint
distances) are known. Starting from the origin, we define
φ1,0,2,3 as the joint 1 dihedral angle between the fixed triangle

0,1,2 and the current topology defined triangle 1,2,3. We
then define φ3,2,4,5 as the joint 2 dihedral angle between
the current topology defined triangle 2,3,4 and the constant
length triangle 3,4,5.

We first compute the new location of P3, defined by the new
dihedral angle φ1,0,2,3 value. Using the interpoint distances
we can calculate the areas of both triangles (A0,1,2,A1,2,3)
using Eq. 2. Substituting into Eq. 6, we can solve for the
new distance p0,3. With all distances for the tetrahedron

1,0,2,3 known, we can compute the new position of P3 using
trilateration.

After using Eq. 5 to compute the orientated volume V1,0,2,3,
we can use the now known tetrahedron 1,0,2,3 distances to
compute the new position of point P3:

P3 = P1 + W1,0,2,3q1,0,2. (15)

With the new position of P3 known, and the constant
distance p3,4, we can compute the position of P4 using the
points P1, P2, and P3 and their known interpoint distances:

P4 = P1 + W1,3,2,4q1,3,2. (16)

Finally, we can compute the new location of P5 using the
same process for P3, using the new positions of P3 and P4

and the new dihedral angle φ3,2,4,5 for joint 2:

P5 = P3 + W3,2,4,5q3,2,4. (17)

As the orientation of the volume of tetrahedra requires all
distances to be known (Eq. 5), in determining P3 and P5 we
instead define the orientation based on the dihedral angles,
where it is defined as positive if φi,j,k,l < 180◦ and negative
otherwise, where 0◦ ≤ φi,j,k,l ≤ 360◦.

B. Inverse Kinematics

For the inverse kinematics of the robot, we provide the end
effector position (P5) and compute the required dihedral angles
necessary to obtain it. It is assumed the current topology of
the robot (its positions and interpoint distances) are all known.

Fig. 10. Bar-and-joint framework of the malleable robot with the desired end-
effector location, P5, with vector p5,6 defined by the point P6 that defines the
end effector orientation. Known distances within the robot are shown in black,
and unknown distances (that must be computed with each configuration) are
shown in red. A green distance depicts the malleable link. By varying the
value of the dihedral angle φ5,3,6,7, alternative positions of points P3 and
P4 can be generated for a specific end effector position and orientation. The
relation of the points to the physical robot is shown on the left.

We first calculate the angle of joint 2, φ3,2,4,5. Using
the new position of P5, we know the new distance p2,5.
Rearranging Eq. 6 to solve for φi,j,k,l we obtain

cos (φi,j,k,l) =
D(i, j, k; i, k, l)

4Ai,j,kAi,k,l
,

=
D(i, j, k; i, k, l)

D
1
2 (i, j, k)D

1
2 (i, k, l)

. (18)

Using Eq. 18 along with Eq. 3, we can calculate the angle of
joint 2 φ3,2,4,5 using only interpoint distances. This procedure
returns the smallest value of the dihedral angle, limited to the
range 0◦ ≤ φi,j,k,l ≤ 180◦. We can extend this value to the
full 360◦ range to find the two valid values of the dihedral
angle, where it is 360◦ − φi,j,k,l or φi,j,k,l otherwise. These
are known as the elbow up and elbow down configurations of
an arm.

Next, we can compute the new position of P3 as performed
in the forward kinematics using Eq. 7, using the current
topology points of the robot, along with the new position of
P5. Thus,

P3 = P5 + W5,1,2,3q5,1,2. (19)

With the new position of P3 known, we can repeat the
procedure for calculating φ3,2,4,5 for φ1,0,2,3. If desired, the
new location of P4 can also be computed using Eq. 7 and the
calculated dihedral angle φ1,0,2,3.

VI. TOPOLOGY RECONFIGURATION

The key advantage of malleable robots over traditional
robots is the ability to reconfigure their topology, resulting in
a change in their relative revolute joint positions and therefore
a change in the working environment of the robot. Despite the
low DOF of the 2-DOF malleable robot, this reconfiguration
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Fig. 11. Top: A generated sampling (n = 8) of points P3 and P4 (simulated)
from a given end effector specification (experimental measurement). Bottom:
Simulated distal link orientations for n = 2, n = 3, and n = 4 are shown.

enables a much larger working environment. To fully utilise
this advantage, we must determine the necessary reconfigura-
tion required for a desired end effector position, allowing us to
dynamically reconfigure the topology of the malleable robot,
the relation between the joint axes and the distances between
them, depending on the task workspace required.

When computing the forward and inverse kinematics, we
assume the geometric topology of robot is known. To compute
the topology reconfiguration, we instead assume only the
constant distances and the distances that define the end effector
position (variable length–position) are known, shown in Fig. 8.
To compute a robot topology, a single desired end effector
position along with the partial orientation of the distal link is
required. We assume this point is reachable, and thus exists
within the reconfiguration workspace of the robot. We define
the end effector position as P5, with the orientation of the
distal link determined by a second point P6 located along the
central axis of the distal link, perpendicular to the vector p3,4,
as shown in Fig. 10 (left). The orientation of the distal link
is therefore along the vector p6,5, however is not restricted in
rotation about this vector.

We sample (interpolate discrete points) a desired number of
orientations, n, of the distal link around the axis p6,5, which
produces a set of reconfigurations and pairing workspaces, of
which an optimal workspace can then be selected by the user
based on their desired robot topology. Given a desired P5 and
P6, we first define a point P7 in the positive z-axis above P6.
With this new P7, we sample the dihedral angle φ5,3i,6,7 =
π(i−1)
n−1 where 1 ≤ i ≤ n is the current sample. The bar-

joint framework of the components of this method is shown
in Fig. 10 (right). From the sampled dihedral angle φ5,3i,6,7,
we first compute the new distance s3,7i using eq. 18, solving
for the unknown distance. With all distances then known in
the tetrahedron 5,3i,6,7, we compute the position of P3i for
each sampling as

P3i = P5 + W5,7,6,3iq5,7,6. (20)

With the position of P3i known for each sample, we can

compute the position of P4i using the tetrahedron 5,3i,6,4i

P4i = P5 + W5,3i,6,4iq5,3i,6, (21)

where the distance d3i,4i = d3i,6+d4i,6, resulting in a flattened
tetrahedron with a dihedral angle of π. An example sampling
demonstrating the generation of points P3i and P4i for a
desired end effector position is shown in Fig. 11. Simulated
workspaces along with their distal link orientation for a subset
of these examples are shown in Fig. 12.

With the locations of P1 to P5 for each sample known, we
can simply obtain the interpoint distances (specifically d1,3,
d2,3, d1,4, d2,4) which define the robot topology.

A. Joint Recalibration

Once a robot topology reconfiguration is carried out, a
problem arises where the relation between the encoders of
the joints and the dihedral angles of the joints change. This is
due to a topology reconfiguration being determined only by P3

and P4, allowing free movement and positioning of the rest of
the robot. As the kinematics of the robot is determined using
the dihedral angles, and the control of the robot is achieved
using the physical joint encoders, this relation needs to be de-
termined after each topology reconfiguration. A demonstration
of this joint offset problem can be seen in Fig. 13, where a
joint absolute value (θ2) differs from the dihedral angle of
joint 2 (φ3,2,4,5).

It is assumed the topology of the reconfigured robot is
known. From this topology we can compute the current
dihedral angles, φ1,0,2,3 and φ3,2,4,5, using Eq. 6. From the
physical robot, we can also directly measure the current motor
positions, θ1 and θ2. Finally, we must compute the direction of
the motor alignment, which can be performed by moving each
motor and measuring the change in angle. If it is positive, we
define the offset direction coefficient, k, as 1, and -1 otherwise.
We can then compute the offset amount, β, using the following

β = θ − kφi,j,k,l, (22)

with known values of k and β for each joint, the robot is
calibrated, and the kinematics of the robot can be directly
converted to joint positions by rearranging Eq. 22 for θ.

Considering the prediction of this joint offset, we observe
that for a specific topology, there are two ‘valid’ reconfigura-
tions that satisfy the geometry, which will produce identical
workspaces. Both ’valid’ reconfigurations are demonstrated
in Figure 14. This is because, while the base joint is fixed,
the second joint can align with the desired axis in either
direction. The offset direction coefficient correlates with the
dihedral angle φ3,2,4,5 orientation, which can be determined
by computing the scalar triple product:

P3 · (P4 × P5), (23)

The variation in sign of the resulting scalar triple product
directly correlates with the offset direction coefficient. When
the scalar triple product is negative, so is the offset direction,
and vice versa.
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Fig. 12. Simulated workspaces of a single topology reconfiguration. The distal linkage positions of each configuration along with their resulting workspaces
are shown. Below each subfigure the value of the dihedral angle φ of the tetrahedron 5,3,6,7 is listed.

Fig. 13. Demonstration of the joint offset problem, overlaid a joint 2 of the
malleable robot. The joint absolute value (θ2) is shown to differ from the
plane angle of joint 2 (φ3,2,4,5).

Fig. 14. Demonstration of two reconfigurations which produce identical
workspaces and have identical dihedral angles, however have different joint
offset directions. (a) A reconfiguration with a positive joint offset and (b) a
reconfiguration with a negative joint offset.

The offset amount β is however more difficult to predict.
The location where the malleable link enters and rigid link
exits the secondary joint once reconfigured are not known, as
it is up to the user how they would like to reconfigure the
robot. In other words, the secondary joint is free to rotate
around its axis before being fixed in place, as herein we are
only interested in aligning the axes of the robot to the desired
axes. As the angular position of the second link is then up to
the user, it is not possible to predict the offset amount.

Fig. 15. Experimental setup for motion tracking the malleable robot.

VII. EXPERIMENTAL EVALUATION

We first evaluated the end effector workspaces of the
malleable robot in different robot topologies to demonstrate
its capability to generate an infinite number of workspaces.
Furthermore, this also allowed us to prove the viability of the
malleable robot concept. Reflective motion tracking markers
were fixed to each joint of the robot and the end effector. Seven
OptiTrack Flex3 cameras were used to track the movement of
the robot, and the experimental setup can be seen in Fig. 15.
The calibration error of the cameras detailed a mean 3D error
for overall projection as 0.455 mm and overall wand error
as 0.081 mm. Prior to measurement, the desired geometric
topology of the robot was selected. Using real-time feedback
from the motion tracking, the malleable robot was manually
configured and fixed in position. A total of twelve robot
topology geometries were selected, 3 for each of the robot
topology types defined in section IV.

The parameters (i.e., distances) that define the geometry
of the robot for each of the configurations are given in
Fig. 16, alongside the collected experimental results. Once
the geometry of the robot was confirmed and set, the tracking
markers on each joint were removed leaving only a sole marker
at the end effector. The robot then followed a predetermined
path covering the entire workspace with the end effector by
reaching all possible joint positions in steps of 0.088◦. Due to
limits imposed on the joints, the maximum angles physically
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Fig. 16. Experimental results of the workspaces of the 2-DOF malleable robot, for 3 configurations of each type of robot topology, (Top: ISO; Bottom left
to right: YZ and XY): (a)(b)(c) Spherical (green), (d)(e)(f) PUMA-like (blue), (g)(h)(i) SCARA (purple), and (j)(k)(l) General Articulated (yellow). Areas of
the workspaces missing due to joint limits are highlighted with a red asterisk. Constant distances (mm) across all configurations were d1,2 = 58, d3,4 = 49,
d3,5 = 455, and d4,5 = 460. Specific distances (mm) for each configuration were (a) d1,3 = 395, d1,4 = 444, d1,5 = 614, d2,3 = 343, d2,4 = 392, d2,5 =
572, (b) d1,3 = 511, d1,4 = 559, d1,5 = 695, d2,3 = 472, d2,4 = 520, d2,5 = 666, (c) d1,3 = 349, d1,4 = 396, d1,5 = 443, d2,3 = 299, d2,4 = 347, d2,5 =
441, (d) d1,3 = 650, d1,4 = 667, d1,5 = 969, d2,3 = 603, d2,4 = 619, d2,5 = 930, (e) d1,3 = 523, d1,4 = 525, d1,5 = 529, d2,3 = 466, d2,4 = 469, d2,5 =
497, (f) d1,3 = 642, d1,4 = 669, d1,5 = 551, d2,3 = 588, d2,4 = 614, d2,5 = 510, (g) d1,3 = 500, d1,4 = 544, d1,5 = 562, d2,3 = 451, d2,4 = 494, d2,5 =
520, (h) d1,3 = 569, d1,4 = 596, d1,5 = 503, d2,3 = 540, d2,4 = 564, d2,5 = 474, (i) d1,3 = 535, d1,4 = 581, d1,5 = 647, d2,3 = 483, d2,4 = 528, d2,5 =
604, (j) d1,3 = 671, d1,4 = 670, d1,5 = 1009, d2,3 = 626, d2,4 = 625, d2,5 = 981, (k) d1,3 = 668, d1,4 = 656, d1,5 = 385, d2,3 = 620, d2,4 = 609, d2,5 =
3647, (l) d1,3 = 593, d1,4 = 618, d1,5 = 726, d2,3 = 558, d2,4 = 581, d2,5 = 718.
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Fig. 17. The defined workspace categories of the malleable robot topologies: (a) Spherical, (b) PUMA-like, (c) SCARA, and (d) General Articulated.

Fig. 18. Alignment profile of the interpoint distances d1,3, d1,4, d2,3, and d2,4 of the malleable robot over time, as a manual reconfiguration is completed.
An enlarged plot is shown far right of the final position, showing a <10 mm individual interpoint offset.

achievable by each joint were 10◦ to 350◦ for the primary
joint and 53◦ to 307◦ for the secondary joint, with 0◦ aligned
co-linearly with the connecting link. Examples for each of the
robot topology types can be seen in Fig. 17.

The geometric parameters of the robot (i.e., distances) for
each assessed configuration are presented in Fig. 16, where the
experiment results obtained are shown. Once each geometry
was confirmed, the tracking markers on the joints were re-
moved, leaving only the single marker on the end effector. The
end effector was then moved throughout the entire workspace
of each robot topology by progressing through all possible
joint positions in steps of 0.088◦. Due to joint limits, the
maximum angles actually achievable by each joint were 10◦

to 350◦ and 53◦ to 307◦, for the primary and secondary
joint, respectively, with 0◦ aligned with the connecting link.
Examples of each robot topology type can be seen in Fig. 17.

We next evaluate the ability to align the robot to the desired
optimal geometric topology. Using the same motion tracking
setup, we constantly track the positions of P1−4 and compute
the interpoint distances in real-time. By comparing these
actual interpoint distances to the desired interpoint distances
to determine their offset, we can determine how close a user
is to correctly aligning the robot in the optimal topology. An
example of this alignment plot over the course of a manual
reconfiguration can be seen in Fig. 18. A 3D plot of the
desired and actual points is also available to the user in real
time for aid in alignment. Once an alignment is completed,
the robot is fixed into position and the final accuracy of the
topology instance is measured. As it is not obvious to the
user immediately how the robot should be reconfigured, we
evaluated the attainable accuracy over 10 successive repeats of
the desired reconfigurations, determining how knowledge and
experience of a topology instance affected its attainable accu-
racy. A time limit of 3 minutes was given for each alignment to

ensure consistency. This was repeated for 5 different geometric
topologies. The results showing how the positional offset
varies over a repeated topology reconfiguration, as well as how
it varies over successive different topology reconfigurations,
can be seen in Fig. 19.

We also evaluate the final reconfiguration accuracy of
multiple topologies. Five geometric topologies were selected,
and following manual reconfiguration into the new topologies
each was evaluated in terms of interpoint distance offsets.
This was repeated 5 times for each topology to obtain the
average interpoint distances offset, and the results are shown
in Table I, along with the overall average interpoint distance
offset for each topology. These reconfigurations were each
further evaluated in terms of their offset from their initial
desired end effector points. Once reconfigured, the robot was
instructed to explore its new workspace while the end-effector
location was tracked. The resulting point-cloud workspace
was then compared with the desired points to determine the
distance between the nearest point-cloud point to the desired
point, and its offset, as a method for determining if the desired
point was within the reconfigured robot workspace. The results
of this can be seen in Table II, again showing the average of
5 repeats for each topology. The normal distance and average
offset is also shown. A comparison of the achieved and desired
workspaces for the 5 topologies can be seen in Fig. 20.

Finally, we evaluate the payload of the developed malleable
robot. The robot was reconfigured into example topologies of
each of the 4 workspace categories, with P3 and P4 located
roughly at their average distance from P1, and joint 2 at
an angle of 45◦ from fully extended (actual value of 135◦).
Slotted masses held via a hook were progressively added in
increments of 50 g to the end effector at P5, and the positional
offset of the end effector was measured using the motion
tracking cameras. Results can be seen in Fig. 21.
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Fig. 19. Top: Average positional offset across successive repeated topology
reconfigurations. Bottom: Average positional offset for successive different
topology reconfigurations.

TABLE I
RECONFIGURATION ACCURACY RESULTS, SHOWING THE AVERAGE
VARIATION IN INTERPOINT DISTANCES, d1,3 , d1,4 , d2,3 , AND d2,4 ,

BETWEEN THE DESIRED AND ACHIEVED POSITIONING OF THE DISTAL
LINK OF THE MALLEABLE ROBOT. ALL DIMENSIONS ARE SHOWN IN MM.

Reconfiguration d1,3 d1,4 d2,3 d2,4 Average
A, ∆ 4.24 4.13 4.30 4.13 4.20
B, ∆ 3.34 4.55 3.13 4.87 3.97
C, ∆ 2.40 2.77 2.64 2.87 2.67
D, ∆ 3.69 4.85 3.94 4.78 4.31
E, ∆ 5.62 8.11 6.21 7.68 6.90

Average 3.86 4.88 4.05 4.87 -

VIII. DISCUSSION

The results of the workspace exploration can be seen in
Fig. 16, with 3 different variations of each geometry within the
same topology. Four distinct workspace categories were identi-
fied, correlating with the malleable robot topologies spherical,
PUMA-like, SCARA, and general articulated. For the non-
planar configurations (spherical, PUMA-like, and general ar-
ticulated), the shape of the workspace demonstrated significant
physical variation with the change of geometric parameters,
producing a change in the radius of the resulting sphere
(spherical [Fig. 16(a)-(c)] and PUMA-like [Fig. 16(d)-(f)]
case), and flattened tori (general articulated case) [Fig. 16(j)-
(l)]. In the case of the planar SCARA configuration, variations
in workspace height (z-axis) and internal radius only were
observed, due to the fixed rigid link length defining the
width of planar surface. A missing slice can be observed
(highlighted in Fig. 16 with red asterisks) on each of the
resulting workspaces, corresponding to areas not accessible
by the motion tracking cameras and joint angle limits.

By considering the construction and operation of the mal-
leable robot we can justify some of the issues with the
generated SCARA workspace. Ideally, the SCARA workspace

TABLE II
ALIGNMENT ACCURACY RESULTS, SHOWING THE AVERAGE POSITIONAL

DIFFERENCE BETWEEN THE DESIRED AND ACTUAL ROBOT END EFFECTOR
POSITION. ALL DIMENSIONS ARE SHOWN IN MM.

Reconfigu-
ration ∆X ∆Y ∆Z Normal Average %

Error
A 7.56 6.41 9.09 16.44 9.87 1.5%
B 17.46 11.18 11.51 25.00 13.82 2.3%
C 7.93 12.71 5.89 17.45 8.85 1.6%
D 8.79 5.30 1.53 11.61 5.21 1.1%
E 8.22 5.32 25.35 27.59 15.75 2.5%

Average 9.99 8.18 10.67 19.62 - 1.8%

should be a planar surface (as defined by equation (14)),
with the only variation of the end effector in the X and Y
axes. However, in the experimental results a slight variation in
height across the workspace can be observed, which can most
likely be explained due to a misalignment between the joint
axes of the malleable robot. Furthermore, when undergoing
motion the centre of mass of the robot expectedly changes.
Due to imperfect tolerances within the joints of the robot,
specifically in the primary base joint, and wrinkles in the
malleable link latex membrane, a slight variation in the desired
end effector position can be seen as the robot progresses
through the joint workspace. While this variation is minimal,
it is an aspect that must be considered in the production
of reconfigurable malleable robots. Following a completed
motion of the robot, it was also noted that a minor oscillation
of the malleable link (not-dissimilar from a spring) occurred
before dissipating. This is again an aspect of malleable robots
that must be considered, and was attributed to the elastic nature
of the membranes in the malleable link, resulting in a slight
elastic response as described in previous research on malleable
links [23]. Therefore, to reduce the effect of this, resulting
in minimal variation and oscillation of the malleable link
during an experiment, the joint speeds were reduced (25RPM)
preventing extreme forces under directional changes.

To conclude the workspace exploration results, we also
identified that the manual (extrinsic) reconfiguration of the
robot was challenging for a human to achieve accurately. For
instance, in the PUMA-like case where a sphere was desired
(Fig. 16(f)), an overlapping sphere, a form of a minimal torus,
was instead produced. This suggests that the second joint rev-
olute axis did not perfectly intersect with the first as required,
resulting in the alternative geometry of a general articulated
case. Live-feedback to the user of the robot position from the
motion tracking markers did allow for improved alignment of
the joints when compared to pure visual alignment, however
it did not account for the limitations of human manipulation
accuracy in a 3D space. While the overall achieved accuracy
was sufficient for our purposes, demonstrated by the majority
of the measured workspaces in their correct desired form, it is
clear that small variations in a reconfiguration can be critical
to the accuracy of the resulting workspace.

We next consider aligning the malleable robot to a computed
optimal geometric topology. From the results of successive
repeated alignments (Fig. 19) we observe an improvement
(logarithmic decay, R2 = 0.6074) in the manual alignment
with time, tending towards a consistently achievable average
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Fig. 20. Experimental results showing measured workspaces of the 2-DOF malleable robot following each of the reconfigurations (blue), overlaid with the
theoretical modelled ideal workspace (red) and initial desired end effector location (green). A random repeat is shown for each reconfiguration. Specific
solutions for each reconfiguration (in mm) were: A: P3 = [−165.38, 233.04, 282.09], P4 = [−117.74, 329.18, 305.53], P5 = [230, 50, 420], P6 =
[−150, 270, 290], d1,3 = 401.54, d2,3 = 376.89, d1,4 = 464.29, d2,4 = 441.22, B: P3 = [−276.22, 261.15, 284.96], P4 = [−201.81, 308.06, 219.37],
P5 = [60,−30, 390], P6 = [−250, 280, 260], d1,3 = 475.08, d2,3 = 454.21, d1,4 = 428.66, d2,4 = 411.25, C: P3 = [−345.38, 161.91, 294.70],
P4 = [−307.37, 239.70, 362.00], P5 = [40,−60, 400], P6 = [−330, 190, 320], d1,3 = 482.03, d2,3 = 460.71, d1,4 = 531.95, d2,4 = 507.92,
D: P3 = [29.61, 318.51, 264.36], P4 = [61.37, 216.33, 288.35], P5 = [−380, 130, 190], P6 = [40, 280, 273], d1,3 = 414.98, d2,3 = 392.83,
d1,4 = 365.66, d2,4 = 337.74, and E: P3 = [−66.30, 294.97, 199.19], P4 = [6.63, 282.95, 280.16], P5 = [−360, 100, 490], P6 = [−40, 290, 230],
d1,3 = 362.05, d2,3 = 343.40, d1,4 = 398.34, d2,4 = 373.56.
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Fig. 21. Plot of end-effector deflection against payload for the 4 different
types of robot topology.

Fig. 22. Reconfiguration A demonstrating how the orientation of the distal
joint affects the reachable workspace. Configurations shown are both of the
same geometric topology. (a) A configuration unable to reach the desired end
effector location (green), (b) a configuration capable of reaching the desired
position.

positional offset of 5-10 mm following around 5 repeats. When
observed over successive different topology reconfigurations
a similar trend was seen, with the addition of the average
positional offset improving (logarithmic decay, R2 = 0.8557)
and the range of values for later configurations decreasing,
shown by smaller error bars, suggesting user precision also
improves with practice. From these results we can clearly state
that aligning the malleable robot manually is not trivial, and
requires practice and training to obtain a respectable alignment
accuracy (<10 mm). Following this experiment, all following
reconfigurations that were carried out were practised with a
minimum of 10 repetitions to ensure the user was trained on
the reconfiguration and that a low reconfiguration offset was
achieved.

The 5 robot topologies that were selected for assessing
the reconfiguration accuracy, along with their measured and
modelled workspaces, are detailed in Fig. 20. The average
alignment accuracy achieved, shown in Table I, for each of the
reconfigurations was very high (<5 mm), with a maximum
of 4.88 mm and minimum of 3.86 mm recorded for the

Fig. 23. Reconfiguration D demonstrating how the orientation of the base
joint affects the reachable workspace. Configurations shown are both of the
same geometric topology. (a) A configuration unable to reach the desired end
effector location (green), (b) a configuration capable of reaching the desired
position.

variation in interpoint distances. The variation across the
interpoint distances offsets was minimal, as expected due to
the distances d1,3 and d2,3 being coupled and distances d1,4
and d2,4 coupled, with distances d1,4 and d2,4 showing a
slightly higher average offset (∼1 mm greater). Across the
topologies the average offset was similar, with a maximum
offset of 6.90 mm and minimum offset of 2.67 mm. It
was observed that the reconfigurations that are closer to the
origin (the base joint) of the malleable robot were easier in
obtaining a small offset, due to the moment caused by the
weight of the distal joint and link on the malleable link being
reduced, and thus the deflection of the link was minimised.
All reconfigurations were obtained within the time limit with
ample time to spare, suggesting a successful reconfiguration
could be achieved in 1-2 minutes, depending on the difficulty
of the reconfiguration. It was determined an alignment of
<10 mm offset was acceptable, however an ideal alignment
was an offset of <5 mm. In aligning the robot, it was also
determined to be key to achieve a consistent offset alignment
across the interpoint distances (e.g. 5 mm, 5 mm, 5 mm,
5 mm), rather than obtaining a combination of high and low
offsets (e.g. 10 mm, 0 mm, 10 mm, 0 mm), as similar offsets
resulted in the desired workspace shape being achieved with
minor translations, whereas a combination of offsets resulted
in more drastic variations to the desired workspace. From the
results obtained we can clearly state the robot was well aligned
and ready for the following alignment accuracy experiment.

The results of the alignment accuracy experiment are shown
in Table II, and the experimental plot of one random repeat
for each topology is shown overlaid the desired theoretical
workspace in Fig. 20. It was observed that the initial reconfigu-
ration of the malleable robot required additional consideration
due to the implemented joint angle limits. The joints were
limited to prevent self collision and collision with the envi-
ronment (such as the base platform), which were measured
and applied following a robot reconfiguration and before each
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workspace exploration. Due to the joint limits, only a section
of the theoretical workspace was achievable. Examples of this
issue can be seen in Fig. 22 and Fig. 23, where the variation
in distal joint position and base joint position are shown
affecting the workspace, respectively, resulting in the desired
end effector location being unobtainable. For the alignment
accuracy experiment each reconfiguration was assessed and
only reconfigurations that contained the desired end effector
location were carried out.

The results of the alignment accuracy experiment show
higher offsets than the reconfiguration accuracy results, with
an average offset of the desired end effector location of
9.99 mm, 8.18 mm, and 10.67 mm for ∆x, ∆y , and ∆z ,
respectively. Combined, these axial offsets resulted in an
average normal offset of 19.62 mm across all reconfigurations.
Reconfigurations B and E showed a higher offset (>25 mm),
whereas reconfiguration D showed the smallest offset of only
11.61 mm. The offset of reconfiguration E can be explained
by the significantly larger ∆z compared to ∆x and ∆y , where
the reconfiguration was at a large distance from the origin,
resulting in a large moment on the malleable link. Over the
workspace exploration, this caused the malleable to slightly
deflect and translate the workspace in the z axis, which can be
seen in the plotted reconfiguration E in Fig. 20. In comparison,
reconfiguration B showed a similar offset across all axis.
When compared as a percentage of the maximum radius of
the workspace of the malleable robot (1100 mm), we can
compute the percentage error of the normal offset for each
reconfiguration, shown in Table II. The results obtained were
fairly consistent, as across all reconfigurations the error was
1.8%, with the largest error shown by reconfiguration E (2.5%)
and the smallest error shown by configuration D (1.1%).

While intrinsic malleable robots are an unexplored area,
we can instead compare this accuracy to existing continuum
robots of similar structure, which are typically actuated and
significantly smaller than malleable robots. Using pneumatics
or tendons an accuracy of <15 mm can be achieved [50],
[51], and using concentric tubes an accuracy of <5 mm
can be achieved [52], [53]. We see the alignment accuracies
achieved manually with the malleable robot are close to the
accuracy expected with pnuematic and tendon driven robots,
which is impressive considering the significantly larger size
(and therefore weight) of the malleable robot. The manual
alignment process however does raise questions regarding the
resulting robot accuracy, where significant improvements must
be made for use in high accuracy environments. One method
explored for improving the alignment accuracy of extrinsic
malleable robots was the use of an Augmented Reality (AR)
headset to guide the user in the reconfiguration of the robot
[54]. With the addition of the AR headset it was possible to
reduce the normal error to <10 mm, roughly half of what was
achieved manually without the headset.

Looking at the shapes of the produced workspaces in
Fig. 20, we observe most of the reconfigurations produced
an experimental workspace matching the theoretical, with
reconfigurations A, B, and C generating an almost identical
workspace. Reconfiguration E shows the workspace translated
in the z axis, due to aforementioned reasons, while reconfigu-

Fig. 24. Boxplots of the raw alignment accuracy results for ∆x, ∆y , ∆z ,
and Normal.

ration D shows the largest variation compared to the theoretical
workspace, most likely due to inconsistent interpoint distance
offsets in the reconfiguration. This suggests some workspaces
are more susceptible to inaccuracies for the end effector, as the
smallest end effector offset was shown for this reconfiguration.
One explanation for this is the size of the workspace, where it
is significantly smaller than the other reconfigurations. Recon-
figuration A also has a small workspace, and also demonstrated
a smaller (1.5%) percentage error for the end effector offset
compared to the other reconfigurations.

The distribution of the axes offsets and normal offset of
all of the repeats for the alignment accuracy experiment are
shown in the form of box plots in Fig. 24. Here we see a
similar distribution of offsets (IQR = 5-10 mm) across all
reconfigurations, except for reconfiguration D which shows a
much smaller distribution for the ∆y , ∆z , and resulting norm.
We can also confirm the reasoning behind the increased norm
of reconfiguration E is due to the significantly higher offset of
∆z .

To conclude, the payload performance of the malleable
robot was assessed. From the results in Fig. 21, we observe
the PUMA robot type of topology performed the best, due
to the distal joint of the robot being located directly above
the base joint. In comparison, the Spherical and General
articulated performed similarly with the distal joint located
further from the base, while the SCARA type performed the
worst with on average an additional 50 mm of deflection over
the PUMA type, with the distal joint located the furthest from
the base. While in an ideal case a serial robot would show
a significantly smaller deflection, the soft variable stiffness
nature of the robot, combined with the scale of the serial robot
(maximum working diameter 2.2 m), results in the expected
continuous deformation with increased load seen. Thus, when
selecting a reconfiguration to achieve based on the topology
generation method described, it is recommended to select
a reconfiguration where the distal joint is located as close
to directly above the base joint for improved accuracy and
payload performance.

IX. CONCLUSION

In this paper we presented the design of a 2-DOF malleable
robot, detailing innovations in layer jamming termination and
joint design. We presented the generation of the forward and
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inverse kinematics of a 2-DOF malleable robot using distance
geometry. We also presented the ability to define an end-
effector vector in space and generate the relevant geometric
robot topology, defined by 4 interpoint distances that define
the reconfiguration of the malleable link, required to achieve
said end effector location. The proposed kinematics and
topology reconfiguration were evaluated experimentally, along
with the manual alignment learning and payload capability
of the malleable robot. Considerations were identified for
reconfiguring the robot, namely the joint angle limits and distal
joint position, and how they significantly (negatively) affect the
ability to achieve the desired end effector location and payload.
In reconfiguring the robot, it was observed that 5 repeated
reconfigurations were necessary to train a user in obtaining
an accurate alignment, with overall accuracy improving with
experience. From the computed optimal topologies, accurate
alignments (<5 mm interpoint distance offsets) were achieved
for all reconfigurations, and quite accurate end effector posi-
tions (<11 mm axes offset) were achieved.
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